泵振动的原因及其消除

合集下载

泵振动原因及其消除措施

泵振动原因及其消除措施

振动是评价水泵机组运行可靠性的一个重要指标。

振动超标的危害主要有:振动造成泵机组不能正常运行;引发电机和管路的振动,造成机毁人伤;造成轴承等零部件的损坏;造成连接部件松动,基础裂纹或电机损坏;造成与水泵连接的管件或阀门松动、损坏;形成振动噪声。

引起泵振动的原因是多方面的。

泵的转轴一般与驱动电机轴直接相连,使得泵的动态性能和电机的动态性能相互干涉;高速旋转部件多,动、静平衡沐能满足要求;与流体作用的部件受水流状况影响较大;流体运动本身的复杂性,也是限制泵动态性能稳定性的一个因素。

1、电机电机结构件松动,轴承定位装置松动,铁芯硅钢片过松,轴承因磨损而导致支撑刚度下降,会引起振动。

质量偏心,转子弯曲或质量分布问题导致的转子质量分布不均,造成静、动平衡量超标川(公众号:泵管家)。

另外,鼠笼式电动机转子的鼠笼笼条有断裂,造成转子所受的磁场力和转子的旋转惯性力不平衡而引起振动,电机缺相,各相电源不平衡等原因也能引起振动。

电机定子绕组,由于安装工序的操作质量问题,造成各相绕组之间的电阻不平衡,因而导致产生的磁场不均匀,产生了不平衡的电磁力,这种电磁力成为激振力引发振动。

2、基础及泵支架驱动装置架与基础之间采用的接触固定形式不好,基础和电机系统吸收、传递、隔离振动能力差,导致基础和电机的振动都超标。

水泵基础松动,或者水泵机组在安装过程中形成弹性基础,或者由于油浸水泡造成基础刚度减弱,水泵就会产生与振动相位差1800的另一个临界转速,从而使水泵振动频率增加,如果增加的频率与某一外在因素频率接近或相等,就会使水泵的振幅加大。

另外,基础地脚螺栓松动,导致约束刚度降低,会使电机的振动加剧。

3、联轴器联轴器连接螺栓的周向间距不良,对称性被破坏;联轴器加长节偏心,将会产生偏心力;联轴器锥面度超差;联轴器静平衡或动平衡不好;弹性销和联轴器的配合过紧,使弹性柱销失去弹性调节功能造成联轴器不能很好地对中;联轴器与轴的配合间隙太大;联轴器胶圈的机械磨损导致的联轴器胶圈配合性能下降;联轴器上使用的传动螺栓质量互相不等。

水泵振动原因及对策

水泵振动原因及对策

水泵振动原因及对策一、水泵振动的原因引起水泵振动的原因很多,也很复杂,大致可分为三种情况:1.1机械原因引起的振动1.1.1水泵叶轮或电动机转子质量分布不均水泵叶轮或电动机转子质量分布不均,叶轮叶片的厚薄不匀,或者叶轮前后板有局部地方厚薄不一致。

这种叶轮旋转起来就会对整个泵体产生周期性激振力,使泵体产生强迫振动此外这种叶轮旋转起来会前后晃动,使水泵轴承受到侧向力,加速了轴承的磨损。

1.1.2水泵轴与电机轴不在一条直线上如果水泵轴与电机轴不同心接合面不平行度达不到要求(机械加工精度差或安装不合要求)就会使联轴器间隙随轴旋转而忽大忽小,因而发生和质量不平衡一样的周期性强迫振动,其频率和转速成倍数关系,振幅随泵轴与电动机偏心距大小而定。

1.1.3联轴器螺栓间距不良联轴器螺栓间距精度误差造成只有一部分螺栓传递扭矩,这部分螺栓受力大,因而产生不平衡的力作用在轴上,与上述两种情况一样产生周期性强迫振动。

其频率与转速成倍数关系,若法兰形联轴器橡皮圈配合不均匀也会产生性质完全相同的振动。

1.1.4轴的临界转速当泵轴转速逐渐增加并接近泵转子的固有振动频率时,泵就会猛烈地振动起来,转速高于或低于这一转速时,泵就能平稳地工作,通常把泵发生共振时的转速称为临界转速n c。

泵的临界转速有好几个,这些转速由低到高分为第一临界转速n c1、第二临界转速n c2等等。

泵的工作转速不能与临界转速相重合、相接近或成倍数,否则将发生共振而使泵遭到破。

泵的工作转速低于第一临界转速的轴为刚性轴,高于第一临界转速的轴为柔性轴,过去许多泵采用刚性轴,现在随着泵的尺寸的增加或采用多级泵,泵的工作转速经常高于第一临界转速n c1,一般柔性轴工作转速必须满足1.3n c1<n<0.7n c2的关系。

1.1.5由摩擦引起的振动由于某种原因泵轴弯曲时,转动部分与衬套或轴瓦接触,接触点的摩擦力对轴有阻碍作用,作用方向与轴旋转方向相反,有时使轴偏转而产生振动。

泵振动原因、测试与解决方法

泵振动原因、测试与解决方法

泵振动原因和测试与解决方法目录_Toc34896210总则 (3)振动评估 (3)泵的运行点对振动的影响 (4)泵入口设计对振动的影响 (5)平衡 (6)泵/驱动机对中 (6)共振 (7)转子动力学评估 (9)流体“增加质量”对转子动力学固有频率的影响 (10)环形密封“Lomakin效应”对转子动力学固有频率的影响 (10)转子扭转分析 (11)转子动力稳定性 (13)参数共振和分数频率 (15)测试方法– FFT频谱分析 (16)测试方法–冲击(敲击)测试 (17)振动故障排查 (19)案例:立式泵带空心轴/齿轮箱驱动 (22)总结 (24)总则当泵及其关联系统发生故障时,通常归结到四种类型:断裂,疲劳,摩擦磨损或泄漏。

断裂的原因是过载,例如超过预期的压力,或管口负荷超出推荐的水平。

疲劳的条件是施加的载荷是交变的,应力周期地超过材料破裂的耐久极限,泵部件的疲劳主要由振动过大引起,而振动大由转子不平衡,泵和驱动机之间轴中心线的过大不对中,或固有频率共振放大的过大运动引起。

摩擦磨损和密封泄漏意味着转子和定子之间的相互定位没有在设计的容差范围。

这可以动态发生,一般原因是过大的振动。

当磨损或泄漏位于壳体单个角度位置,常见的原因是不可接受的管口载荷量,及其导致的或独立的泵/驱动机不对中。

在高能泵(特别是加氢裂化和锅炉给水泵),另一个在定子一个位置摩擦的可能性是温度变化太快,导致每个部件由于随温度的变化,长度和装配不匹配。

有一些特定的方法和程序可供遵循,降低发生这些问题的机会;或如果发生了,帮助确定解决这些问题的方法,从而让一台泵保养的更好。

振动评估关于泵的振动和其它不稳定机械状态的诊断或预测,应包括如下评估:•转子动力学行为,包括临界转速,激励响应,和稳定性•扭转临界转速和振荡应力,包括起机/停机瞬态•管路和管口负荷引起的不稳定应力,和不对中导致的扭曲•由于扭振、止推和径向负荷导致高应力部件的疲劳•轴承和密封的稳态和动态行为•正常运行和连锁停机过程的润滑系统运行•工作范围对振动的影响•组合的泵和系统中的声学共振(类似喇叭)通常讨论的振动问题是轴的横向振动,即与轴垂直的转子动力学运动,然而,振动问题也会在泵的定子结构发生,如立式泵,另外振动也会发生在轴向,也可能涉及扭振。

离心泵振动的原因及处理方法

离心泵振动的原因及处理方法

离心泵振动的原因及处理方法离心泵啊,那可是在各种工业领域都大显身手的重要设备呢!可要是它振动起来,那可真让人头疼啊!你想想看,离心泵就好比是一台不知疲倦的“大力士”,整天在那辛勤工作。

可突然有一天,它开始“哆嗦”起来了,这是为啥呢?原因之一可能是转子不平衡。

就好像一个人走路一瘸一拐的,能稳当吗?转子不平衡了,离心泵自然就会振动啦。

还有啊,轴弯曲也会导致振动哦,这就好比是一根笔直的扁担突然变弯了,挑东西能不晃悠嘛!再说说安装问题吧。

如果离心泵安装得歪七扭八的,它能好好工作吗?肯定会闹别扭呀,振动也就随之而来了。

地脚螺栓松动也是个麻烦事儿,就像人的脚站不稳一样,离心泵也会摇摇晃晃的。

另外,泵内有异物也不行呀,就好比人嗓子里卡了东西,能舒服吗?离心泵也会通过振动来表达它的不满呢!那遇到这些问题该咋办呢?咱得对症下药啊!对于转子不平衡,就得好好给它调整平衡,让它能稳稳当当工作。

轴弯曲了,那就得想办法把它弄直呀,这可不能马虎。

安装的问题呢,就得重新认真安装,让离心泵站得稳稳的。

地脚螺栓松动了,赶紧拧紧呀,可别让它再晃悠啦。

要是泵内有异物,那得赶紧清理掉,让它的“嗓子眼儿”通畅起来。

还有啊,操作不当也可能让离心泵振动哦。

比如说流量过大或过小,就像人跑步速度忽快忽慢,能不难受嘛。

这时候就得调整好流量,让离心泵工作在一个舒适的状态。

总之啊,离心泵振动可不是小事儿,咱得重视起来。

要像照顾自己的宝贝一样照顾好它,及时发现问题,及时解决。

不然它要是闹起脾气来,耽误生产可就麻烦啦!你说是不是这个理儿呢?咱可不能让这么重要的设备出了问题还不管不顾呀,那可不行!要让离心泵一直稳稳当当地为我们服务,为我们的生产助力呀!。

磁力泵振动过大的原因

磁力泵振动过大的原因

磁力泵振动过大的原因
磁力泵振动过大的原因可能有以下几点:
1. 安装不当或电机异常。

2. 泵体本身质量不合格或者因意外工况导致内部组件破损。

3. 轴承间隙过大,金属松动,油内有异物,油质(粘度、温度)不良,用空气或工艺液体起泡,润滑不良,轴承破损。

4. 密封装置摩擦,外壳变形,轴承破损,支撑共振,推力轴承破损,轴弯曲,不良配合。

5. 联轴器松动,密封装置摩擦,外壳变形,轴承破损,支撑共振,推力轴承破损,轴弯曲,不良配合。

6. 压力脉动不是中间处,而是壳体变形,密封摩擦、支撑台或基础共振、管路、机械共振,加强基础或管路。

7. 轴的摩擦、密封、轴承、不精密、轴承晃动、不良的收缩配合等。

为了解决磁力泵振动过大的问题,可以采取以下措施:
1. 检查后,采取调整轴承间隙,去除油中异物,更换新油等措施。

2. 检查、调整或更换贴纸。

3. 检查后,采取相应措施修理、调整或更换。

4. 加强基础或管路。

5. 检查后采取相应措施修理、调整或更换。

以上信息仅供参考,建议咨询专业人士获取更准确的信息。

泵振动过大的10个原因

泵振动过大的10个原因

泵振动过大的10个原因泵是一种常见的流体输送设备,在许多行业和领域中都被广泛应用。

但有时候,泵在工作时会出现振动过大的情况,这不仅会影响泵的性能和寿命,还会对周围环境造成噪音和振动。

在本文中,我们将介绍泵振动过大的10个原因。

1. 泵进口侧管道设计不当泵进口侧的管道设计不当是导致泵振动过大的主要原因之一。

如果管道布置不合理、接口不平直或者下垂,会导致流体在进入泵之前发生扰动和回流,使泵吸入过多的空气和气泡,产生液体不稳定的现象,从而引起振动。

2. 泵出口侧管道设计不当泵出口侧的管道设计不当同样是导致泵振动过大的重要原因之一。

如果管道的支撑不稳固、弯曲角度过小或者管道接口出现局部收缩,则会使出流的液体波动不止,产生当量质量的不均匀分布,从而产生泵的振动。

3. 泵运行时系统管路受势不平衡泵在运行时,如果系统管路受力不平衡,比如管道内部存在过多的弯曲、突变或配件连接点不满足叶轮设计要求的曲率半径等,则会导致压力和流量分布不均匀,最终会导致泵的振动。

4. 泵叶轮不对称或失衡泵叶轮的不对称或失衡是另一个导致泵振动过大的原因。

在制造过程中或运行中,如果叶轮的质量分布不均匀或者叶片的形状不规则,会导致泵的振动,严重时会出现噪音和磨损等问题。

5. 泵轴承装配不当泵轴承的装配也可能是导致泵振动过大的原因之一。

如果泵的轨道不平行、外圈和内圈的尺寸不匹配或内圈过紧等原因,会使轴承在运行时产生过多的热量和摩擦,最终会导致泵的轴承失效和振动过大。

6. 泵运行时过载泵在运行时,如果负载超过了设计负载,例如输送的流体介质的密度、粘度或者流量的变化等,都会使泵的运行过载。

过载会导致泵的工作效率下降,噪音和振动加剧。

7. 泵轴尺寸不合适泵轴的尺寸如果不合适,例如过于粗大或过于细小,都会导致泵的振动。

一般来说,泵的轴的直径应该根据泵的运行条件、流量、扬程等因素进行合理的设计。

8. 泵抽水不足或压力不稳定泵的抽水量不足或压力不稳定也可能成为导致泵振动过大的原因之一。

水泵振动最常见的原因是

水泵振动最常见的原因是

水泵振动最常见的原因是水泵振动最常见的原因可以分为以下几点:1. 不平衡负载:水泵在运行过程中,如果负载分布不均匀,或者存在故障造成负载不平衡,就会导致水泵振动。

常见的情况有:管道内堵塞、流体浓度不均匀等。

2. 轴承故障:水泵轴承是水泵的重要组成部分,如果轴承损坏、缺乏充分润滑或者过紧,就会导致水泵振动。

轴承故障可能是由于强烈冲击、过热或杂质进入轴承内部等原因引起的。

3. 不良安装:水泵在安装过程中,如果操作错误、连接不当、基础不稳固等,就会引起水泵的振动。

不良安装可能导致水泵内部部件不协调、不平衡,从而造成振动。

4. 设计缺陷:水泵的设计存在一些不合理或不完善的地方,也会导致水泵振动,例如由于结构设计上的失误或流体动力学不合理造成的问题。

5. 运行条件改变:水泵的振动也可能是由于运行条件的改变而引起的,例如流量、压力或温度的突变,或者水泵运行于超出其设计范围的工况下。

6. 轴偏斜:水泵的轴与电动机的轴连接不正、轴弯曲、轴与轴套之间存在间隙等,都会导致水泵振动。

轴偏斜会增加水泵的摩擦和振动,进而影响水泵的正常运行。

7. 水泵故障:水泵本身的故障也是引起振动的常见原因,例如叶轮损坏、漏水、泵内杂质等。

针对以上原因,可以采取以下措施来减少水泵振动:1. 确保负载均衡:定期检查管道是否堵塞、流体是否均匀分布,及时清理管道,保持负载均衡。

2. 定期检查轴承:定期检查轴承是否损坏,轴承润滑状态是否良好,如有问题及时更换或加注润滑剂。

3. 改善安装条件:正确安装水泵,确保操作正确、连接紧固、基础牢固,删除振动源,减少振动传输。

4. 设计合理:在水泵设计阶段,应尽量避免设计缺陷,合理选择材料和结构,确保水泵在运行时不易产生振动。

5. 控制运行条件:控制水泵运行条件的稳定性,避免运行突变,预防或减小运行条件的改变引起的振动。

6. 检查轴偏斜:定期检查水泵轴与电动机轴的连接情况,调整轴线使其保持正确的对齐。

7. 定期维护:定期对水泵进行检查和维护,清洁叶轮、排除杂质,保证水泵的正常运行。

水泵振动原因及消除措施

水泵振动原因及消除措施

《装备维修技术》2021年第2期—115—水泵振动原因及消除措施武雄雄(国家能源集团准能公用事业公司小沙湾水厂,内蒙古 鄂尔多斯 010300)水泵如果是正常运行状态,则机组整体应具备较好的平稳性,不能出现异常振动和噪声。

若振动幅度超出范围,或者机组存在一定杂音,往往会引发后续水泵出现故障的问题,一旦发现,应当立刻使水泵系统停止运行,对出现振动的原因进行针对性查证,有的放矢,达到排除故障的目的。

通常情况下,水泵振动原因大致有以下几种:1 水泵本身的问题和解决方式水泵在工厂制造阶段,若相关部件质量达不到标准,水泵就会在运行阶段,稳定性较差,主要以水泵振动的形式体现。

究其原因,主要是水泵自身零部件,未能保证合格的制作尺寸。

举例来说,叶轮叶片为保证一致厚度,或联轴器同轴度存在问题,或轴存在弯曲、间隙过大的现象,都会引发水泵振动的现象。

凡此种种,制造厂商在工序控制方面,都应当将其视为重中之重,以保证产品质量不受影响。

除此之外,若水泵叶轮在加工阶段,不同部分在重量分布上不够均匀,则叶轮在经过高速旋转之后,同样会出现较大离心力,破坏了叶轮自身动平衡,水泵也会因此出现振动和损坏问题。

对此现象,应当利用堆焊或车削方法,令叶轮重量重新均匀分布[1]。

各种问题中,最突出的问题往往是联轴器自身同心度达不到标准。

这种情况,更多会发生在水泵安装阶段,由于水泵基础未能保证较好的水平度,高低程度并不统一,在安装后进行调整,会出现较大误差,或者地脚螺栓出现松动问题,会导致水泵轴和电动机轴在连接之后,偏心距达不到要求,因此出现了离心振动的问题,进一步降低了水泵轴功率。

由于水泵需要基于一定转速进行设计,如果实际转速和设计转速值相差较多,则水泵其余性能参数,例如功率、扬程、流量等,同样也会发生一定变化,振动会引起水泵应用效率的降低,通常会达到大约10%,无法达到要求的扬程标准。

当前社会背景下,水泵上安装的联轴器,主要包含爪型、膜片式以及柱销盘式等不同种类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泵振动的原因及其消除振动是评价水泵机组运行可靠性的一个重要指标。

振动超标的危害主要有:振动造成泵机组不能正常运行;引发电机和管路的振动,造成机毁人伤;造成轴承等零部件的损坏;造成连接部件松动,基础裂纹或电机损坏;造成与水泵连接的管件或阀门松动、损坏;形成振动噪声。

引起泵振动的原因是多方面的。

泵的转轴一般与驱动电机轴直接相连,使得泵的动态性能和电机的动态性能相互干涉;高速旋转部件多,动、静平衡沐能满足要求;与流体作用的部件受水流状况影响较大;流体运动本身的复杂性,也是限制泵动态性能稳定性的一个因素。

1 对引起泵振动原因的分析1.1电机电机结构件松动,轴承定位装置松动,铁芯硅钢片过松,轴承因磨损而导致支撑刚度下降,会引起振动。

质量偏心,转子弯曲或质量分布问题导致的转子质量分布不均,造成静、动平衡量超标川。

另外,鼠笼式电动机转子的鼠笼笼条有断裂,造成转子所受的磁场力和转子的旋转惯性力不平衡而引起振动,电机缺相,各相电源不平衡等原因也能引起振动。

电机定子绕组,由于安装工序的操作质量问题,造成各相绕组之间的电阻不平衡,因而导致产生的磁场不均匀,产生了不平衡的电磁力,这种电磁力成为激振力引发振动。

1.2基础及泵支架驱动装置架与基础之间采用的接触固定形式不好,基础和电机系统吸收、传递、隔离振动能力差,导致基础和电机的振动都超标。

水泵基础松动,或者水泵机组在安装过程中形成弹性基础,或者由于油浸水泡造成基础刚度减弱,水泵就会产生与振动相位差1800的另一个临界转速,从而使水泵振动频率增加,如果增加的频率与某一外在因素频率接近或相等,就会使水泵的振幅加大。

另外,基础地脚螺栓松动,导致约束刚度降低,会使电机的振动加剧。

1.3联轴器联轴器连接螺栓的周向间距不良,对称性被破坏;联轴器加长节偏心,将会产生偏心力;联轴器锥面度超差;联轴器静平衡或动平衡不好;弹性销和联轴器的配合过紧,使弹性柱销失去弹性调节功能造成联轴器不能很好地对中;联轴器与轴的配合间隙太大;联轴器胶圈的机械磨损导致的联轴器胶圈配合性能下降;联轴器上使用的传动螺栓质量互相不等。

这些原因都会造成振动。

1.4叶轮①叶轮质量偏心。

叶轮制造过程中质量控制不好,比如,铸造质量、加工精度不合格;或者输送的液体带有腐蚀性,叶轮流道受到冲刷腐蚀,导致叶轮产生偏心。

②叶轮的叶片数、出口角、包角、喉部隔舌与叶轮出口边的径向距离是否合适等。

③使用中叶轮口环与泵体口环之间、级间衬套与隔板衬套之间,由最初的碰摩,逐渐变成机械摩擦磨损,这些将会加剧泵的振动。

1.5传动轴及其辅助件轴很长的泵,易发生轴刚度不足,挠度太大,轴系直线度差的情况,造成动件(传动轴)与静件(滑动轴承或口环)之间碰摩,形成振动。

另外,泵轴太长,受水池中流动水冲击的影响较大,使泵水下部分的振动加大。

轴端的平衡盘间隙过大,或者轴向的工作窜动量调整不当,会造成轴低频窜动,导致轴瓦振动。

旋转轴的偏心,会导致轴的弯曲振动。

1.6泵的选型和变工况运行每台泵都有自己的额定工况点,实际的运行工况与设计工况是否符合,对泵的动力学稳定性有重要的影响。

水泵在设计工况下运行比较稳定,但在变工况下运行时,由于叶轮中产生径向力的作用,振动有所加大;单泵选型不当,或是两种型号不匹配的泵并联。

这些都会造成泵的振动。

1.7轴承及润滑轴承的刚度太低,会造成第一临界转速降低,引起振动。

另外,导轴承性能闭不良导致耐磨性差,固定不好,轴瓦间隙过大,也容易造成振动;而推力轴承和其他的滚动轴承的磨损,则会使轴的纵向窜动振动以及弯曲振动同时加剧。

润滑油选型不当、变质、杂质含量超标及润滑管道不畅而导致的润滑故障,都会造成轴承工况恶化,引发振动。

电动机滑动轴承油膜的自激也会产生振动。

1.8管道及其安装固定泵的出口管道支架刚度不够,变形太大,造成管道下压在泵体上,使得泵体和电机的对中性破坏;管道在安装过程中较劲太大,进出口管路与泵连接时内应力大;进、出口管线松动,约束刚度下降甚至失效;出口流道部分全部断裂,碎片卡人叶轮;管路不畅,如出水口有气囊;出水阀门掉板,或没有开启;进水口有进气,流场不均,压力波动。

这些原因都会直接或者间接地导致泵和管路的振动。

1.9零部件间的配合电机轴和泵轴同心度超差;电机和传动轴的连接处使用了联轴器,联轴器同心度超差;动、静零部件之间(如叶轮毅和口环之间)的设计间隙的磨损变大;中间轴承支架与泵筒体间隙超标;密封圈间隙不合适,造成了不平衡;密封环周围的间隙不均匀,比如口环未人槽或者隔板未人槽,就会发生这种情况。

这些不利因素都能造成振动。

1.10水泵自身的因素叶轮旋转时产生的非对称压力场;吸水池和进水管涡流;叶轮内部以及涡壳、导流叶片漩涡的发生及消失;阀门半开造成漩涡而产生的振动;由于叶轮叶片数有限而导致的出口压力分布不均;叶轮内的脱流;喘振;流道内的脉动压力;汽蚀;水在泵体中流动,对泵体会有摩擦和冲击,比如水流撞击隔舌和导流叶片的前缘,造成振动;输送高温水的锅炉给水泵易发生汽蚀振动;泵体内压力脉动,主要是泵叶轮密封环,泵体密封环的间隙过大,造成泵体内泄漏损失大,回流严重,进而造成转子轴向力的不平衡和压力脉动,会增强振动。

另外,对于输送热水的泵,如果启动前泵的预热不均,或者水泵滑动销轴系统的工作不正常,造成泵组的热膨胀,会诱发启动阶段的剧烈振动;泵体来自热膨胀等方面的内应力不能释放,则会引起转轴支撑系统刚度的变化,当变化后的刚度与系统角频率成整倍数关系时,就发生共振。

2 减轻振动的措施2.1从设计制造环节消除振动2.1.1机械结构设计方面注意的问题1)轴的设计。

增加传动轴支撑轴承的数目,减小支撑间距,在适当范围内减小轴长,适当加大轴的直径,增加轴的刚度;当泵轴转速逐渐增加并接近或整数倍于泵转子的固有振动频率时,泵就会猛烈振动起来,所以在设计时,应使传动轴的固有频率避开电机转子角频率;提高轴的制造质量,防止质量偏心和过大的形位公差。

2)滑动轴承的选择。

采用无须润滑的滑动轴承;在液态烃等化工泵中,滑动轴承材料应采用具有良好自润滑性能的材料,比如聚四氟乙烯;在深井热水泵中,导流衬套选择填充聚四氟乙烯、石墨和铜粉的材质,并合理设计其结构,使滑动轴承的固定可靠;叶轮密封环和泵体密封环处采用摩擦因数小的摩擦副,比如M20lK石墨材料一钢;限制最高转速;提高轴瓦承载能力及轴承座的刚度。

3)使用应力释放系统。

对于输送热水的泵,设计时,应使由泵体变形而引起的连接件之间的结构应力得以释放,比如在泵体地脚螺栓上面增加螺栓套,避免泵体直接和刚度很大的基础接触。

2.12水泵的水力设计注意事项1)合理地设计水泵叶轮及流道,使叶轮内少发生汽蚀和脱流;合理选择叶片数、叶片出口角、叶片宽度、叶片出口排挤系数等参数,消除扬程曲线驼峰;泵叶轮出口与蜗壳隔舌的距离,有资料认为该值为叶轮外径的十分之一时,脉动压力最小;把叶片的出口边缘做出倾角(比如做成20。

左右),来减小冲击;保证叶轮与蜗壳之间的间隙;提高泵的工作效率。

同时,对泵的出水流道等相关流道进行优化设计,减少水力损失引起的振动。

合理设计各种泵的进水段处的吸入室,以及压缩级的机械结构,减少压力脉冲,可以保证流场稳定,提高泵的工作效率,减小能量损失,也可以提高泵的振动动态性能的稳定性。

2)汽蚀振动是泵振动的很重要的一部分。

当泵的人口压力低于相应水温下的和压力时,会发生伴随剧烈振动的汽蚀。

减小汽蚀的措施包括:确定水泵的安装高度时,使装置的有效汽蚀余量大于泵的最小装置汽蚀余量;适当加大进水管直径,缩短进水管长度,减少管路附件,通流部分断面变化率力求最小,提高管壁的粗糙度;减少弯头数目和加大管道转弯角度;降低水泵的工作转速;采用抗空化汽蚀的材料,比如不锈钢,或在容易发生汽蚀的部位涂环氧树脂;进水流道设计要合理,力求平滑,使进人叶轮的水流速度和压力分布均匀,避免局部低压区;提高制造加工质量,避免因为叶片型线不准确造成局部流速过大,压降过多;提高泵装置的抗汽蚀性能,包括在泵的进口处设置水力增能器,增能器的结构,提高泵的吸人压头,从而提高泵装置汽蚀余量;增加几何倒灌高度;尽量减少进水管路水头损失;采用双吸式泵。

为了保证吸水管或压水管内无空气积存,吸水管的任何部分都不能高过水泵的进口。

为了减小人水口处的压力脉动,吸水管路直径应比泵人口直径大一个尺寸数量级,以便水流在泵人口处有一定的收缩,使流速分布比较均匀,同时还应当在泵人口前有一段直管,直管长度不小于管路直径的10倍。

注意创造良好进水条件,进水池内水流要平稳均匀,以消除伴随卡门涡旋的振动。

3)基础的设计。

基础的重量应为泵和电机等机械重量总合的三倍以上;盛水池的基础应具有相当的强度;电机支架与基础最好做成一体或做成面接触;在泵和支架之间设置隔振垫或隔振器。

另外,在管路之间采用减振材料连接,减少管路布置,可以消除弹性接触和水力损失带来的振动。

2.2从安装和维护过程消除振动1)轴和轴系。

安装前检查水泵轴、电机轴、传动轴有没有弯曲变形、质量偏心的情况,若有,则必须矫正或者进一步加工;检查与导轴承接触的传动轴,是否因弯曲而摩擦轴瓦或衬套而使自己受激力。

如果监测表明,轴实际上已经弯曲了,则矫正泵轴。

同时,检查轴的端间隙值,若该值过大,则表明轴承已磨损,需更换轴承。

2)叶轮。

动、静平衡是否合格。

3)联轴器。

螺栓间距是否良好;弹性柱销和弹性套圈结合不能过紧;联轴器内孔与轴的配合是否过松,若太松,可采用诸如喷涂的方法来减小联轴器内径直至其达到过渡配合所要求的尺寸,而后将联轴器固定在轴上4)滑动轴承。

间隙值是否符合标准;各处润滑是否良好;提高泵的轴瓦检修工艺水平,严格遵循先刮瓦、后研磨、再刮瓦的循环程序,保证轴瓦与轴颈的接触面积达到规定的标准:①泵轴颈与轴承间隙值,通过更换前后轴承、研磨、刮瓦、调整等手段达到合格。

②泵轴承体与轴承箱球面顶间隙值合格。

③泵轴轴承下瓦和泵轴轴颈接触点及接触角度:标准规定下瓦背与轴承座接触面积应在60%以上,轴颈处滑动接触面上的接触点密度保持在每平方厘米2一4个点,接触角度保持在60“一90”。

5)支架和底板。

及时发现有振动的支撑件的疲劳情况,防止因为强度和刚度降低造成固有频率下降。

6)间隙和易损件。

保证电机轴承间隙合适;适当调整叶轮与涡壳之间的间隙;定期检查、更换叶轮口环、泵体口环、级间衬套、隔板衬套等易磨损零件。

2.3消除由于泵的选型和操作不当引起的振动两泵并联应保证泵性能相同。

泵性能曲线应为缓降型为好,不能有驼峰。

使用时要注意:消除导致水泵超载的因素,比如流道堵塞;适当延长泵的启时间,减小对传动轴的扰动,减小转动部件和静止零件之间的碰撞和摩擦,以及由此引起的热变形;对于水润滑的滑动轴承,启动过程中应加足预润滑水,避免干启动,直至水泵出水后再停止注水;定期向需要注油的轴承适量注油;对于长轴液下离心泵,因为轴系存在着扭转振动,若使用的有推力瓦,则受损伤的主要是推力瓦,这时可以适当提高润滑油的粘度,防止液体动压润滑膜的破坏。

相关文档
最新文档