2015年河南省统一命题最新中考数学模拟试卷

合集下载

2015中考数学模拟试题含答案(精选5套)

2015中考数学模拟试题含答案(精选5套)

2015年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分) 3121--+x x≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌(第21题图)(第23题图)(第24题图)凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2015年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ=21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·mn m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2015年河南省初中学业水平暨高级中等学校招生考试数学模拟卷(3)

2015年河南省初中学业水平暨高级中等学校招生考试数学模拟卷(3)

2015年河南省初中学业水平暨高级中等学校招生模拟卷(3)数 学说明:1. 本套试卷共三道大题,23道小题,满分120分,考试时间100分钟。

2. 答卷前将密封线内的项目填写清楚。

请用蓝、黑色钢笔或圆珠笔答题。

3.参考公式:二次函数c bx ax y ++=2(≠a 0)图象的顶点坐标为(-ab 2,a b ac 442-)一. 选择题(本大题共6小题,每小题3分,满分18分)1.在显微镜下,人体内一种细胞的形状可以近似地看成圆,它的半径约为0.00000078m ,该数据 用科学记数法表示为【 】 A .7.8×10-7mB .7.8×10-6mC .7.8×10-5mD .7.8×10-4m2.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是【 】A . B. C. D.3.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转,则这两个正方形重叠部分的面积是【 】A .12-B .12+C .2D .34.如图,如图,等边△ABC 的边长为3,P 为BC 上一点,且BP =1,D 为AC 上一点,若∠APD =60°,则CD 的长是【 】A .54B .43C .32D .215.在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同.随机从中摸出一球,记 下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是【 】(第2题图)(第3题图)C 'B '(第4题图) ADC B60°A .12B .13C .14D .166. 如图,在矩形ABCD 中,AB=1,AD=2,M 为CD 的中点,点P 沿A →B →C →M 运动,则△APM 的面积y与点P 经过的路程x 之间的函数关系图象大致为【 】二.填空题(本大题共9小题,每小题3分,满分27分) 7.分解因式:x x -3= 。

2015年河南中考数学模拟试题及答案B(北师大版)

2015年河南中考数学模拟试题及答案B(北师大版)

∵E 在反比例 y= 2 3 2 3 图像上,∴ 3 m= ∴m1 = 2 , m2 =- 2 (舍去. x m∴OE= 2 2 ,EA= 4 2 2 ,EG= 2 ∵ 4 2 2 < 2 ,∴EA <EG.∴以 E 为圆心,EA 垂为半径的圆与 y 轴相离.(3)存在.假设存在点 F ,使 AE ⊥FE .过点 F 作 FC⊥OB 于点 C,过 E 点作 EH⊥OB 于点 H.设 BF = x. ∵△AOB 是等边三角形,∴AB =OA =OB =4,∠AOB=∠ABO=∠A = 60.∴BC=FB·cos∠FBC= FC=FB· sin∠FBC= 1 x 2 3 x 2 1 x 2 1 x 2 ∴AF =4-x,OC=OB -BC=4-∵AE ⊥FE ∴AE=AF· cos∠A=2-∴OE=O A -AE = 1 1 cos∠AOB= x1 , x +2∴OH=OE·2 43 3 3 1 1 x 3 ∴E( x 1 , x 3 ,F(4- x , x4 4 2 4 2 k 3 3 1 1 ∵E 、F 都在双曲线 y= 的图象上,∴( x 1 )( x 3 )=(4- x ) x 解得 x 4 2 4 2 4 16 BF BF 1 当 BF =4 时,AF =0,不存在,舍去.当 BF = 时,AF = ,5 5 AF AF 4 22. (1EP=EQ (2 EP:EQ= 1:2 (3 EP:EQ= 1:m (辅助线作 EN⊥AB, EM⊥ BC) EH=OE· sin∠AOB = 23. 解:⑴∵OB=OC=3,OA=1 ∴B(-3,0),C(0,-3),A(1,0) x 1 =4,x2 = 4 5 设抛物线解析式为 y= ax 2 bx c 由题意可知 0 9a 3b c 3 c 0 a b c 解得 a 1 b 2 ∴抛物线解析式为 y= x 2 2 x 3 c 3 ∴∠DAB=45°∴且∠EPA=∠EAP=45° y M ⑵分情况讨论: ①当 AE=PE 时, ∵OA=OD=1 此时 P 与 B 重合∴P(-3,0 ②当 AP=PE 时则∠PEA=∠EAP=45°∴∠EPA=90°此时 P 与 B 重合∴P(-3,0 ③当 AP=AE 时则∠EAP=90°设 AP 与 y 轴交于点 F ∵∠DAB=45°∴∠OAP=90°—45° =45°∴∠OAP=∠OFA=45°∴OA=OF=1 ∴F(0,-1)设直线 AP 解析式为 y=kx+b 则 E E E D B (P) O 0 k b 1 b 解得 k 1 b 1 A x E F P C ∴直线 AP 解析式为 y=x-1 则 y x2 2x 3 y x 1 ∴ x 2 x 3 =x-1 2 解得 x1 =1(不合题意舍),x2 =-2∴P(-2,-3 综上所述 P(-3,0或(-2,-3 第 6 页。

河南省2015年中招模拟考试数学试卷(一)及答案

河南省2015年中招模拟考试数学试卷(一)及答案

洛阳市2015年中招模拟考试(一)数学试卷注意事项:本试卷分试题卷和答题卡两部分,考试时间100分钟,满分120分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.参考公式:二次函数c bx ax y ++=2(a ≠0)图象的顶点坐标为)4ab ac 42(2--,a b .一、选择题(每小题3分,共24分)1.下面的数中,与-2的和为O 的是 (A) 2 (B) -2 (C)12 (D)-122.下列图形中,既是轴对称图形又是中心对称图形的是3.下列运算,正确的是 (A)4a-2a=2 (B)a 6÷a 3=a 2 (C)(-a 3b )2=a 6b 2 (D)(a-b )2=a 2-b 24.洛阳某中学足球队的1 8名队员的年龄情况如下表:则这些队员年龄的众数和中位数分别是(A)15, 15 (B)15, 15.5 (C)15,16(D )16,155.如过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,其正确展开图为6.不等式组13x+1>0的解集在数轴上可表示为 2-x ≥07.如图,在半径为6cm 的⊙O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,且∠D=30,下列四个结论:①OA 上BC;②BC= cm ;③sin ∠;④四边形ABOC是菱形.其中正确结论的序号是(A)①③ (B)①②③④ (C)②⑨④ (D)①③④8.已知点A为某封闭图形边界上一定点,设点P从点A出发,沿其边界顺时针匀速运动一周,设点P运动的时问为x,线段AP的长为y.表示y与x的函数关系的图象大致如下图所示,则该封闭图形可能是二、填空题(每小题3分,共21分)9.a,b是两个连续整数,若<b+_____________1 0.节约是一种美德,节约是一种智慧,据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为_______________11.玩具店进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是_____________.12.如图,直线∥m//n,等边△ABC的顶点B、C份别在直线n和m上,边BC与直线n 所夹的角为25,则∠α的度数为____________13.如图,在扇形AOB中,∠AOB=90,半径OA=6.将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,整个阴影部分的而积__________.14.如图,平行于x轴的直线AC分别交抛物线y1 =X2 (x≥0)与y2=24x(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则DEAB=_________.15. 如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC 边的A'处,折痕所在直线同时经过边AB、AD(包括端点),设BA'=x,则x的取值范围是______________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(a+12a+)÷(a-2+32a+笔)其中a满足a2-a-2=0.17.(9分)老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有_________名,D类男生有__________名,将上面条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或面树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.18.(9分)如图,在Rt△ABC中,∠ACB=90,以AC为直径的⊙○的切线,交BC于E.(1)求证:点E是边BC的中点;(2)当∠B=___________ o时,四边形ODEC是正方形.19. (9分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学们在斜坡底P处测得该塔的塔顶B的仰角为45,然后他们沿着坡度为1:2.4的斜坡AP行走了26米,在坡顶A处又测得该塔的塔顶B的仰角为76.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到l米).(参考数据:sin76︒≈0.97,cos76≈0.24,tan 76≈4.00)20.(9分)如图,在平面直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=-12x+3分别交AB,BC于点M,N,反比例函数y=kx的图像经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标。

2015年河南省郑州市中考数学模拟试卷

2015年河南省郑州市中考数学模拟试卷

2015年河南省郑州市中考数学模拟试卷一、选择题(每小题3分,共24分)1.(3分)的算术平方根是()A .2 B.±2 C.D.±2.(3分)河南省卫生计生委2014年新农合实施情况最新发布:数字显示,去年河南省累计补偿住院医疗费用250.56亿元,广大人民群众享受到新农合政策带来的好处.下面对“250.56亿”科学记数正确的是()A .2.5056×1010B.2.5056×109C.2.5056×108D.2.5056×1073.(3分)如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A .B.C.D.4.(3分)在英语句子“I like jing han“(我喜欢京翰)中任选一个字母,这个字母为“i”的概率是()A.B.C.D.5.(3分)2013年6月由中央电视台科教频道《读书》栏目发起,京翰举办“中国读书达人秀”活动,成人票和儿童票均有较大折扣.张凯、李利都随他们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3个大人和4个小孩,共花了38元钱;李利说他家去了4个大人和2个小孩,共花了44元钱,王斌家计划去3个大人和2个小孩,请你帮他计算一下,需准备元钱买门票.()A.33 B.34 C.35 D.366.(3分)如图,在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AC的长是()A.4 B.4C.8 D.87.(3分)如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A点开始按ABCDEF的顺序按菱形的边循环运动,行走2015厘米后停下,则这只蚂蚁停在()A.B点B.C点C.G点D.E点8.(3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.二、选择题(每小题3分,共21分)9.(3分)计算:(﹣1)2015+()﹣1+()0﹣=.10.(3分)写出一个图象经过一,三象限的一次函数y=kx+b(k≠0)的解析式(关系式).11.(3分)浙江卫视全新推出的大型户外竞技真人秀节目﹣﹣﹣﹣《奔跑吧兄弟》,七位主持人邓超、王祖蓝、王宝强、李晨、陈赫、郑恺及Angelababy(杨颖)在“撕名牌环节”的成绩分别为:8,5,7,8,6,8,5,则这组数据的众数和中位数分别.12.(3分)一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为cm.13.(3分)如图,反比例函数y=(k>0)的图象与矩形ABCO的两边相交于E,F两点,若E是AB的中点,S△BEF=2,则k的值为.14.(3分)(2015•郑州一模)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为.第1页15.(3分)如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.三、解答题(共75分)16.(9分)先化简,再求值.(﹣)÷,其中x满足x2﹣4x+3=0.17.(9分)在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:(1)图1中“统计与概率”所在扇形的圆心角为度;(2)图2、3中的a=,b=;(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?18.(9分)(2014•巴中)如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.19.(9分)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2又∵x>1,∴y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是.(2)已知y>1,x<﹣1,若x﹣y=a成立,求x+y的取值范围(结果用含a的式子表示).20.(9分)(2014•烟台)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)第2页(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)1100 1400销售价格(元)今年的销售价格200021.(9分)(2014•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向向内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)22.【提出问题】(10分)(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM 为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.23.(11分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C第3页(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?第4页。

2015年河南省中考数学试题(解析版)

2015年河南省中考数学试题(解析版)

2015年河南初中学业水平暨高级中等学校招生考试试题数 学(解析版)注意事项:1. 本试卷共6页,三个大题,满分120分,考试时间100分钟。

2. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的。

1. 下列各数中最大的数是( )A. 5B.3C. πD. -8A 【解析】本题考查实数的比较大小.∵732.13≈,π≈3.14,∴5>π8-,∴最大的数为5.2. 如图所示的几何体的俯视图是( )B 【解析】本题考查实物体的俯视图的判断,俯视图是从上往下看得到的图形,从上面看可以看到轮廓是一个矩形和中间有一条竖着的实线,故B 选项符合题意. 3. 据统计,2014年我国高新技术产品出口总额达40 570亿元,将数据40 570亿用科学记数法表示为( )A. 4.0570×109B. 0.40570×1010C. 40.570×1011D. 4.0570×1012D 【解析】本题考查带计数单位的大数科学计数法.∵1亿=108 ,40570=4.057×104,∴ 40570亿=4.057×104×108=4.0570×1012.4. 如图,直线a ,b 被直线e ,d 所截,若∠1=∠2,∠3=125°,则∠4的度数为( ) A. 55° B. 60° C.70° D. 75°C DB A 正面 第2题d c baA 【解析】本题考查了平行线的判定和相交线与平行线性质求角度.∵∠1=∠2,∴a ∥b .∴∠5=∠3=125°, ∴∠4=180°-∠5=180°-125°=55°.5. 不等式组⎩⎨⎧>-≥+13,05x x 的解集在数轴上表示为( )C 【解析】本题考查解一元一次不等式组及在数轴上表示.由不等式x +5≥0,解得:x ≥-5 ; 由不 等式3-x >1,解得:x <2,则该不等式组的解集为-5≤x <2,故C 选项符合.6. 小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( ) A. 255分 B. 84分 C. 84.5分 D.86分C 【解析】本题考查加权平均数的应用.根据题意得86532590380285=++⨯+⨯+⨯=x —,∴小王成绩为86分.7. 如图,在□ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =6,AB =5,则AE 的长为( )A. 4B. 6C. 8D. 10C 【解析】本题考查平行四边形的性质和角平分线的性质,以及基本的尺规作图. 设AE 与BF 交于点O ,∵AF =AB ,∠BAE = ∠FAE ,∴AE ⊥BF ,OB =21BF =3在Rt △AOB 中,AO 4=,∵四边形ABCD 是平行四边形,∴AD ∥BC ∴∠FAE = ∠BEA ,CDBAEF CDBGA第7图∴∠BAE =∠BEA ,∴AB =BE ,∴AE =2AO =8.8. 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是( ) A.(2014,0) B.(2015,-1) C. (2015,1) D. (2016,0)B 【解析】本题考查直角坐标系中点坐标的规律探索. ∵半圆的半径r =1,∴半圆长度=π, ∴第2015秒点P 运动的路径长为:2π×2015, ∵2π×2015÷π=1007…1,∴点P 位于第1008个半圆的中点上,且这个半圆在x 轴的下方. ∴此时点P 的横坐标为:1008×2-1=2015,纵坐标为-1,∴点P (2015,-1) .第8题解图 二、填空题(每小题3分,共21分) 9. 计算:(-3)0+3-1= . 9.34【解析】313,1310==--)(,∴原式=1+31 = 34. 10. 如图,△ABC 中,点D 、E 分别在边AB ,BC 上,DE //AC ,若DB =4,DA =2,BE =3,则EC = .23【解析】本题考查平行线分线段成比例定理.∵DE ∥AC ,∴ECBEDA BD =,∴EC =23432BD BE DA =⨯=⋅. 11. 如图,直线y =kx 与双曲线)0(2>=x xy 交于点A (1,a ),则k = .2【解析】本题考查一次函数与反比例函数结合. 把点A 坐标(1,a )代入 y =x 2 ,得a =12=2 ∴点A 的坐标为(1,2),再把点A (1,2)代入y =kx 中,得k =2.第8题E CDBA 第10题12. 已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数y =(x -2)2-1的图象上,则y 1,y 2,y 3的大小关系是 ..213y y y <<【解析】本题考查二次函数图象及其性质.方法一:解:∵ A (4,y 1)、B (2,y 2)C (-2,y 3)在抛物线y =21-2x -()上,∴y 1=3,y 2=5-42,y 3=15.∵5-42<3< 15,∴y 2<y 1<y 3方法二:解:设点A 、B 、C 三点到抛物线对称轴的距离分别为d 1、d 2、d 3,∵y =212)x --( ∴对称轴为直线x =2,∴d 1=2,d 2=2-2,d 3=4∵2-2<2<4,且a =1>0,∴y 2<y 1<y 3. 方法三:解:∵y =1)22--x (,∴对称轴为直线x =2,∴点A (4, y 1)关于x =2的对称点是(0,y 1).∵-2<0<2且a =1>0,∴y 2<y 1<y 3.13. 现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片所标数字不同的概率是 .85或画树状图如解图:第13题解图由列表或树状图可得所有等可能的情况有16种,其中两次抽出卡片所标数字不同14. 如图,在扇形AOB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交 AB于点E ,以点O 为圆心,OC 的长为半径 作 CD交OB 于点D ,若OA =2,则阴影部分的面积为 .【分析】先观察阴影部分的图形为不规则图形,相到利用转化的思想,并作出必要的辅助线,即连接OE ,得到CO D O CE O BE S S S S 扇形扇形阴影-+=∆,再分别计算出各图形的面积即可求解.12π【解析】本题考查阴影部分面积的计算.如解图,连接OE ,∵点C 是OA 的中 点,∴OC =21OA =1,∵OE =OA =2,∴OC =21OE . ∵CE ⊥OA ,∴∠OEC =30°,∴∠COE =60°.在Rt △OCE 中,CE =3,∴S△OCE =21OC ·CE =23.∵∠AOB =90°, ∴∠BOE=∠AOB -∠COE =30°,∴S 扇形OBE =230360⋅π2=3π,S扇形COD =2901360⋅π=4π,∴[来CO D O CE O BE S S S S 扇形扇形阴影-+=∆=3π+23-4π=2312+π.CB第14题解图15. 如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC 上不与点B 、C 重合的一个动点,把△EBF 沿第14题EFCDBA B ′EF 折叠,点B 落在B ′处,若△CDB ′恰为等腰三角形,则DB ′的长为 .【分析】若△CD B '恰为等腰三角形,判断以CD 为腰或为底边分为三种情况:①DB ′=DC ;②CB ′=CD ;③CB ′=DB ′,针对每一种情况利用正方形和折叠的性质进行分析求解. 16或54【解析】本题考查正方形、矩形的性质和勾股定理的运用,以及分类讨论思想.根据题意,若△CD B '恰为等腰三角形需分三种情况讨论:(1)若DB ′=DC 时,则DB ′=16(易知点F 在BC 上且不与点C 、B 重合) ;(2)当CB ′=CD 时,∵EB =EB ′,CB =CB ′∴点E 、C 在BB ′的垂直平分线上,∴EC 垂直平分BB ′,由折叠可知点F 与点C 重合,不符合题意,舍去;(3)如解图,当CB ′=DB ′时,作BG ⊥AB 与点G ,交CD 于点H .∵AB ∥CD , ∴B ′H ⊥CD ,∵CB ′=DB ′,∴DH =21CD =8,∴AG =DH =8,∴GE =AG -AE =5,在Rt △B ′EG 中,由勾股定理得B ′G =12,∴B ′H =GH -B ′G =4.在Rt △B ′DH 中,由勾股定理得DB ′=54,综上所述DB ′=16或54.G E第15题解图 三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:)11(22222ab b a b ab a -÷-+-,其中15+=a ,15-=b . 【分析】解答本题应从运算顺序入手,先将括号里通分,能因式分解的进行因式分解,然后将除法变乘法,最后约分化简成最简分式后,将a ,b 的值代入求解.解:原式=abba b a b a -÷--)(22)(……………………………………………………(4分) =b a abb a-⋅-2=2ab.……………………………………………………(6分)当1,1a b =时,原式=22152)15(15=-=-+)(.…………(8分)17.(9分)如图,AB 是半圆O 的直径,点P 是半圆上不与点A 、B 重合的一个动点,延长BP 到点C ,使PC =PB ,D 是AC 的中点,连接PD ,PO . (1)求证:△CDP ∽△POB ; (2)填空:① 若AB =4,则四边形AOPD 的最大面积为 ; ② 连接OD ,当∠PBA 的度数为 时,四边形BPDO 是菱形.(1)【分析】要证△CDP ≌△POB ,已知有一组对应边相等,结合已知条件易得DP 是△ACB 的中位线,进而可得出一组对应角和一组对应边相等,根据SAS 即可得证. 解:∵点D 是AC 的中点,PC =PB ,…………………………………………(3分) ∴DP ∥DB ,AB DP 21=,∴∠CPD =∠PBO . ∵AB OB 21=,∴DP =OB ,∴△CDP ≌△POB (SAS ).………………………………(5分)第17题解图(2) 【分析】①易得四边形AOPD 是平行四边形,由于AO 是定值,要使四边形AOPD 的面积最大,就得使四边形AOPD 底边AO 上的高最大,即当OP ⊥OA 时面积最大;②易得四边形BPDO 是平行四边形,再根据菱形的判定得到△PBO 是等边三角形即可求解. 解: ① 4 ;………………………………………………………………………………(7分) ② 60°.(注:若填为60,不扣分)…………………………………………………(9分)第17题【解法提示】①当OP ⊥OA 时四边形AOPD 的面积最大,∵由(1)得DP =AO ,DP ∥DB ,∴四边形AOPD 是平行四边形,∵AB =4,∴AO =PO =2,∴四边形AOPD 的面积最大为,2×2=4;②连接OD ,∵由(1)得DP =AO =OB ,DP ∥DB ,∴四边形BPDO 是平行四边形,∴当OB =BP 时四边形BPDO 是菱形,∵PO =BO ,∴△PBO 是等边三角形,∴∠PBA =60°. 18.(9分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图。

2015河南省中考数学试卷

2015河南省中考数学试卷

2015年河南初中学业水平暨高级中等学校招生考试试题数学(解析版)注意事项:1. 本试卷共6页,三个大题,满分 120分,考试时间100分钟。

2. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。

答 在试卷上的答案无效。

一、选择题(每小题 3分,共24分)下列各小题均有四个答案,其中只有一个是正确的。

1.下列各数中最大的数是()B 【解析】本题考查实物体的俯视图的判断,俯视图是从上往下看得到的图形,从上面看3. 据统计,2014年我国高新技术产品出口总额达 40 570亿元,将数据40 570亿用科学记数法表示为( )A. 4.0570 109B. 0.40570 1010C. 40.570 10:11D. 4.0570 1012D 【解析】本题考查带计数单位的大数科学计数法 .V 1亿=108 , 40570=4.057 W 4,;40570 亿=4.057 K 04X108=4.0570 1012.4.如图,直线a , b 被直线e , d 所截,若/ 1= / 2,/ 3=125 °则/ 4的度数为( )A. 5B. 3C. nD. -8A 【解析】本题考查实数的比较大小.••• .3 1.732 ,n~ 3.14;. 5> n > 3> 8 , •••最大的数可以看到轮廓是一个矩形和中间有一条竖着的实线,故 B 选项符合题意为5.2.D. 75 A. 55A 【解析】本题考查了平行线的判定和相交线与平行线性质求角度=Z 3=125° ,.•./ 4= 180° — / 5=180° — 125°=55° .王成绩为 86分.7.如图,在口 ABCD 中,用直尺和圆规作/ BAD 的平分线 AG 交BC 于点E ,若BF=6 , AB=5, 则AE的长为( )A. 4B. 6C. 8D. 10.•••/ 1=7 2, ••• a // b. •••/ 5-50 2A-50 2 B-5-5CDC 【解析】本题考查解一元一次不等式组及在数轴上表示•由不等式x+5 >0,解得:x ^— 5 ; 由不 等式故C 选项符合.6.小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( A. 255 分B. 84 分C. 84.5 分D.86 分 C 【解析】本题考查加权平均数的应用 •根据题意得x85 2 80口口 86,•小5.不等式组% 5 0,的解集在数轴上表示为()3 x 1BF交于点1 亠亠O,v AF=AB , / BAE= / FAE , • AE 丄BF , OB= BF =3 在Rt△ AOB 中, 2AO=,52-32 4 ,•••四边形ABCD 是平行四边形,• AD // BC FAE= / BEA ,C【解析】本题考查平行四边形的性质和角平分线的性质,以及基本的尺规作图.设AE与x 1第8题解图二、填空题(每小题 3分,共 21 分)9.计算:(-3)°+3-1 =9.4【解析】(3) 1,3 131,•原式=1+13310.如图,△ ABC 中,点D 、E 分别在边 AB , BC 上,DE//AC ,10题若 DB=4, DA=2, BE=3,贝U EC=3【解析】本题考查平行线分线段成比例定理 .•/ DE // AC ,/ BD2,DA BE 2 33• • EC=BDDABEEC ,11.如图,直线y=kx 与双曲线y -(x 0)交于点xA (1, a ),则 k=2【解析】本题考查一次函数与反比例函数结合2 2把点A 坐标(1, a )代入y=,得a= =2•••点A 的坐标为(1,2),再把点A (1,2)代入y=kx 中,得k=2.•••/ BAE = / BEA ,••• AB=BE AE=2AO=8. 8•如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆 O i , O 2, 03,… 组成一条平滑的曲线,点p 从原点0出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点 P 的坐标是( A. (2014,0) B. (2015, -1) C.(2015,1)D. (2016,0)B 【解析】本题考查直角坐标系中点坐标的规律探索•••半圆的半径r=1,•半圆长度=nn•••第2015秒点P 运动的路径长为:X2015,2n- >2015 F=1007・T, •点P 位于第1008个半圆的中点上,且这个半圆在2•此时点P 的横坐标为:1008X2-1=2015,纵坐标为-1,•点P(2015, -1). x 轴的下方•12. 已知点A (4, y i), B ( J2 , y2), C (-2, y3)都在二次函数y=(x-2)2-1 的图象上,贝U y i, y2, y3的大小关系是___________ ..y2 y i y【解析】本题考查二次函数图象及其性质•方法一:解:•/ A (4, y i)、B (恋2 , y2)C (-2, y3)在抛物线y=( x-2) 2 1 上,二y i=3 , y2=5-4 . 2 ,y3=15. ■/ 5-4 .2 v 3v 15,「. y2v y i v y3 方法二:解:设点A、B、C三点到抛物线对称轴的距离分别为d i、d2、d3, •/y=(x 2)21对称轴为直线x=2 ,••• d i=2,d2=2- . 2 ,d3=4 ■/ 2- , 2 v 2v 4,且a=1 > 0 ,「. y2V y i v y3.2方法三:解:••• y=(x 2) 1,•对称轴为直线x=2,•点A(4, y i)关于x=2的对称点是(0 , y i) .T -2 v 0v、、2 且a=1 > 0, • y2V y i v y3.13. 现有四张分别标有数字 1 , 2, 3, 4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片所标数字不同的概率是__________ .5【解析】本题考查用列表法或画树状图的方法求概率.列表如下:812231(1,1 ) (1 , 2) (1 , 2) (1 , 3)2(2 , 1 ) (2,2 ) (2 , 2) (2 , 3)2(2 , 1 ) (2 , 2) (2,2 ) (2 , 3)3(3 , 1 ) (3 , 2) (3 , 2) (3,3 )或画树状图如解图:第二次 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3第13题解图由列表或树状图可得所有等可能的情况有16种,其中两次抽出卡片所标数字不同10 5的情况有10种,则P=.16 814. 如图,在扇形 AOB 中,/ AOB=90 °点C 为OA 的中点, CE 丄OA 交A B于点E ,以点O 为圆心,OC 的长为半径 作CD 交OB 于点D ,若OA=2,则阴影部分的面积为 —【分析】先观察阴影部分的图形为不规则图形,相到利用转化的思想,并作出必要的辅助线,即连接OE ,得到S 阴影S 扇形OBE S °CE S 扇形COD ,再分别计算出各图形的面积即可求解第14题解图15. 如图,正方形 ABCD 的边长是16,点E 在边AB 上,AE=3,点F 是边BC 上不与点B 、C 重合的一个动点,把△ EBF 沿第n3【解析】本题考查阴影部分面积的计算12 2•如解图,连接 OE ,••点C 是OA 的中1点,…OC = OA =1,T OE = OA =2,「21OC = — OE.•/ CE 丄 OA ,•••/ OEC = 30° •••/ COE=60°在 Rt △ OCE 中,CE =3 ,CE=^「/ AOB = 9 0°230 22 n=Z AOB-/ COE = 30°,• S 扇形 OBE= 30n —=- S 扇形COD = 360 3290冗 1 =n360 =4, --[来 S 阴影 S 扇形OBE S OCE S 扇形COD_n ,3 ________= + — =32 4 123 215题(6分)2当 a .5 1,b1 时,原式=^5 1) 5 1)(8 分)EF 折叠,点B 落在B 处,若△ CDB 恰为等腰三角形,则 DB 的长为 ___________________【分析】若厶CD B 恰为等腰三角形,判断以 CD 为腰或为底边分为三种情况:① DB 'DC ;②CB ' CD :③CB ' DB',针对每一种情况利用正方形和折叠的性质进行分析求解 16或4、一 5【解析】本题考查正方形、矩形的性质和勾股定理的运用,以及分类讨论思想 根据题意,若△ CD B 恰为等腰三角形需分三种情况讨论:(1 )若DB ' DC 时,贝U DB ' =16(易知点 F 在BC 上且不与点 C 、B 重合) ;(2)当CB ' CD 时,T EB=EB ', CB=CB '二 点E 、C 在BB 的垂直平分线上,••• EC 垂直平分BB ',由折叠可知点 F 与点C 重合,不符合题意,舍去;(3)如解图,当CB ' DB 时,作BG 丄AB 与点G ,交CD 于点H. •/ AB // CD ,1• B 'H 丄 CD CB ' DB ',• DH = — CD=8 , • AG=DH =8, • GE=AG-AE=5,在 Rt △ B EG2中,由勾股定理得 B G=12,「. B ' H=GH-B 'G=4.在Rt A B 'DH 中,由勾股定理得 DB ' 4.5 ,综上所述DB ' =1或4 5.第15题解图三、解答题(本大题共 8个小题,满分75 分)16. (8分)先化简,再求值:2 2a 2ab b1 1、( ),其中 a .. 51 , b . 5【分析】解答本题应从运算顺序入手,先将括号里通分,能因式分解的进行因式分解,然a b ab =2 a b _ ab =2 .后将除法变乘法,最后约分化简成最简分式后,将a,b 的值代入求解解:原式=(a b )2 口 .................................................2(a b ) ab(4分)17. ( 9分)如图,AB 是半圆0的直径,点P 是半圆上不与点 A 、B 重合的一个动点,延长BP 到点C ,使PC=PB , D 是AC 的中点,连接 PD ,P0. (1) 求证:△ CDP POB ; (2) 填空:① 若AB=4,则四边形 AOPD 的最大面积为 ______________ ;② 连接0D ,当/ PBA 的度数为 _________ 时,四边形BPDO 是菱形.的中位线,进而可得出一组对应角和一组对应边相等,根据 SAS 即可得证.解:•••点 D 是AC 的中点,PC=PB , ................................. (3分)1 ••• DP // DB , DP ABCPD = / PBO.21••• OB - AB ,• DP=OBCDP POB (SAS ) . .......................... (5 分)2第17题解图(2)【分析】①易得四边形 AOPD 是平行四边形,由于 AO 是定值,要使四边形 AOPD 的 面积最大,就得使四边形AOPD 底边AO 上的高最大,即当 OP 丄OA 时面积最大;②易得四边形BPDO 是平行四边形,再根据菱形的判定得到△PBO 是等边三角形即可求解•解:①4 ; ............................................................. (7分)DP >△ ACB(9②60 :(注:若填为60,不扣分)分)【解法提示】①当 0P 丄OA 时四边形AOPD 的面积最大,•••由(1得DP=AO , DP // DB , •••四边形 AOPD 是平行四边形,T AB =4,••• AO=PO=2,•••四边形 AOPD 的面积最大 为,2 >2=4 ;②连接OD,T 由(1)得DP=AO = OB , DP // DB ,•四边形BPDO 是平行四边形,•••当OB = BP 时四边形BPDO 是菱形,T PO=BO ,•△ PBO 是等边三角形,•/ PBA=60°. 18. (9分)为了了解市民 获取新闻的最主要途径 ”,某市记者开展了一次抽样调查,根据调 查结果绘制了如下尚不完整的统计图。

2015年河南中考信阳市数学模拟试题

2015年河南中考信阳市数学模拟试题

2015年河南中考信阳市数学模拟试题一、选择题:(每小题3分,共24分)1、如果103+=,则“”表示的数应是.....................................【 】A 、13B 、3C 、3-D 、13-2.下面运算正确的是........................................................【 】 A 、7a 2b ﹣5a 2b=2 B 、x 8÷x 4=x 2 C 、(a ﹣b )2=a 2﹣b 2 D 、(2x 2)3=8x 63.2013年,中央财政用于“三农”的支出安排合计13799亿元,同比增长11.4%,主要用于支持农业生产、对农民的粮食直补等四项补贴、促进农村教育卫生等社会事业发展等方面。

13799亿元用科学记数法表示为(保留3个有效数字)....................【 】 A 、1.37×1012 B 、1.38×1012 C 、1.37×1011 D 、1.38×1011 4.下列说法正确的是........................................................【 】 A 、商家卖鞋,最关心的是鞋码的中位数 B 、365人中必有两人阳历生日相同C 、要了解全市人民的低碳生活状况,适宜采用抽样调查的方法D 、随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别为S 甲2=5,S 乙2=12,说明乙的成绩较为稳定5.如图是由几个小正方体组成的一个几何体,这个几何体的左视图是..............【 】6.如上图,直线a ∥直线b ,∠1=∠2,∠3=150°,∠4的大小…………………………【 】A 、60°B 、30°C 、50°D 、40° 7.如图,在平面直角坐标系中,△ABC 绕旋转中心顺时针旋转90°后得到△A'B'C',则其旋转中心的坐标是........................................................【 】第3题图DCBA1234A 、(1,﹣1)B 、(1,0)C 、(0.5,0.5)8.如图,平面直角坐标系中,点A 在第一象限,⊙A 与x 轴相切于B ,与y 轴交于C (0,1),D (0,4)两点,则点A 坐标是...........................................【 】A 、5(2,)2B 、3(,2)2C 、35(,)22D 、53(,)22二、填空题:(每小题3分,共21分)的立方根是10.计算:101((tan 30)22π---++-=11.某一型号飞机着陆后滑行的距离y (单位:m )与滑行时间x (单位:s )之间的函数关系式是y=60x ﹣1.5x 2,该型号飞机着陆后滑行 s 才能停下来12.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角板斜边AB 上,BC 与DE 交于点M.如果∠ADF=100°,那么∠BMD 为 度13.如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为14.若b >0二次函数y =ax 2+bx +a 2-1的图象如图,则a 等于15.如图,扇形MON 的圆心角为直角,半径为OABC 内接于扇形,点A 、C 、B 分别在OM 、ON 、上,过M 做ME ⊥CB 交CB 的延长线于E ,则图中阴影部分的面积为三、解答题:(8个小题,共75分)16.(8分)计算 0(π2009)|2|-+1)21(-+2 sin60°17.(9分)先化简,在求值:+,其中x 满足x 2=x .18.(9分)如图,平面直角坐标系中,已知四边形ABCD 为菱形,且A (0,3)、B (﹣4,0) (1)求经过点C 的反比例函数的解析式.(2)设P 是(1)中所求函数图象上一点,以P 、O 、A 顶点的三角形的面积与△COD 的面 积相等.求点P 的坐标.19.(9分)某实践活动小组为了解本校九年级600名同学投掷实心球的成绩,随机抽取了120名同学的测试成绩(满分10分),统计整理并绘制了如图的统计图:根据以上信息解答下列问题:(1)所抽取成绩的中位数是分,统计图中的m = .(2)估计该校九年级同学大约有多少人得满分.(3)若从该校九年级得满分的同学中,随机选出20名同学作为小教练,则得满分的小刚被选中的概率是多少?20.(9分)水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD.如图所示,已知迎水坡面AB的长为16米,∠B=60°,背水坡面CD的长为米,加固后大坝的横截面积为梯形ABED,CE的长为8米.(1)已知需加固的大坝长为150米,求需要填土石方多少立方米?(2)求加固后的大坝背水坡面DE的坡度.21.(10分)为了迎接“五•一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元,售价280元.(1)若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件?(2)该专卖店为使甲、乙两种服装共200件的总利润(利润=售价﹣进价)不少于26700元,且不超过26800元,则该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变,那么该专卖店要获得最大利润应如何进货?22.(10分)如图①所示,已知A 、B 为直线l 上两点,点C 为直线l 上方一动点,连接AC 、BC ,分别以AC 、BC 为边向ABC ∆外作正方形CADF 和正方形CBEG ,过点D 作1DD l ⊥于点1D ,过点E 作1EE l ⊥于点1E .(1)如图①,当D 、E 两点都在直线l 的上方时,试探求三条线段1DD 、1EE 、AB 之间的数量关系,并说明理由.(2)如图②,当点E 恰好在直线l 上时(此时1E 与E 重合),试说明1DD AB =.(3)如图③,当点E 在直线l 的下方时,请直接写出三条线段1DD 、1EE 、AB 之间的数量关系.(不需要证明)图② 图①l(E 1)ABCDFG E1图③lE 1ABC DFGED 1l1CD F GE 123.(11分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax²+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式.(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年河南省统一命题最新中考数学模拟试卷
一、选择题(每小题3分,共24分) . += 2.计算(ab )3的结果是
A .ab 3
B .a 3b
C .a 3b 3
D .3ab
3.图中几何体的主视图是
4.化简2x 2-1÷1x -1
的结果是 A .2x -1 B .2x 3-1 C .2x +1
D .2(x
+1)
D 8.函数y=与y=ax 2(a ≠0)在同一平面直角坐标系中的图象可能是( )

C D . 二、填空题(每小题3分,共21分)
9.计算:
﹣|﹣2|=_________. 10.不等式组
的所有整数解的和为_________. 11
.若一元二次方程x 2﹣
x ﹣1=0
的两根分别为x 1
、x 2,则
+= . 12.已知抛物线y=ax 2
+bx+c (a≠0)与x 轴交于A ,B 两点,若点A 的坐标为(﹣2,0),抛物线的对称轴为直线x=2,
则线段AB 的长为_________.
13.据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n ,
则n 等于_______
14.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC ,若AB=4,AC=6,则BD 的长是_______
A B C D
15.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺
序数的倒数加1,第1位同学报(11+1),第2位同学报(12+1),第1位同学报(13
+1)……这样得到的20个数的积为___________.
三、解答题(本大题共8小题,满分75分)
16.计算:|-5|-( 2 -3)0+6×(13-12)+(-1)2.
17.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:
请根据所给信息解答以下问题:
(1)请补全条形统计图;
(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?
(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A 、B 、C 、D ,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A ”的概率.
18.如图,点A (m ,6),B (n ,1)在反比例函数图象上,AD ⊥x 轴于点D ,BC ⊥x 轴于点C ,DC=5.
(1)求m ,n 的值并写出反比例函数的表达式;
(2)连接AB ,在线段DC 上是否存在一点E ,使△ABE 的面积等于5?若存在,求出点E 的坐标;若不存在,请说明理由.
19.如图,OC 平分∠MON ,点A 在射线OC 上,以点A 为圆心,半径为2的⊙A 与OM 相切于点B ,连接BA 并延长交⊙A 于点D ,交ON 于点E 。

(1)求证:ON 是⊙A 的切线;
(2)若∠MON=60°,求图中阴影部分的面积。

(结果保留π)
20.如图,AB是⊙O的直径,延长AB至P,使BP=OB,BD垂直于弦BC,垂足为点B,点D在PC上.设∠PCB=α,∠POC=β.
求证:tanα•tan=.
21.如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2
﹣ax﹣a经过点B(2,),与y轴交于点D.
(1)求抛物线的表达式;
(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;
(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.
22.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.23.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
填空:①∠AEB的度数为_________;②线段AD,BE之间的数量关系为_________.
(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM 为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题:如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP 的距离.。

相关文档
最新文档