寻迹避障小车原理(优选借鉴)
pwm调速循迹避障小车的总结与体会

PWM调速循迹避障小车是一种基于单片机控制系统的智能小车,具有很高的实用价值和教学意义。
在实际应用中,PWM调速循迹避障小车可以应用于智能家居、智能物流等领域,为人们的生活和工作带来便利。
在设计和制造PWM调速循迹避障小车的过程中,我们经历了许多挑战和收获了许多成果。
在此,我将共享我对PWM调速循迹避障小车的总结与体会。
一、总结1. PWM调速原理PWM即脉冲宽度调制,是一种用来调节模拟电路的技术。
在PWM 调速循迹避障小车中,我们通过改变电机工作周期内的通电时间来控制电机的转速,从而实现小车的速度调节。
2. 循迹原理循迹是指小车根据预设的路径行驶,通常使用红外线传感器、摄像头等设备来实现。
在PWM调速循迹避障小车中,我们利用红外线传感器来检测小车周围的环境,根据检测结果来调整小车的行驶方向,实现循迹功能。
3. 避障原理避障是指小车在行驶过程中遇到障碍物时,能够及时停车或绕行,避免发生碰撞。
在PWM调速循迹避障小车中,我们通过超声波传感器等设备来检测前方障碍物的距离,根据检测结果来控制小车的行驶,实现避障功能。
4. 控制系统PWM调速循迹避障小车的控制系统由单片机、传感器、驱动电路和执行机构等部分组成。
通过单片机对传感器检测结果的分析和处理,再通过驱动电路和执行机构的协调工作,实现对小车的调速、循迹和避障控制。
二、体会1. 技术挑战在设计和制造PWM调速循迹避障小车的过程中,我们遇到了许多技术挑战,比如传感器的精度和稳定性、控制算法的优化等。
通过不断的尝试和改进,我们最终克服了这些挑战,成功实现了小车的功能。
2. 团队合作制造PWM调速循迹避障小车是一个涉及多个领域知识的复杂任务,需要团队成员之间的合作和协调。
在这个过程中,我们学会了有效的交流和合作,培养了团队精神,提高了解决问题的能力。
3. 实践意义通过制造PWM调速循迹避障小车,我们不仅加深了对相关知识的理解,还锻炼了动手能力和解决实际问题的能力。
自动避障小车工作原理

自动避障小车工作原理小伙伴们!今天咱们来唠唠超级有趣的自动避障小车。
你看那些小小的车子,在各种复杂的环境里能灵活地避开障碍物,是不是感觉特别神奇呀?自动避障小车呀,就像是一个小小的机灵鬼。
它里面最关键的部分之一就是传感器啦。
传感器就像是小车的小眼睛,有各种各样的类型呢。
比如说超声波传感器,这个东西可有意思啦。
它能发出超声波,就像小车子在喊:“前面有没有东西呀?”然后超声波碰到前面的障碍物就会反射回来,传感器就像小耳朵一样接收到这个反射波。
通过计算发出波和接收波之间的时间差,小车就能知道自己离前面的障碍物有多远啦。
就像我们玩捉迷藏的时候,通过听声音来判断小伙伴的位置一样有趣。
还有红外传感器呢。
红外传感器就像是小车发射出的小触手,它发射出红外线。
如果前面有障碍物,红外线就会被挡住然后反射回来。
小车就知道,“前面有东西挡着我啦,我得绕开。
”这种感觉就像是我们走路的时候,伸出手去摸一摸前面有没有墙一样。
如果摸到了,就赶紧换个方向走。
那小车知道前面有障碍物了,接下来该怎么办呢?这就轮到它的控制部分出场啦。
控制部分就像是小车的小脑袋,它根据传感器传来的信息做决定。
如果传感器告诉它前面的障碍物很近了,小脑袋就会说:“不行啦,得转弯啦。
”然后它就会控制小车的电机。
电机就像是小车的小脚丫,控制着小车的轮子转动。
如果要转弯,它就会让一边的轮子转得快一点,另一边的轮子转得慢一点,这样小车就自然而然地转弯啦。
就像我们走路的时候,想往左边转,就把左边的脚迈得小一点,右边的脚迈得大一点。
而且呀,这个自动避障小车的程序也很重要呢。
程序就像是给小车制定的小规则。
比如说,它规定了在距离障碍物多远的时候开始做出反应。
如果这个距离设置得太短,小车可能就会撞到障碍物上,那就像个小迷糊一样啦。
如果距离设置得太长,小车可能就会过于敏感,老是在没必要的时候转弯。
就像我们人一样,如果太胆小,看到一点点风吹草动就吓得乱跑,或者太大胆,对危险都没反应,那可都不行呢。
避障小车原理

避障小车原理
避障小车是一种能够自主避免障碍物的智能车辆,其原理在于使用多个传感器来感知周围环境,然后根据传感器的反馈进行决策和控制。
首先,避障小车通常会搭载红外线传感器或超声波传感器,这些传感器能够测量到前方障碍物离小车的距离。
通过读取传感器的数据,小车可以得知前方是否存在障碍物以及距离障碍物的距离。
接下来,小车会根据传感器的数据进行决策。
如果传感器检测到前方有障碍物并且距离较近,小车就需要采取避让策略。
常见的避让策略包括停车、后退、向左或向右转向等。
这些决策通常是通过嵌入式系统中的逻辑电路或者控制算法实现的,可以根据不同的情况进行相应的操作。
最后,小车会根据决策的结果进行控制,以实现避障的目标。
例如,如果决策是向左转向,则小车会通过电机控制左轮向前转动,从而实现左转的动作。
通过控制车轮的旋转方向和速度,小车可以在避开障碍物的同时保持前进的方向。
除了红外线传感器和超声波传感器外,还有其他一些传感器也可以用于避障小车,例如激光雷达和摄像头等。
这些传感器能够提供更为精确的环境感知数据,从而使小车能够更准确地判断障碍物的位置和形状,进而做出更合理的避让决策。
总体来说,避障小车的原理是通过感知、决策和控制三个步骤
来实现自主避障。
这种技术可以广泛应用于无人驾驶汽车、机器人以及其他需要自主避障功能的智能设备中。
寻迹避障小车原理

循迹避障小车原理一)小车功能实现利用光电传感(红外对射管,红外发射与接收二极管组成)检测黑白线,实现小车能跟着白线(或黑线)行走,同时也可避开障碍物,即小车寻迹过程中,若遇障碍物可自行绕开,绕开后继续寻迹。
二)电路分析1.光电传感循迹光电传感器原理,利用黑白线对红外线不同的反射能力。
然后通过光敏二极管或光敏三极管,接收反射回的不同光强信号,把不同光强转换为电流信号,最后通过电阻,转换为单片机可识别的高低电平。
光电传感器实现循迹的基本电路如下图所示、循迹传感器基本电路电路解释:TC端是传感器工作控制端,为高电平时,发光二极管不工作,传感器休眠,为低电平时,传感器启动。
Signal端为检测信号输出,当遇到黑线,黑线吸收大量的红外线,反射的红外线很弱,光敏三极管不导通,signal 输出高电平,当遇到白线,与黑线相反,反射的红外线很强,使光敏三极管导通,signal输出低电平。
寻迹部分调整左右传感器之间的距离,两探头距离约等于白线宽度最合适,一般白线宽度选择范围为3 – 5 厘米比较合适。
注意:该传感器的灵敏度是可调的,偶尔传感器遇到白线却不能送出相应的信号,通过调节传感器上的可调电阻,适当的增大或减小灵敏度。
另外,循迹传感器的安放也算是比较有讲究的,有两种方法,一种是两个都是放置在白线内侧但紧贴白线边缘,第二种是都放置在白线的外侧,同样紧贴白线边缘。
我们通常采用第二种方法。
编写程序使小车遇白线时,小车跟着白线走。
当小车先前前进时,如果向左偏离了白线。
那么右边传感器会产生一个低电平,单片机判断这个信号,然后向右拐。
回到白线后。
两传感器输出信号为高电平。
小车前进。
如果小车向右偏离白线,左边传感器产生一个低电平,单片机判断这个信号,然后向左拐。
如此如此,小车必不偏离白线。
若小车的两对光电传感器同时输出的信号为高电平(黑底)或低电平(白底),即单片机判断的都为高电平或低电平,小车向前直走,在此过程中(直走)小车若遇白线,小车又重复上面动作跟着白线走。
51单片机小车循迹避障原理

51单片机小车循迹避障原理
51单片机小车循迹避障的原理主要包括以下步骤:
1. 传感器检测:小车通过安装的传感器检测路径和障碍物。
寻迹传感器利用黑色对光线的反射率小这个特点,当检测到黑线时,传感器上的开关指示灯会熄灭,输出的是高电平。
如果没有经过黑线,一直保持低电平。
红外传感器在有障碍物时灯会亮,所以有障碍物代表低电平,没有障碍物高电平。
2. 信息处理:51单片机接收并处理传感器的信号。
根据传感器的信号,单片机判断出小车是否偏离了预定路径,或者前方是否有障碍物。
3. 电机控制:根据信息处理的结果,单片机控制电机转动。
例如,如果检测到小车偏离了预定路径,单片机将发送信号使电机转动,使小车回到正确的路径上。
如果检测到前方有障碍物,单片机将发送信号使电机停止转动,避免小车撞到障碍物。
4. 循环检测:小车在行进过程中不断重复上述步骤,确保能够持续地沿着预定路径行进并避开障碍物。
这就是51单片机小车循迹避障的基本原理。
实际的实现可能会更复杂,可能需要更多的传感器和控制逻辑来确保小车的稳定和安全运行。
寻迹避障小车基本知识

循迹避障小车原理一)小车功能实现利用光电传感(红外对射管,红外发射与接收二极管组成)检测黑白线,实现小车能跟着白线(或黑线)行走,同时也可避开障碍物,即小车寻迹过程中,若遇障碍物可自行绕开,绕开后继续寻迹。
二)电路分析1.光电传感循迹光电传感器原理,利用黑白线对红外线不同的反射能力。
然后通过光敏二极管或光敏三极管,接收反射回的不同光强信号,把不同光强转换为电流信号,最后通过电阻,转换为单片机可识别的高低电平。
光电传感器实现循迹的基本电路如下图所示、循迹传感器基本电路电路解释:TC端是传感器工作控制端,为高电平时,发光二极管不工作,传感器休眠,为低电平时,传感器启动。
Signal端为检测信号输出,当遇到黑线,黑线吸收大量的红外线,反射的红外线很弱,光敏三极管不导通,signal 输出高电平,当遇到白线,与黑线相反,反射的红外线很强,使光敏三极管导通,signal输出低电平。
寻迹部分调整左右传感器之间的距离,两探头距离约等于白线宽度最合适,一般白线宽度选择范围为3 –5 厘米比较合适。
注意:该传感器的灵敏度是可调的,偶尔传感器遇到白线却不能送出相应的信号,通过调节传感器上的可调电阻,适当的增大或减小灵敏度。
另外,循迹传感器的安放也算是比较有讲究的,有两种方法,一种是两个都是放置在白线内侧但紧贴白线边缘,第二种是都放置在白线的外侧,同样紧贴白线边缘。
我们通常采用第二种方法。
编写程序使小车遇白线时,小车跟着白线走。
当小车先前前进时,如果向左偏离了白线。
那么右边传感器会产生一个低电平,单片机判断这个信号,然后向右拐。
回到白线后。
两传感器输出信号为高电平。
小车前进。
如果小车向右偏离白线,左边传感器产生一个低电平,单片机判断这个信号,然后向左拐。
如此如此,小车必不偏离白线。
若小车的两对光电传感器同时输出的信号为高电平(黑底)或低电平(白底),即单片机判断的都为高电平或低电平,小车向前直走,在此过程中(直走)小车若遇白线,小车又重复上面动作跟着白线走。
智能循迹避障小车简版

智能循迹避障小车智能循迹避障小车---1. 引言智能循迹避障小车是一种能够根据环境中的信息自主移动的车辆,通过具备循迹和避障的能力,能够在不需要人工干预的情况下自主导航。
这种小车通常使用各种传感器来感知周围环境,使用算法来处理感知数据,并根据处理结果做出移动决策。
本文将介绍智能循迹避障小车的原理、设计和应用。
2. 原理智能循迹避障小车的原理主要包括感知、决策和执行三个部分。
2.1 感知感知是指小车通过各种传感器感知周围环境的过程。
常用的传感器包括红外线传感器、超声波传感器和摄像头等。
红外线传感器可以用来检测前方是否有障碍物,超声波传感器可以用来测量障碍物的距离,摄像头可以用来获取场景图像。
通过这些传感器,小车可以获得关于障碍物位置、距离和形状等信息。
2.2 决策决策是指小车根据感知到的环境信息做出移动决策的过程。
在决策过程中,通常会使用机器学习算法进行数据分析和模式识别,以便更准确地判断障碍物的位置和形状,并制定相应的移动策略。
例如,如果感知到前方有障碍物,小车可以选择绕过障碍物或者停下来等待。
2.3 执行执行是指小车根据决策结果执行相应的移动动作的过程。
根据决策结果,小车可以通过调整轮速或者改变行驶方向的方式来避开障碍物。
利用电机和轮子的组合,小车可以实现前进、后退、转向等多种运动。
3. 设计智能循迹避障小车的设计包括硬件设计和软件设计两个方面。
3.1 硬件设计硬件设计主要包括选取合适的传感器和执行器,并搭建相应的电子电路。
可以选择使用Arduino等单片机作为控制中心,连接红外线传感器、超声波传感器、摄像头以及电机和轮子等组件。
通过编程控制各个组件之间的通信和协作,实现小车的感知、决策和执行功能。
3.2 软件设计软件设计主要包括对传感器数据的处理和决策算法的实现。
可以使用C/C++等编程语言编写程序,通过读取传感器数据、分析数据并做出相应的决策。
常用的算法包括机器学习、图像处理和路径规划等。
基于K60的电磁循迹避障小车的设计

基于K60的电磁循迹避障小车的设计随着智能机器人技术的不断发展,无人驾驶小车成为了当前热门的研究领域之一。
而电磁循迹避障小车作为无人驾驶技术的一个重要应用,可以应用于智能家居、仓储物流等领域。
本文将介绍一种基于K60的电磁循迹避障小车的设计方案。
一、设计原理1.电磁循迹原理电磁循迹是小车跟踪磁场的路径进行移动的技术,其原理是通过传感器感知磁场,再根据感知到的磁场信号来控制小车的移动。
在设计中通常会使用多个电磁传感器,通过这些传感器来感知磁场的强度和方向,从而确定小车当前位置,实现循迹运动。
2.避障原理避障原理是通过激光雷达、超声波传感器或红外传感器等设备,实时感知附近障碍物的位置和距离,然后根据感知到的信息来调整小车的运动轨迹,以避开障碍物,确保在行驶过程中不发生碰撞。
二、硬件设计1.主控芯片本设计选用NXP公司的K60系列芯片作为主控芯片,K60系列具有低功耗、高性能和丰富的外设接口,非常适合用于控制小车的移动和感知系统。
2.传感器模块为了实现电磁循迹和避障功能,我们需要选择合适的传感器模块。
对于电磁循迹,可以使用磁场传感器模块;对于避障,可以选择红外传感器或超声波传感器。
3.驱动模块驱动模块用于控制小车的电机,一般会选择直流电机驱动模块。
通过调节电机的转速和转向来控制小车的移动。
4.电源模块电源模块用于为主控芯片、传感器和电机提供稳定的电源。
在设计中需要考虑到各个模块的工作电压和电流,选择合适的电源模块。
5.机械结构机械结构是小车设计的关键部分,需要根据传感器和电机的布局来设计车身和轮子的结构,确保传感器可以正常感知磁场和障碍物,电机可以顺利驱动小车。
1.传感器数据处理主控芯片需要通过接口读取传感器模块采集到的数据,并进行数据处理。
对于电磁循迹,需要根据传感器信号的强度和方向来确定小车的移动方向;对于避障,需要实时监测障碍物距离并及时调整小车的轨迹。
2.运动控制算法根据传感器采集到的数据,主控芯片需要实现相应的运动控制算法,在保证电磁循迹的情况下,及时调整小车的轨迹以避开障碍物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
循迹避障小车原理
一)小车功能实现
利用光电传感(红外对射管,红外发射与接收二极管组成)检测黑白线,实现小车能跟着白线(或黑线)行走,同时也可避开障碍物,即小车寻迹过程中,若遇障碍物可自行绕开,绕开后继续寻迹。
二)电路分析
1.光电传感
循迹光电传感器原理,利用黑白线对红外线不同的反射能力。
然后通过光敏二极管或光敏三极管,接收反射回的不同光强信号,把不同光强转换为电流信号,最后通过电阻,转换为单片机可识别的高低电平。
光电传感器实现循迹的基本电路如下图所示
、
循迹传感器基本电路
电路解释:TC端是传感器工作控制端,为高电平时,发光二极管不工作,传感器休眠,为低电平时,传感器启动。
Signal端为检测信号输出,当遇到黑线,黑线吸收大量的红外线,反射的红外线很弱,光敏三极管不导通,signal输出高电平,当遇到白线,与黑线相反,反射的红外线很强,使光敏三极管导通,sign al输出低电平。
寻迹部分
调整左右传感器之间的距离,两探头距离约等于白线宽度最合适,一般白线宽度选择范围为3 – 5 厘米比较合适。
注意:该传感器的灵敏度是可调的,偶尔传感器遇到白线却不能送出相应的信号,通过调节传感器上的可调电阻,适当的增大或减小灵敏度。
另外,循迹传感器的安放也算是比较有讲究的,有两种方法,一种是两个都是放置在白线内侧但紧贴白线边缘,第二种是都放置在白线的外侧,同样紧贴白线边缘。
我们通常采用第二种方法。
编写程序使小车遇白线时,小车跟着白线走。
当小车先前前进时,如果向左偏离了白线。
那么右边传感器会产生一个低电平,单片机判断这个信号,然后向右拐。
回到白线后。
两传感器输出信号为高电平。
小车前进。
如果小车向右偏离
白线,左边传感器产生一个低电平,单片机判断这个信号,然后向左拐。
如此如此,小车必不偏离白线。
若小车的两对光电传感器同时输出的信号为高电平(黑底)或低电平(白底),即单片机判断的都为高电平或低电平,小车向前直走,在此过程中(直走)小车若遇白线,小车又重复上面动作跟着白线走。
避障部分
当小车在寻迹(沿着白线走或直走)过程中遇障碍物,小车亦可自行转弯,转弯动作完成后,又继续寻迹。
2.电机驱动电路
电机驱动芯片采用L298N,是一款承受高压大电流的全桥型直流/步进电压驱动器,如下图
电机控制芯片L298N的引脚排列
引脚编号名称功能
1 电流传感器A 在该引脚和地之间接小阻值电阻可用来检测电流
2 输出引脚1 内置驱动器A的输出端1,接至电机A
3 输出引脚2 内置驱动器A的输出端2,接至电机A
4 电机电源端电机供电输入端,电压可达46V
5 输入引脚1 内置驱动器A的逻辑控制输入端1
6 使能端A 内置驱动器A的使能端
7 输入引脚2 内置驱动器A的逻辑控制输入端2
8 逻辑地逻辑地
9 逻辑电源端逻辑控制电路的电源输入端为5V
10 输入引脚3 内置驱动器B的逻辑控制输入端1
11 使能端B 内置驱动器B的使能端
12 输入引脚4 内置驱动器B的逻辑控制输入端2
13 输出引脚3 内置驱动器B的输出端1,接至电机B
14 输出引脚4 内置驱动器B的输出端2,接至电机B
15 电流传感器B 在该引脚和地之间接小阻值电阻可用来检测电流
L298N内部原理图
电机驱动A/B的控制逻辑如下表所示
输入信号电机运动方式使能端A/B 输入引脚1/3 输入引脚2/4
1 1 0 前进
1 0 1 后退
1 1 1 紧急停车
1 0 0 紧急停车
0 X X 自由转动
电机驱动A/B的工作原理
电机控制逻辑如下:以电机A为例,当使能端A为高电平是,如果输入端M1 Direction
引脚为高电平,三极管导通,输入引脚1为低电平而输入引脚2为高电平,电机A反转;
如果输入端M1 Direction引脚为底电平,三极管截止,输入引脚1为高电平而输入引脚
2为低电平,电机A正转。
电机驱动原理图
3.中文液晶显示器128x64
带中文字库的128X64是一种具有4位/8位并行、2线或3线串行多种接口方式,内部含有国标一级、二级简体中文字库的点阵图形液晶显示模块。
其显示分辨率为128×64, 内置8192个16*16点汉字,和128个16*8点ASCII字符集。
利用该模块灵活的接口方式和简单、方便的操作指令,可构成全中文人机交互图形界面。
可以显示8×4行16×16点阵的汉字,也可完成图形显示。
具有低电压低功耗特点。
由该模块构成的液晶显示方案与同类型的图形点阵液晶显示模块相比,不论硬件电路结构或显示程序都要简洁得多,且该模块的价格也略低于相同点阵的图形液晶模块。
基本特性: 低电源电压(VDD:+3.0--+5.5V)
显示分辨率:128×64点
内置汉字字库,提供8192个16×16点阵汉字(简繁体可选)
内置 128个16×8点阵字符
2MHZ时钟频率
显示方式:STN、半透、正显
驱动方式:1/32DUTY,1/5BIAS
视角方向:6点
背光方式:侧部高亮白色LED,功耗仅为普通LED的1/5—1/10
通讯方式:串行、并口可选
内置DC-DC转换电路,无需外加负压
无需片选信号,简化软件设计
工作温度: 0℃ - +55℃ ,存储温度: -20℃ - +60℃ 模块接口说明:
PIN15 LED+ 背光正极,接4.8V-5V
PIN116LED- 背光负极,接0V
*注:1:如在实际应用中仅使用并口通讯模式,可将PSB接固定高电平,也可以将模块上的J8和“VCC”用焊锡短接;2:模块内部接有上电复位电路,因此在不需要经常复位的场合可将该端悬空;3:如背光和模块共用一个电源,可以将模块上的JA、JK用焊锡短接。
引脚控制信号应用
D/I,R/W的配合选择决定控制界面的4种模式:
D/I R/W 功能说明
L L MPU写指令到指令暂存器(IR)。