3.4 第1课时 合并同类项
3.4《合并同类项》

4、若 y 2x, z 2y,则x y z等于( C)
( A)3x, (B)5x, (C)7x, (D)9x.
5、什么样的同类项合并时可以互相抵消?
解:当系数是互为相反数的同类项,
合并时能互相抵消.
反 馈 评 价-----游 戏 接 龙
解:原式 x 3x2
(3)5x2 y 3y2 x 4 x2 y 2x 9
解: 原式 6x2 y 3y2 x 13
变式练习、激发情智
1、用含 x 的 多项式表示如下图形的面积。
x
2
Ⅰ
3x
Ⅱ
Ⅲ
x
解:把图形分成Ⅰ,Ⅱ,Ⅲ三个长方形,
它们的面积分别是 2x, x2 ,3x285nⅠⅡ
新课讲解
问题2:
①-3+5=____2____; ② 3x2y+5x2y=_(__3_+5_)__x_2_y_=__8_x_2y__
其理由是__乘__法__分_配__律___; ③ -4xy2 +2xy2=(__-_4_+_2_)__x_y2___=__-2_x_y_2__
其理由是__乘__法_分__配__律___.
例1、 下 列 上 下 两 行 的 式 子中 , 是 同 类 项 的 用 线 连接起来。 m2n - 24 28a2 - a3b2c 0.7a2bc3 2(x - y)2
5
78 - 1 a2bc3 - 0.2m2n - 5(x - y)2 82a2 b2a3c 5
说明:1、判断同类项的关键是抓住“两个相同,两 个无关”。一是所含字母相同,二是相同字母的指 数也相同,两者缺一不可;与系数大小无关,与字 母的先后顺序无关。 2、其中2(x-y)2和- 5(x-y)2,是把多项式x-y看成 一个整体,也可以认为它们是同类项。因为相同字 母是(x-y),其指数都是2。
3.4 合并同类项(1)

书上 P94 的图形
100a 和 200a 、 b 和-13a b …… 5a 所含字母相同, 并且相同字母的指数 相同,向这样的项是同类项。
合并同类项: 1) 5(a +b ) + 4(a +b ) – 10(a +b ); 2)
1 1 2 (a - b ) + ( a + b )2 4 1 1 2 (a -b ) ( a + b ). 3 5
情境创设 1、 2、 例 1:…… …… …… 例 2:…… …… …… 习题 …… …… ……
2
2
5a b 和-13a b 、-9x y 5x y
2 3
2
2
2
3
和
有什么共同特点?
把下列各式中的同类项合并成一项, 并说出你计算的理由: 根据什么知识能把各式中的同类 (1)7a -3a = 项合并成一项? (2) 4x
2
让学生分组讨 论开放题, 尽可 能从多个角度、 多个侧面展开 讨论。 通过和同 学交流想法, 各 小组获得各种 不同的答案。 在 这个思考和交 流的过程中, 要 给予学生必要 的提示和指导, 为学生提供自 主探索的时间 和空间, 培养学 生的创造性思 维和发散思维
3 2
2
-7
1 1 3 ,y = 1;x = 1,y = ;x = m 3 - 7. 2 2 2
思考 如何做呢? 把括号作为一个整体 本题先由同学 讨论, 再由教师 归纳 把括号作为一 个整体就行了
= -3,y = 4.5. 提问:1)从上面的计算中你发现了 什么? 2)请你编出 3 组 x ,的取值,使 计算结果与上面计算结果相同.
3.4 合并同类项(1)

1、所含的字母相同 2、相同字母所含的指数也相同
归
纳
所含字母相同,并且相同 字母的指数也相同的项叫做同 类项(like terms). 几个常数项也是同类项.
辨一辨
下列各组中的两项是不是同类项?
为什么?
⑴
⑶ ⑸
x与 y
(×) ⑵
a2b与ab2 (×)
-3pq与3qp(√) ⑷ abc与ac(×) 125与12(√) ⑹ a2与a3
(×)
如何判断同类项: 1、两同:一是所含字母相同,二是相同 字母的指数也相同,两者缺一不可 2 、同类项与系数的大小无关 3 、同类项与它们所含字母的顺序无关 4 、所有的常数项都是同类项
问题2 同类项怎样合并呢?
合并同类项,并说明你计算的理由:
(1) 7 a-3 a = ( 7-3 ) a = 4a 2 2 2 2 ( 4+2 ) x = 6 x (2) 4 x + 2 x = 2 2 -8ab 2 2 (3) 5ab - 13ab = ( 5-13 ) ab = (4) –9x2y3 + 5x2y3 = ( -9+5 )
3
3
3xy z
是同类项的式子
我们这节课学到了什么?
同类项
两个标准
(1)所含字母相同;
(2)相同字母的指数分 别相同;
合并同类项
法则
(1)系数相加作为 结果的系数。
(2)字母与字母的
指数不变。
课堂作业 课本P77 习题3.4 第1、2; 评价手册3.4 50页 家庭作业 补充习题3.4 44页
பைடு நூலகம்
请你仿照上面的方法,合并下列各式中的同类项: 5(x+y)+4(x+y)-10(x+y)
华师版七年级上册数学3.4.1【教案】同类项与合并同类项

同类项与合并同类项【教学目标】知识与技能:1.理解同类项的概念,在具体情境中,认识同类项.2.使学生理解合并同类项的概念.3.使学生掌握合并同类项的法则,并正确地合并同类项.过程与方法:通过小组讨论,合作学习等方式,经历概念的形成和合并同类项的法则的过程,培养学生自主探索知识和合作交流的能力,让学生进一步体验研究问题由表及里、由浅及深的方法.情感态度与价值观:1.初步体会数学与人类生活的密切关系.2.体验团队的力量,交流的愉快,感受数学来源于生活,最终服务于生活. 【教学重难点】重点:1.理解同类项的概念.2.合并同类项的概念,熟练地合并同类项并求多项式的值.难点:1.根据同类项的概念在多项式中找同类项.2.多字母同类项合并,多字母的指数容易混淆而产生错误.【教学过程】一、创设情境,导入新课设计意图:数学教学要紧密联系学生的生活实际,学习实际,这是新课程标准所赋予的任务.通过有趣的问题引发学生思考,进而激发学生的探究欲望,让学生主动尝试去思考解决问题.1.教师出示问题:(1)3kg+2kg=( );3千克加上2千克等于多少千克?(2)3km+2km=( );3千米加上2千米等于多少千米?(3)3km+2kg=( );那么3千米加上2千克等于多少?结果引起学生的思考,为什么(3)不能运算呢?2.教师出示多媒体:从西宁到拉萨路段,如果列车通过冻土地段的时间是t 小时,它通过非冻土地段的时间是2.1t小时,这段路的全长是多少?(经过冻土地段的速度是100千米/时,经过非冻土地段的车速为120千米/时) 学生思考后回答:100t+120×2.1t=100t+252t.师:怎样化简这个式子呢?(引入本节课题)二、推进新课设计意图:通过学生活动,一方面可提供学生主动参与的机会,把学生的注意力和思维活动调节到积极状态;另一方面可培养学生思维的灵活性,同时体现分类的思想方法.1.探究同类项的定义师:观察下列各单项式,把你认为相同类型的式子归为一类.8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2.学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示.要求学生观察归为一类的式子,思考它们有什么共同特征?请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行分类.充分让学生自己观察,自己发现,自己描述,进行自主学习和合作交流,可极大地激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性.在这一过程中,教师要充分体现教师的主导地位,引导学生按同类项的方法去分类,进而引出同类项的定义.同类项:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项;另外,所有的常数项都是同类项,比如:,0,是同类项.2.例题讲解指出下列多项式中的同类项:(1)3x-2y+1+3y-2x-5;(2)3x2y-2xy2+xy2-yx2.学生练习后,组内交流评议.k取何值时,3x k y与-x2y是同类项?教师点拨:因为是同类项,这两项中x的指数必须相等,故k=2.3.合并同类项教师让学生自学教材102页“观察”部分,明确以下问题:(1)什么是合并同类项?(2)合并同类项的依据是什么?学生自学、观察、交流后,归纳出:把多项式中的同类项合成一项,叫做合并同类贡;合并同类项的依据是加法的交换律和加法的结合律以及乘法的分配律. 师举例概括:3x2y-4xy2-3+5x2y+2xy2+5=3x2y+5x2y-4xy2+2xy2-3+5=(3x2y+5x2y)+(-4xy2+2xy2)+(-3+5)=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2.由以上不难发现,合并同类项实质上就是根据加法的交换律,结合律和乘法的分配律,把各同类项的系数加以合并,因而合并同类项的法则可以概括为: 把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.学生结合自己的理解,完成练习:合并下列多项式中的同类项:①2a2b-3a2b+a2b;②a3-a2b+ab2+a2b-ab2+b3.教师让两名学生板演,其余学生在练习本上完成.然后针对学生完成的情况集中评议.教师出示例题:求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3.强调化简求值的问题格式:(1)先合并同类项,把多项式化简;(2)再代入求值.三、巩固练习设计意图:通过学生练习,让学生体会同类项的意义,巩固所学知识,对同类项作更深层次的认识.练习:1.让学生写出3a2bc3的同类项,能写多少?2.k取何值时,3x k+m与-x2y4是同类项?此时m的值又是多少?学生自由练习,完成后组内交流,教师集中评议.3.合并下列多项式中的同类项.(1)2a+5b-7a+4b+5a;(2)3xy2-2x2y+7xy2-5x2y+4xy2+6x2y.4.已知一个多项式加上-ab+7a2-b2得10a2-ab,求这个多项式;若a=1,b=2,这个多项式的值为多少?5.教材第104页例5.学生自主练习,完成后组内交流评议.四、课堂小结设计意图:通过小结,使学生对本节课的知识有一个系统的回顾,形成完整的知识体系.小结:谈谈你这节课的收获.五、课后作业1.下列各式中不是同类项的是( )A.-25和1B.-4xy2z和-4x2yz2C.-x2y和-yx2D.-a3和4a3【答案】B2.写出a2b的一个同类项.【答案】如:8a2b,-a2b(此题为开放题,答案不唯一)3.下列运算中,结果正确的是( )A.x+x=x2B.6xy-xy=6C.8a3-7a2=aD.-3ab2+7b2a=4ab2【答案】D4.若A=a2-3a+2,B=3-4a-a2,C=2+a-2a2,求A-2B-3C的值,其中a=-.【答案】A-2B-3C=(a2-3a+2)-2(3-4a-a2)-3(2+a-2a2)=a2-3a+2-6+8a+2a2-6-3a+6a2=9a2+2a-10.当a=-时,A-2B-3C=9×(-)2+2×(-)-10=-9. 【板书设计】一、创设情境,导入新课二、推进新课1.探究同类项的定义2.例题讲解3.合并同类项三、巩固练习四、课堂小结五、课后作业。
北师大版七年级上册3.4《整式的加减》【教案】

《整式的加减》教学设计第一课时合并同类项教材分析:《整式的加减》(第一课时)——合并同类项,这节课的教学内容有同类项的概念、合并同类项法则及其运用,它是学生学习了有理数运算、单项式和多项式的有关知识的基础上学习的,同类项及合并同类项的法则是学习整式的加减运算和一元一次方程的直接基础;而整式的加减运算既是―数与代数‖领域中最基本的运算,又是今后学习整式的乘除、因式分解、分式、根式运算、方程及函数等知识的重要基础.所以,本节课具有承上启下的重要作用。
教学目标:1.知识目标:在具体情境中感受合并同类项的必要性,了解合并同类项的法则,能进行同类项的合并。
2.能力目标:通过具体情境导入同类项以及合并同类项的概念,经历合并同类项的过程,培养学生的观察、归纳等能力。
3.情感目标:在学习中培养学生分类、化繁为简等数学思想、方法,鼓励学生敢于发表自己的观点,从交流中获益。
教学重难点:【教学重点】找出同类项并正确合并。
【教学难点】准确合并同类项。
课前准备:学习工具、自己家的内部图片、PPT、智慧课堂等。
教学过程:一、情景引入师:昨天我们请同学们拍一拍自己的家,现在我们来看一看。
(图例)教师出示图片:这是不是你心目中的家的一部分呢?它之所以这么美,是因为——分类摆放。
在数学学习中有时候我们也要将一些单项式进行分类。
【设计意图】通过图片的交流,使学生注意力高度集中,激发学习兴趣,并体会分类的必要性。
二、思考交流、理解概念1.同类项的思考和认识观察下列单项式,你觉得它们中哪些是同类?-a ; 2b ; ab ; 3a ; -7ba ; 5b2abc通过学生猜测,讨论,说出分类和分类标准,得到同类项的定义。
同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
游戏:找朋友a²mn xy 2-3pq³a³xy/2 pq-8pq³-nm 3q³p -4分析思考:两个单项式是否为同类项与系数无关、与单项式中字母的顺序无关。
3.4 合并同类项(1)(苏科版)(解析版)

3.4 合并同类项(1)1.下列各选项中是同类项的是( )A .﹣a 2b 与ab 2 ;B .33与a 3C .x 3y 2与﹣y 3x 2 ;D .5x 2n+1y 2n﹣1与﹣x 2n+1y 2n ﹣1 【答案】D【解析】A 、﹣a 2b 与ab 2相同字母的指数不同,不是同类项,故本选项不符合题意. B 、33与a 3含有的字母不同,不是同类项,故本选项不符合题意.C 、x 3y 2与﹣y 3x 2相同字母的指数不同,不是同类项,故本选项不符合题意.D 、5x 2n+1y 2n ﹣1与﹣2n+1y 2n ﹣1,含有相同的字母,且相同字母的指数相同,是同类项,故本选项符合题意. 2.下列各式中,是5x 2y 的同类项的是( )A .x 2yB .﹣3x 2yzC .3a 2bD .5x 3【答案】A【解析】A..5x 2y 与x 2y ,所含的字母相同:x 、y ,它们的指数也相同,所以它们是同类项,故本选项符合题意;B.5x 2y 与﹣3x 2yz ,所含的字母不相同,所以它们不是同类项,故本选项不合题意;C.5x 2y 与3a 2b ,所含的字母不相同,所以它们不是同类项,故本选项不合题意;D.5x 2y 与5x 3,所含的字母不相同,所以它们不是同类项,故本选项不合题意.故选A .3. 已知2x n+1y 3与x 4y 3是同类项,则n 的值是( )A .2B .3C .4D .5 【答案】B【解析】∵2x n+1y 3与x 4y 3是同类项,∴n+1=4,解得,n =3,故选B .4.下列运算中,正确的是( ).A .325a b ab +=B .325235a a a +=C .22330a b ba -=D .22541a a -=【答案】C【解析】试题分析:3a 和2b 不是同类项,不能合并,A 错误;32a 和23a 不是同类项,不能合并,B 错误;22330a b ba -=,C 正确;22254a a a -=,D 错误,故选C .5.下面是小林做的4道作业题:(1)2ab+3ab =5ab ;(2)2ab ﹣3ab =﹣ab ;(3)2ab ﹣3ab =6ab ;(4)2ab÷3ab =23.做对一题得2分,则他共得到( )A .2分B .4分C .6分D .8分 【答案】C【解析】(1)235ab ab ab +=,故正确;(2)23ab ab ab -=-,故正确;(3)23ab ab ab -=- ,∴236ab ab ab -=错误;(4)222333ab ab ab ab ÷== ,故正确; 故小林答对3道题得6分6.已知代数式3a 2b ,请写出一个它的同类项: .【答案】a 2b【解析】代数式3a 2b 的同类项a 2b ,故答案为a 2b .7.若单项式ax 2y n+1与-2ax m y 4的差仍是单项式,则m ﹣2n = .【答案】﹣4【解析】∵单项式ax 2y n+1与-2ax m y 4的差仍是单项式,∴单项式ax 2y n+1与-2ax m y 4是同类项,∴m =2,n+1=4,解得m =2,n =3,∴m ﹣2n =2﹣2×3=﹣4,故答案为﹣4.8.把()-a b 看作一个整体,合并同类项7()3()2()a b a b a b -----= _______。
3.4第1课时合并同类项(教案)

三、教学难点与重点
1.教学重点
(1)理解同类项的定义:同类项指含有相同字母和相同指数的代数项,如3x、5x是同类项,而3x和4y不是同类项。这是进行合并同类项运算的基础,需重点讲解和强调。
(2)掌握合并同类项法则:合并同类项的法则是将同类项的系数相加(或相减),保持字母和指数不变。如3x+5x=8x,-2y-4y=-6y。这是本节课的核心内容,需要让学生熟练掌握。
内容包括以下例题和练习:
-认识同类项,给出具体的代数式,如3x和5x,2y和-4y;
-合并同类项法则的应用,如3x+5x=8x,2y-4y=-2y;
-拓展练习:给出含有多项式的代数式,要求学生找出同类项并合并;
-生活实例:运用合并同类项的方法解决购物时计算总价的问题。
二、核心素养目标
本节课旨在培养学生的以下核心素养:
2.在讲解过程中,更加突出正负号的问题,减少运算错误;
3.提高问题的开放性,加强对同学们的引导,培养他们的思考能力和创新能力;
4.加强课堂互动,关注每一个同学的学习情况,及时为他们提供帮助。
五、教学反思
在今天的教学过程中,我注意到同学们对合并同类项的概念和法则的理解程度有所不同。有的同学能让我意识到,在教学这部分内容时,需要更加细致和耐心。
首先,我在导入环节通过日常生活中的例子引入合并同类项的概念,大多数同学能够产生共鸣,这为接下来的学习奠定了基础。但在理论介绍部分,我发现有些同学对同类项的定义仍然模糊,这可能是因为我讲解得不够详细,或者例子不够典型。在今后的教学中,我需要准备更多具有代表性的例子,以便同学们更好地理解。
在新课讲授环节,我尝试通过案例分析和重点难点解析来帮助同学们掌握合并同类项的法则。从同学们的反应来看,这种方法是有效的。但我也注意到,有些同学在运算过程中仍然会忽略系数的正负号,导致计算错误。这说明我在强调重点时,还需要更加突出正负号的问题,以减少这类错误的发生。
3.4合并同类项(1)

版本:苏科版章节:3.4合并同类项(1)编制:鲁德健审稿:七年级数学备课组一、学习要求1.理解同类项的概念,能识别同类项。
2.知道合并同类项的依据,掌握合并同类项的法则,会合并同类项。
二、课堂活动活动一、尝试分类1.你能将以下物品进行分类吗?说说你分类的依据。
苹果,牙刷,书包,香皂,铅笔盒,香蕉2.你能将以下的单项式分类吗?说说你的依据。
23x ,b a 24-,b a 23-,xy 6,22x ,xy 3-活动二、同类项的概念1.按照上面分类的经验,下面几组能分为一类吗?①323b a 与322b a - ②32yz x -与3227z y x ③n m 24与23nm ④ 3-与5 你能不能写出一个与232y x 是一类的单项式。
2.如果把能分为一类的项称为同类项,那么满足什么条件的项是同类项?练习1.判断下列各组是否为同类项?为什么?①2xyz 与2xy ②2x 2y 与-51xy 2 ③31x 2y 与-9yx 2 ④x 2与322.已知51a 6b n 与-5a 2m b 3是同类项,则m=,n=活动三、探索合并同类项法则1.5个a加上3个a等于多少?为什么?2.你能把下列各式中的同类项合并成一项吗?① 7a-3a = ②4x2+2x2 =③ 5ab2+2ab2-3ab2 = ④-9x2y3+5x2y3 =3.通过以上问题的解决,你能说说如何合并同类项吗?依据是什么?活动四、合并同类项法则运用例1、下列各式的计算是否正确?请说明理由。
(1)2x+3y=5xy (2)2a2+a2=2a4 (3)a2b-ba2=0 (3)4a2-6a2=-2例2.合并同类项(1)-5x+3y-7x-2y (2)4a2-5ab+1-2a2-6ab-4(3)7m-3n2+9m+3n2(4)5m3-2m2n-5m3+3nm2-5+3m3练习 1.书P81 练一练2.已知多项式2x2+my-12与多项式nx2-3y+6的和中不含有x,y,试求mn的值。