家用电器的谐波分析与抑制
抑制谐波干扰常用的方法

抑制谐波干扰常用的方法1.滤波器:应用良好设计的滤波器可以有效地降低谐波干扰。
滤波器可分为有源滤波器和无源滤波器两类。
有源滤波器通过输入与谐波相反的相位来实现谐波的抵消,而无源滤波器则通过吸收谐波的能量来消除谐波。
2.降低谐波发生源:降低谐波发生源的数量和强度也是有效抑制谐波的方法之一、可以采用合适的电源,避免使用产生大量谐波的设备,或者通过更换谐波发生源的设计和运行来降低其谐波产生量。
3.电力电子设备的设计优化:电力电子设备是电力系统中可能产生谐波的常见源。
通过对电力电子设备的设计进行优化,可以减少其产生的谐波。
例如,在设计中应用合适的滤波器和补偿装置,或者使用降低谐波的控制方法,都可以有效地减少谐波干扰。
4.使用变压器:变压器可以提供一定程度的谐波抑制功能。
在电力系统中,通过使用适当设计的谐波隔离变压器,可以有效地降低谐波的传播和干扰。
这是因为谐波对于变压器的阻抗通常较高,可以将谐波限制在变压器较小的区域内。
5.谐波滤波器的安装和调整:谐波滤波器是一种专门用于抑制谐波的装置。
通过安装谐波滤波器,可以在电力系统中选择性地去除谐波成分。
滤波器的调整需要深入研究电力系统的谐波特性,并根据实际情况进行适当的选择和设置。
6.谐波监测和控制:谐波监测和控制系统可以实时监测电力系统中的谐波情况,并采取相应的控制策略来抑制谐波。
这可以通过在线监测设备、谐波分析仪和自动控制装置实现。
当系统中的谐波水平超过预设阈值时,控制系统可以自动启动滤波器等设备来抑制谐波干扰。
7.谐波抑制转换器:谐波抑制转换器是一种特殊的电力电子装置,可以通过改变其频率和幅度来抑制谐波。
这种转换器通常应用在大功率电力系统中,可以降低对网络的谐波干扰。
总的来说,抑制谐波干扰的方法涉及系统设计、设备优化、滤波器安装调整和监测控制等多个方面。
通过综合运用这些方法,可以有效地减少谐波的产生和传播,提高电力系统的质量和稳定性。
谐波电流及抑制

一.谐波电流一般来说, 理想的交流电源应是纯正弦波形, 但因现实世界中的输出阻抗及非线性负载的原因, 导致电源波形失真。
近年来整流性负载的大量使用, 造成大量的谐波电流, 也间接污染了市电, 产生电压的谐波成份. 另外一些市售的发电机或UPS本身输出电压就非纯正弦波, 甚至有方波的情形, 失真情形更严重, 所含谐波成份占了很大的比。
1.谐波的危害谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。
谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。
谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。
对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。
2.谐波是怎么产生的一是发电源质量不高产生谐波:发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。
二是输配电系统产生谐波:输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。
它的大小与磁路的结构形式、铁心的饱和程度有关。
铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流%。
三是用电设备产生的谐波:晶闸管整流设备。
由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。
我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。
如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。
谐波的产生和危害有哪些 谐波的抑制方法

谐波的产生和危害有哪些谐波的抑制方法谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。
关于“谐波的产生和危害有哪些谐波的抑制方法”的详细说明。
1.谐波的产生和危害有哪些1.谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。
2.谐波可以通过电网传导到其他的电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。
3.谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。
4.谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。
5.电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。
2.谐波的抑制方法(一)降低谐波源的谐波含量在谐波源上采取治理措施,从源头上最大限度地避免谐波的产生。
这就需要在设计、制造和使用谐波源设备时,要注意谐波对供电系统及其供用电设备的影响,采取切实可行的治理措施。
用电业务管理部门要严格把关,对于没有采取治理措施的谐波源用户,要禁止其入网运行。
(二)在谐波源处吸收谐波电流这种方法是对已有谐波进行有效抑制的方法,也是目前电力系统使用最为广泛地抑制谐波的方法。
其主要方法有以下几种:1.无源滤波器无源滤波器安装在电力电子设备的交流侧,由L、C、R元件构成谐振回路,当LC回路的谐振频率和某一高次谐波电流频率相同时,即可阻止该次谐波流入电网。
这种方法由于具有投资少、效率高、结构简单、运行可靠及维护方便等优点,是目前采用的抑制谐波及无功补偿的主要手段。
2.有源滤波器有源滤波器即利用可控的功率半导体器件向电网注入与原有谐波电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。
3.防止并联电容器组对谐波的放大在电网中并联电容器组起改善功率因数和调节电压的作用。
电力系统中的谐波及其抑制措施

电力系统中的谐波及其抑制措施谐波是电力系统中常见的一种电信号,它是由电力系统中非线性设备引起的。
谐波会导致电力系统不稳定、设备损坏和通信干扰等问题,因此谐波的抑制是电力系统设计和运行中的重要问题。
谐波的产生原理是电力系统中的非线性元件(如整流器、变频器、电弧炉等)在电压或电流作用下,产生不对称的电压或电流波形,导致谐波频率的波形在电力系统中传播和扩散。
常见的谐波频率包括3次、5次、7次等奇次谐波,以及2次、4次、6次等偶次谐波。
谐波对电力系统的影响包括以下几个方面:1.电力系统不稳定:谐波产生的电压波形失真会导致电力系统的电压稳定性下降,可能导致设备的过电压或欠电压现象,进而影响到电力系统的正常运行。
2.设备损坏:谐波电流会导致电力设备内部的电机、变压器等元件温度升高,进而影响到设备的寿命和可靠性。
3.通信干扰:谐波会在电力线上传播,通过电网对通信系统产生干扰,降低通信系统的传输质量。
为了抑制谐波,可以采取以下几种措施:1.使用谐波滤波器:谐波滤波器是一种专门用于抑制谐波的滤波器。
它可以根据谐波频率的不同,选择相应的滤波器进行安装,从而削弱或消除谐波成分。
2.控制负载谐波含量:减少非线性装置的使用,或者采用符合电力系统标准的电气设备,可以降低谐波的产生和传播。
3.设备绝缘和保护:合理选择电力设备的额定容量和绝缘等级,增加设备的绝缘保护,提高设备的抗谐波能力。
4.进行谐波分析和监测:对电力系统中的谐波进行分析和监测,及时了解谐波的产生和传播情况,以便采取相应的措施进行调整和优化。
5.增加电力系统的容量和稳定性:通过增加线路容量、改善电力系统的稳定性,可以降低谐波对电力系统的影响。
综上所述,谐波是电力系统中的一个重要问题,对电力系统的稳定性和设备的正常运行产生不利影响。
通过采取谐波滤波器、控制负载谐波含量、设备绝缘和保护、谐波分析和监测、以及增加电力系统的容量和稳定性等措施,可以有效地抑制谐波,维护电力系统的正常运行。
浅谈电力系统谐波检测及抑制方法

浅谈电力系统谐波检测及抑制方法摘要:本文主要阐述了电力系统谐波的产生原因和危害,介绍了谐波检测的方法,包括传统方法和新兴方法,以及谐波抑制的方法,包括被动滤波和主动滤波等。
同时,针对电力系统谐波的特点,提出了一些优化措施,以期对电力系统谐波的检测和抑制产生积极的影响。
关键词:电力系统、谐波、检测、抑制正文:一、谐波的产生原因及危害谐波是指频率为基波频率整数倍的交流电信号,是电力系统中极其普遍的现象。
谐波的产生原因主要有以下几种:1、非线性负载的存在:如励磁系统、变频器、UPS等等。
2、电力电子器件的存在:如开关电容器等等。
3、线路谐振所产生的回波:如高压输电线和变压器中的谐振回波。
4、供电系统中的电弧、火花放电等。
大量的谐波会对电力系统产生不可避免的危害,包括:1、阻碍电能传输:谐波会引起交流系统内的电压和电流失去同步,从而无法有效地传输电能。
2、损坏电力设备:谐波会使电力设备的温度升高,引起设备故障或烧坏。
3、引起电力波动:谐波会使电力质量发生变化,从而引起电力波动。
4、对用电设备的干扰:谐波会对用电设备产生干扰,使其工作出现异常。
二、谐波的检测方法为了准确地检测和分析电力系统中的谐波,需要采用适当的谐波检测方法。
目前常见的谐波检测方法包括:1、传统的谐波检测方法:包括单相检测法、三相检测法等,主要是通过对线路中的电压和电流进行采样,并对谐波进行滤波和分析。
2、新兴的谐波检测方法:如快速小波变换法(FWT)、矢量变量法(VSA)等,较为有效地解决了传统方法中的一些问题,例如不容易出现失灵、可实现频率矩阵多恒定、不依赖预处理等。
三、谐波的抑制方法为了有效地抑制电力系统中的谐波,需要采用相应的谐波抑制方法。
目前常见的谐波抑制方法包括:1、被动滤波:即采用滤波器等被动电路来消除谐波,其优点是结构简单,可靠性高,成本低廉,常常应用于对谐波要求不高的场合。
2、主动滤波:即通过电网与电源之间的电流、电压、功率等进行控制,进而消除谐波,其优点是能够发挥较好的动态响应能力,比被动滤波性能更好。
电力系统中的谐波分析与抑制技术研究

电力系统中的谐波分析与抑制技术研究随着电力系统的发展,电气设备的广泛应用和高效能力的需求,电力系统中的谐波问题日益凸显。
谐波是由于非线性元件如电子器件、变频调速器、照明灯具、电动机等在电力系统中的工作状态非正常运行,从而导致基波电流、电压失真,引起的一种频率与基波频率不同的交流电信号。
谐波不仅降低了电力系统能效,还会影响电力设备的工作寿命。
因此,通过谐波分析和抑制技术研究,可以有效提高电力系统的可靠性和能效。
一、谐波分析电力系统中的谐波主要包括电流谐波和电压谐波,它们在电力系统中的传输会产生一系列不利影响。
电流谐波不仅会导致电力变压器铁芯、线圈、绝缘材料等元件中出现高次谐波电流、高温、电弧、电晕等现象,还会引起母线和设备的铜损。
电压谐波则会导致相关设备的故障、损坏,影响电力系统的安全运行。
因此,准确分析谐波特性成为保证电力系统正常运行的重要前提。
谐波分析通过测量和处理电流、电压、功率等参数,对电力系统中的谐波进行分析,了解系统中的谐波含量和频率范围等,为后续的抑制措施提供数据支持。
二、谐波抑制技术为了降低电力系统中谐波的影响,采用一系列设备和技术手段进行谐波抑制,主要包括以下方面。
1.使用线性负载线性负载包括电阻、电感、电容等。
与电子器件、变频调速器等非线性负载相比,线性负载的特性更加稳定,不会产生谐波。
因此,在谐波控制上力求使用线性负载,降低谐波产生的可能性。
2.谐波滤波器谐波滤波器通常由谐波滤波器电抗器和谐波滤波器电容器组成。
谐波滤波器能在电力系统中消除谐波,其原理是将谐波信号通过电感器、电容器等高阻抗元件滤除掉,同时保留基波信号传输到目标设备,以达到谐波抑制的效果。
3.多网侧变压器传输多网侧变压器传输是通过连接两个及以上变电站,在电网多个侧面进行谐波抑制。
多网侧变压器传输中,正、负序谐波和零序谐波会在不同的变压器侧面互相抵消,从而降低电力系统中谐波的含量。
4.使用非线性抑制器非线性抑制器与电力系统中的非线性元件相似,但其特性更加稳定。
电力系统的谐波分析与控制

电力系统的谐波分析与控制在现代社会中,电力系统成为了人们生活中不可或缺的一部分。
然而,电力系统中常常存在着各种谐波问题,如谐波电流、谐波电压等。
这些谐波不仅会影响电力设备的正常运行,还会对电网稳定性造成威胁。
因此,对电力系统的谐波进行分析与控制显得尤为重要。
首先,我们来了解一下什么是谐波。
谐波是指在电力系统中频率为基波频率的整数倍的电压或电流成分。
通常情况下,电力系统中的基波频率为50Hz(或60Hz),而谐波则会产生在100Hz(或120Hz)、150Hz(或180Hz)等等。
为什么会产生谐波呢?谐波的产生主要是由于非线性负载引起的。
在电力系统中,非线性负载很常见,例如电子设备、整流器、变频器等。
这些负载会导致电流波形变得不规则,产生各种谐波成分。
此外,电力系统中的谐波也可能是由于电感和电容等元件所引起的。
谐波对电力系统的影响是多方面的。
首先,谐波会造成电网的频率偏离基波频率,从而对电力系统的稳定性产生威胁。
其次,谐波会导致电力设备的性能下降,甚至损坏设备。
最后,谐波还会对电力系统中的其他用户造成干扰,例如电视、音响等设备可能会出现图像和声音失真的问题。
那么,如何进行电力系统的谐波分析呢?首先,可以采用谐波分析仪进行测量,以获取电流和电压的波形和频谱信息。
这些波形和频谱信息能够反映出电力系统中不同谐波成分的情况。
接下来,可以利用计算机对测量到的数据进行处理,得到更加详细的谐波分析结果。
谐波的分析结果可以包括谐波畸变率、谐波电流的总畸变率等等。
在进行谐波分析的基础上,电力系统的谐波控制也显得尤为重要。
一种常见的谐波控制方法是采用谐波滤波器。
谐波滤波器是一种专门用于消除谐波的装置,可以将谐波成分滤除,从而保持电力系统中的基波幅值和相位。
此外,还可以通过控制负载端的非线性特性来进行谐波控制。
例如,在电力系统中加入适当的电容或电感元件,可以改变电流和电压波形,减小谐波成分。
除了上述方法外,新兴的电力电子技术也为谐波控制提供了新的解决方案。
谐波产生的原因危害和抑制措施

谐波产生的原因危害和抑制措施0前言随着电力电子技术的飞速发展,各种新型用电设备越来越多地问世和使用,高次谐波的影响越来越严重。
电力系统受到谐波污染后,轻则影响系统的运行效率,重则损坏设备以至危害电力系统的安全运行。
以前,电力系统考核电能质量的主要指标是电压的幅值和频率,现在世界各国都把电网电压正谐波形畸变率极限值作为电能质量考核指标之一,正确认识谐波已成为电力工作者的重要任务之一。
因此,研究和分析谐波产生的原因、危害和抑制谐波的措施具有重要的实际意义。
1谐波产生的原因在供电系统中谐波的发生主要是由两大因素造成的:(1)可控硅整流装置和调压装置等的广泛使用,晶闸管在大量家用电器中的普通采用以及各种非线性负荷的增加导致波形畸变。
(2)设备设计思想的改变。
过去倾向于采用在额定情况以下工作或裕量较大的设计。
现在为了竞争,对电工设备倾向于采用在临界情况下的设计。
例如有些设计为了节省材料使磁性材料工作在磁化曲线的深饱和区段,而在这些区段内运行会导致激磁材料波形严重畸变。
2谐波对电力系统的危害谐波对电力系统的污染日益严重,谐波源的注入使电网谐波电流、谐波电压增加,其危害波及全网,对各种电气设备都有不同程度的影响和危害。
现将对具体设备的危害分析如下:(1)交流发电机。
同步电动机及感应电动机在定子绕组和转子绕组产生附加热损耗,热损耗除谐波电流铜损I2nR以外,还由于电流的集肤效应,产生附加损耗,对转子引起热损耗增大。
对大型汽轮发电机来说,若发生多次谐波振荡,谐波电流超过额定电流的25%时,由于上述原因可能会导致转子局部过热而损坏。
对变压器来说,铁芯产生热损耗,尤其是涡流损耗大,在变压器绕组中有谐波电流,在铁芯中感应磁通,产生铁损。
(2)架空线路谐波电流产生热损,较大的高次谐波电流分量能显著地延缓潜供电流的熄灭,导致单相重合闸失败。
电缆中的谐波电流会产生热损,使电缆介损、温升增大。
(3)电力电容器由于谐波电流会引起附加绝缘介质损耗,加快电力电容器绝缘老化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1 无源滤波电路图
2 T DA 4817G 管脚排列与管脚功能图
图3 T DA 4817G 应用电路图
家用电器的谐波分析
与抑制
浣喜明 湘潭机电高等专科学校(411101)
本文分析了家电产品对电网谐波的影响,介绍了功率因数的有源和无源校正方法。
关键词:家用电器 电网谐波 PF C
家用电器中采用电力电子线路取代传统电路,使其性能得到了很大的改善,但是它也产生大量的高次谐波注入电网,使电压、电流波形畸变,功率因数下降(严重时可降至0.6左右),这导致供电线路和变压器过热,用电器的额定值降低,常常引发设备事故。
1 家用电器对电网谐波的影响
电网中存在非线性负载,这是产生高次谐波的主要原因。
各种家用电器中往往包含有可控或不可控的整流电路和大容量滤波电容等非线性元件,整流过程中二极管的导通角很小,它使输入交流电流不再呈正弦波,而是大幅度的尖脉冲,这种波形的电流,其基波分量很小,含有大量的高次谐波并注入电网。
电视机、影碟机、录相机、微型计算机等家用电器大都采用开关电源,它的变换频率高,电流波形为非正弦波,是家用电器中主要的谐波源。
随着家用空调器、电冰箱、电烤箱、微波炉等大功率电器的日益普及,电网三相低压不平衡的现象越来越严重,这也会使电网电流波形畸变,产生有害的谐波。
2 家用电器谐波的抑制措施
抑制谐波实质上是进行功率因数校正(Pow er F acto r Cor rection,简称
PF C )。
功率因数校正分为无源校正和有源校正。
2.1 家用电器功率因数的无源校正
在电路中加入LC 滤波器来消除电流谐波、提高功率因数的方法称为无源校正。
一种常用的无源滤波电路如图1所示,图中L 1、L 2、C 1、C 2和二极管D 5、D6、D7、C3、C4组成电源滤波器,这种电
路功率因数可达0.95,总电路谐波含量小于20%,它电路简单、成本低、适合各种家用电器的功率因数校正,但其谐波含量高、装置体积大是它的缺点。
2.2 家用电器功率因数的有源校正
为了克服无源校正的缺点,在传统整流电路中加入有源开关,通过控制开关的通断强迫输入电流跟随输入电压变化,从而获得接近于1的功率因数,这种方法称为有源校正。
西门子公司生产的T DA 4817G 是一种性能价格比很高的单片P FC 控制IC ,适合几十至几百伏安的小功率家用电器的功率因数校正。
它采用DIP 8封装,其
管脚排列与管脚功能如图2所示。
T DA 4817G 由误差放大器、电流比较器、零电流检测器、单象限乘法器、逻辑电路驱动器、内部电源等组成,是典型的变化频率断续工作电流型PF C 控制IC 。
图3是T D A 4817G 的典型应用电路。
理论和实际都证明,经T DA 4817G 校正后,输入交流电流与交流电压的波形均为平滑的正弦波,且相位同步。
该电路作为一种升压变换电路,输入电压220V ,输出电压380~450V ,功率容量40~300W ,电路总谐波畸变
T HD 小于8%,线路功率因数大于0.99,效率可达
・10・1 1998
家用电器科技
□综 述
图4 T O P 开关应用电路图
95%,适合作各种小功率家用电器的功率因数校正。
美国Po wer Integ ra tio ns 公司生产的三端离线式(T hr ee ter minal off -line)T O P 开关,特别适合对150W 以下小功率开关电源的功率因数校正。
T OP 系列产品采用T O -220或DIP 8封装,它只有漏极D 、源极S 和控制极C 三个管脚。
图4是T O P 开关在P FC 升压变换电路中的典型应用电器,该电路输入电压220V ,输出电压400V ,功率因数大于0.98,总谐波畸变
T HD 小于18%。
对于1kW 以上的大功率家用电器,可先检测出畸变电流,通过有源反馈网络馈送与输入端高次谐波相位刚好相反的高次谐波,以相互抵消,从而获得谐波校正。
美国A PT 公司生产的PF C 模块,将M O SFET 和升压二极管封装在一起,可以对3kW ~4.5kW 的大功率电器进行功率因数校正。
3 结束语
目前在世界范围内都非常重视家用电器的抗谐波研究,欧共同体从1996年1月1日起执行EM C 标准,凡不符合规定的产品严禁销售。
我国正在制定相应的电工产品谐波标准,这就要求家用电器生产厂广泛采用功率因数校正(PF C)技术,把产品对电网谐波的影响降低到最小程度。
这尽管会使产品的成本稍微增加,但在家用电器产品日益普及的今天,抑制谐波、维护电网,已成为大势所趋,势在必行。
(编辑 韩力)
家用电器的
电磁兼容性琐谈
●
丁辉
1 家用电器的电磁干扰问题日趋严重
追根溯源,电磁干扰起源于无线电广播和通讯,系由无线电干扰演变而来。
随着电子技术的进展和生产工艺的提高,千姿百态的家用电器层出不穷,其结构也越来越复杂。
许多家用电器产品即是电磁干扰的接受体,又是电磁干扰的发生体。
随着国民经济的发展和人民生活水平的提高,拥有数台、甚至数十台家用电器的家庭,为数不少。
人们正置身于一个复杂而广阔的电磁环境之中,并常为随时随地可能出现的电磁干扰而烦恼。
家用电器产品产生电磁干扰的原因,大致可以归纳成下列几种:
电吹风、吸尘器、电动缝纽机和食品搅拌器等装用串激电机的家用电器,在电机运转过程中由于换向器接触时所产生的火花引起的电磁干扰;
电冰箱、空调器和冰柜等制冷类家用电器,因制冷系统启动时产生的电压波动引起的电磁干扰;
电熨斗、电饭锅和电烤箱等装用控制器开关的家用电器,在开关动作时
由于电路通断出现的火花引起的电磁干扰;
电子调光灯和电扇多功能控制器等装用晶闸管等电子元器件的家用电器,因电子元器件产生高次谐波引起的电磁干扰;
电脑全自动洗衣机、模糊控制类和带遥控器等装用微处理器的家用电器,由于静电放电、快速脉冲串、浪涌和电压跌落等引起的电磁干扰。
据国外资料报道,近年环境电磁干扰的电平,每三年翻一番。
因此,有的科学家大声疾呼:不重视对电磁干扰的研究和防护,人类将会受到惩罚,付出巨大的代价!
2 家用电器的电磁兼容性在国外备受重视
电磁兼容性(Electromagnetic Compatitility ,EM C )包括两方面的要求:其一是要求某一设备或系统在正常运行过程中,对周围环境产生的电磁干扰不能超过一定的限值;其二是要求这种设备或系统对其所处的环境中存在的电磁干扰,具有一定程度的耐抗扰能力。
本世纪40年代,一些工业发达的国家就开始研究电磁干扰问题。
如美国相继建造了各种EM C 试验基地和模拟试验室,进行了大量的试验工作。
美国无线电工程师学会(IRE )于1957年10月成立了射频干扰专业小组,1958年召开了首届射频干扰学术讨论会。
1964年美国电气与电子工程师协会(IEEE )将射频干扰小组改为电磁兼容专业小组,
・
11・□综 述
家用电器科技
1998 1。