2020-2021学年度第一学期福建省福州市三校联考九年级数学第一次月考试卷(解析版)

合集下载

2020-2021九年级上月考数学试卷含答案解析

2020-2021九年级上月考数学试卷含答案解析

2020-2021九年级(上)月考数学试卷(12月份)一、选择题(每题3分计36分)1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C. D.2.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0C.k<1 D.k<1且k≠03.抛物线图象如图所示,根据图象,抛物线的解析式可能是()A.y=x2﹣2x+3 B.y=﹣x2﹣2x+3 C.y=﹣x2+2x+3 D.y=﹣x2+2x﹣34.已知⊙O过正方形ABCD顶点A,B,且与CD相切,若正方形边长为2,则圆的半径为()A.B.C.D.15.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是()A.B.C.D.6.已知反比例函数的图象经过点(a,b),则它的图象一定也经过()A.(﹣a,﹣b)B.(a,﹣b)C.(﹣a,b)D.(0,0)7.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.8.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A.B.C.D.9.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=5m,点P到CD的距离是3m,则点P到AB的距离是()A.m B.C.D.10.若M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,则y1、y2、y3的大小关系是()A.y2>y3>y1B.y2>y1>y3C.y3>y1>y2D.y3>y2>y111.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A. B. C. D.12.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是()A.B.C.D.二、填空题(每题4分计24分)13.反比例函数y=(k是常数,k≠0)的图象经过点(a,﹣a),那么该图象一定经过第象限.14.一个反比例函数y=(k≠0)的图象经过点P(﹣2,﹣1),则该反比例函数的解析式是.15.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为米.16.如图,P是反比例函数图象在第二象限上的一点,且长方形PEOF的面积为8,则反比例函数的表达式是.17.如图,D,E分别是△ABC的边AB,AC上的点,请你添加一个条件,使△ABC与△AED相似,你添加的条件是.18.如图,已知△ABC∽△DBE,AB=6,DB=8,则= .三、解答题:19.先化简,再求代数式的值:,其中a=tan60°﹣2sin30°.20.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点.(1)根据图象,分别写出A、B的坐标;(2)求出两函数解析式;(3)根据图象回答:当x为何值时,一次函数的函数值大于反比例函数的函数值.21.已知如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足是D,BC=,DB=1,求CD,AD的长.22.某中学组织部分优秀学生分别去北京、上海、天津、重庆四个城市进行夏令营活动,学校购买了前往四个城市的车票,如图是未制作完整的车票种类和数量的条形统计图,请你根据统计图回答下列问题:(1)若前往天津的车票占全部车票的30%,则前往天津的车票数是多少张?并请补全统计图.(2)若学校采取随机抽取的方式分发车票,每人抽取一张(所有的车票的形状、大小、质地完全相同),那么张明抽到前往上海的车票的概率是多少?23.已知:,试判断直线y=kx+k一定经过哪些象限,并说明理由.24.已知:CP为圆O切线,AB为圆的割线,CP、AB交于P,求证:AP•BP=CP2.25.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.参考答案与试题解析一、选择题(每题3分计36分)1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:(A)、是轴对称图形,不是中心对称图形,故本选项错误;(B)、是轴对称图形,也是中心对称图形,故本选项正确;(C)、不是轴对称图形,是中心对称图形,故本选项错误;(D)、不是轴对称图形,是中心对称图形,故本选项错误.故选B.【点评】此题考查了轴对称及中心对称图形的判断,解答本题的关键是掌握中心对称图形与轴对称图形的概念,属于基础题.2.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0C.k<1 D.k<1且k≠0【考点】根的判别式;一元二次方程的定义.【分析】根据根的判别式及一元二次方程的定义得出关于k的不等式组,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴,即,解得k>﹣1且k≠0.故选B.【点评】本题考查的是根的判别式,熟知一元二次方程的根与判别式的关系是解答此题的关键.3.抛物线图象如图所示,根据图象,抛物线的解析式可能是()A.y=x2﹣2x+3 B.y=﹣x2﹣2x+3 C.y=﹣x2+2x+3 D.y=﹣x2+2x﹣3 【考点】二次函数的图象.【专题】压轴题.【分析】抛物线开口向下,a<0,与y轴的正半轴相交c>0,对称轴在原点的右侧a、b异号,则b>0,再选答案.【解答】解:由图象得:a<0,b>0,c>0.故选C.【点评】此类题可用数形结合的思想进行解答,这也是速解习题常用的方法.4.已知⊙O过正方形ABCD顶点A,B,且与CD相切,若正方形边长为2,则圆的半径为()A.B.C.D.1【考点】切线的性质;正方形的性质.【分析】作OM⊥AB于点M,连接OB,在直角△OBM中根据勾股定理即可得到一个关于半径的方程,即可求得.【解答】解:作OM⊥AB于点M,连接OB,设圆的半径是x,则在直角△OBM中,OM=2﹣x,BM=1,∵OB2=OM2+BM2,∴x2=(2﹣x)2+1,解得x=.故选:B.【点评】本题主要考查了切线的性质、垂径定理以及勾股定理,在圆的有关半径、弦长、弦心距之间的计算一般要转化为直角三角形的计算.5.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是()A.B.C.D.【考点】几何概率.【分析】确定黑色方格的面积在整个方格中占的比例,根据这个比例即可求出小鸟停在黑色方格中的概率.【解答】解:图上共有15个方格,黑色方格为5个,小鸟最终停在黑色方格上的概率是,即.故选B.【点评】用到的知识点为:概率=相应的面积与总面积之比.6.已知反比例函数的图象经过点(a,b),则它的图象一定也经过()A.(﹣a,﹣b)B.(a,﹣b)C.(﹣a,b)D.(0,0)【考点】反比例函数图象上点的坐标特征.【分析】将(a,b)代入y=即可求出k的值,再根据k=xy解答即可.【解答】解:因为反比例函数的图象经过点(a,b),故k=a×b=ab,只有A案中(﹣a)×(﹣b)=ab=k.故选A.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.7.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.【考点】锐角三角函数的定义;互余两角三角函数的关系.【分析】本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.【解答】解:解法1:利用三角函数的定义及勾股定理求解.∵在Rt△ABC中,∠C=90°,∴sinA=,tanB=和a2+b2=c2.∵sinA=,设a=3x,则c=5x,结合a2+b2=c2得b=4x.∴tanB=.故选A.解法2:利用同角、互为余角的三角函数关系式求解.∵A、B互为余角,∴cosB=sin(90°﹣B)=sinA=.又∵sin2B+cos2B=1,∴sinB==,∴tanB===.故选A.【点评】求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.8.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.【解答】解:①当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数的y=(k≠0)的图象经过一、三象限,故B选项的图象符合要求,②当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数的y=(k≠0)的图象经过二、四象限,没有符合条件的选项.故选:B.【点评】此题考查反比例函数的图象问题;用到的知识点为:反比例函数与一次函数的k值相同,则两个函数图象必有交点;一次函数与y轴的交点与一次函数的常数项相关.9.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=5m,点P到CD的距离是3m,则点P到AB的距离是()A.m B.C.D.【考点】相似三角形的应用.【分析】判断出△PAB与△PCD相似,再根据相似三角形对应高的比等于相似比列式计算即可得解.【解答】解:设点P到AB的距离为xm,∵AB∥CD,∴△PAB∽△PCD,∴==,解得x=m.故选C.【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应高的比等于相似比,熟记性质是解题的关键.10.若M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,则y1、y2、y3的大小关系是()A.y2>y3>y1B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1【考点】反比例函数图象上点的坐标特征.【专题】函数思想.【分析】将M(,y1)、N(,y2)、P(,y3)三点分别代入函数(k>0),求得y1、y2、y3的值,然后再来比较它们的大小.【解答】解:∵M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,∴M(,y1)、N(,y2)、P(,y3)三点都满足函数关系式(k>0),∴y1=﹣2k,y2=﹣4k,y3=2k;∵k>0,∴﹣4k<﹣2k<2k,即y3>y1>y2.故选C.【点评】本题考查了反比例函数图象上点的坐标特征.所有反比例函数图象上的点都满足该反比例函数的解析式.11.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A. B. C. D.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】压轴题.【分析】根据平行四边形的性质和相似三角形的性质求解.【解答】解:∵AD∥BC∴∵CD∥BE∴△CDF∽△EBC∴,∴∵AD∥BC∴△AEF∽△EBC∴∴D错误.故选D.【点评】此题主要考查了平行四边形、相似三角形的性质.12.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是()A.B.C.D.【考点】锐角三角函数的定义;圆周角定理;三角形的外接圆与外心.【分析】求角的三角函数值,可以转化为求直角三角形边的比,连接DC.根据同弧所对的圆周角相等,就可以转化为:求直角三角形的锐角的三角函数值的问题.【解答】解:连接DC.根据直径所对的圆周角是直角,得∠ACD=90°.根据同弧所对的圆周角相等,得∠B=∠D.∴sinB=sinD==.故选A.【点评】综合运用了圆周角定理及其推论.注意求一个角的锐角三角函数时,能够根据条件把角转化到一个直角三角形中.二、填空题(每题4分计24分)13.反比例函数y=(k是常数,k≠0)的图象经过点(a,﹣a),那么该图象一定经过第二,四象限.【考点】反比例函数图象上点的坐标特征.【分析】先根据k=xy,求出k的取值范围,再根据k的取值范围即可得出图象经过的象限.【解答】解:∵反比例函数y=(k是常数,k≠0)的图象经过点(a,﹣a),∴k=a•(﹣a)=﹣a2,为负数.则经过该图象一定二,四象限.故答案为:二,四.【点评】考查了反比例函数图象上点的坐标特征,本题需求得函数k的值的符号,进而判断它所在的象限.14.一个反比例函数y=(k≠0)的图象经过点P(﹣2,﹣1),则该反比例函数的解析式是y=.【考点】待定系数法求反比例函数解析式.【专题】待定系数法.【分析】先把(﹣2,﹣1)代入函数y=中,即可求出k,那么就可求出函数解析式.【解答】解:由题意知,﹣1=,∴k=2,∴该反比例函数的解析式是y=.故答案为:y=.【点评】本题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点内容.15.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为 4.8 米.【考点】相似三角形的应用.【专题】转化思想.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:设高度为h,因为太阳光可以看作是互相平行的,由相似三角形:,h=4.8m.【点评】本题考查相似形的知识,解题的关键在于将题目中的文字转化为数学语言再进行解答.16.如图,P是反比例函数图象在第二象限上的一点,且长方形PEOF的面积为8,则反比例函数的表达式是y=﹣.【考点】反比例函数系数k的几何意义.【专题】常规题型.【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S是个定值,即S=|k|,再结合反比例函数所在的象限即可得到k的值,则反比例函数的解析式即可求出.【解答】解:设反比例函数的表达式是(k≠0),由题意知,S矩形PEOF=|k|=8,所以k=±8,又反比例函数图象在第二象限上,k<0,所以k=﹣8,即反比例函数的表达式是y=﹣.故答案为:y=﹣.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.17.如图,D,E分别是△ABC的边AB,AC上的点,请你添加一个条件,使△ABC与△AED相似,你添加的条件是∠AED=∠B.【考点】相似三角形的判定.【专题】开放型.【分析】要使两三角形相似,已知有一组公共角,则可以再添加一组角相等来判定其相似.【解答】解:∠AED=∠B.【点评】这是一道开放性的题,答案不唯一.18.如图,已知△ABC∽△DBE,AB=6,DB=8,则= .【考点】相似三角形的性质.【专题】压轴题.【分析】先求出△ABC与△DBE的相似比,再根据相似三角形面积的比等于相似比的平方的性质解答.【解答】解:∵AB=6,DB=8,∴△ABC与△DBE的相似比=6:8=3:4,∴=.【点评】本题主要考查的是相似三角形面积的比等于相似比的平方.三、解答题:19.先化简,再求代数式的值:,其中a=tan60°﹣2sin30°.【考点】分式的化简求值;特殊角的三角函数值.【专题】计算题.【分析】分别化简分式和a的值,再代入计算求值.【解答】解:原式=.(2分)当a=tan60°﹣2sin30°=﹣2×=时,(2分)原式=.(1分)【点评】本题考查了分式的化简求值,关键是化简.同时也考查了特殊角的三角函数值;注意分子、分母能因式分解的先因式分解,除法要统一为乘法运算.20.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点.(1)根据图象,分别写出A、B的坐标;(2)求出两函数解析式;(3)根据图象回答:当x为何值时,一次函数的函数值大于反比例函数的函数值.【考点】反比例函数与一次函数的交点问题.【专题】压轴题;数形结合;待定系数法.【分析】(1)直接由图象就可得到A(﹣6,﹣2)、B(4,3);(2)把点A、B的坐标代入两函数的解析式,利用方程组求出k、b、m的值,即可得到两函数解析式;(3)结合图象,分别在第一、二象限求出一次函数的函数值>反比例函数的函数值的x的取值范围.【解答】解:(1)由图象得A(﹣6,﹣2),B(4,3).(2)设一次函数的解析式为y=kx+b,(k≠0);把A、B点的坐标代入得解得,∴一次函数的解析式为y=x+1,设反比例函数的解析式为y=,把A点坐标代入得,解得a=12,∴反比例函数的解析式为.(3)当﹣6<x<0或x>4时一次函数的值>反比例函数的值.【点评】本类题目主要考查一次函数、反比例函数的图象和性质,考查待定系数法求函数解析式的基本方法,以及从平面直角坐标系中读图获取有效信息的能力,考查数形结合的数学思想,另外,还需灵活运用方程组解决相关问题.21.已知如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足是D,BC=,DB=1,求CD,AD的长.【考点】勾股定理;相似三角形的判定与性质.【分析】先根据勾股定理求得CD的长,再根据相似三角形的判定方法求得△BCD∽△CAD,从而得到CD2=BD•AD,其它三边的长都已知,则可以求得AD的长.【解答】解:∵BC=,DB=1∴CD=∵∠B+∠BCD=90°,∠BCD+∠DCA=90°∴∠BCD=∠DCA∴△BCD∽△CAD∵CD2=BD•AD∴AD=5.【点评】此题主要考查学生对相似三角形的性质及勾股定理的理解及运用.22.某中学组织部分优秀学生分别去北京、上海、天津、重庆四个城市进行夏令营活动,学校购买了前往四个城市的车票,如图是未制作完整的车票种类和数量的条形统计图,请你根据统计图回答下列问题:(1)若前往天津的车票占全部车票的30%,则前往天津的车票数是多少张?并请补全统计图.(2)若学校采取随机抽取的方式分发车票,每人抽取一张(所有的车票的形状、大小、质地完全相同),那么张明抽到前往上海的车票的概率是多少?【考点】条形统计图;分式方程的应用;概率公式.【专题】压轴题.【分析】(1)设去天津的车票数为x张,根据条形统计图所给的数据和前往天津的车票占全部车票的30%,列出方程,求出x 的值,从而补全统计图;(2)先算出总车票数和去上海的车票数,再根据概率公式即可得出答案.【解答】解:(1)设去天津的车票数为x张,根据题意得:=30%,解得:x=30,补全统计图如右图所示:(2)∵车票的总数为20+40+30+10=100张,去上海的车票为40张,∴前往上海的车票的概率==,答:张明抽到去上海的车票的概率是.【点评】此题考查了条形统计图和概率公式,从条形统计图中获得必要的信息是本题的关键,条形统计图能清楚地表示出每个项目的数据.23.已知:,试判断直线y=kx+k一定经过哪些象限,并说明理由.【考点】一次函数的性质;比例的性质.【专题】探究型.【分析】由于a+b+c的符号不能确定,故进行分类讨论,当a+b+c≠0时,可利用等比性质求出k的值,当a+b+c=0时,可将a+b转化为﹣c,然后求出k,得到其解析式,进而判断出直线y=kx+k一定经过哪些象限.【解答】解:直线y=kx+k一定经过第二、三象限,理由如下:当a+b+c≠0时,∵,∴k===2,此时,y=kx+k=2x+2,经过第一、二、三象限;当a+b+c=0时,b+c=﹣a,此时,k===﹣1,此时,y=kx+x=﹣x﹣1经过第二、三、四象限.综上所述,y=kx+k一定经过第二、三象限.【点评】本题考查了一次函数的性质,根据已知条件求出k的值是解题的关键,要熟悉等比性质,并能进行分类讨论.24.已知:CP为圆O切线,AB为圆的割线,CP、AB交于P,求证:AP•BP=CP2.【考点】切割线定理.【专题】证明题.【分析】连接AC、BC、CO并延长交圆O于点M,连结AM.先由切线的性质得出OC⊥PC,那么∠ACP+∠ACM=90°,由圆周角定理及直角三角形两锐角互余得出∠M+∠ACM=90°,根据同角的余角相等得出∠ACP=∠M,由圆周角定理得出∠M=∠CBP,那么∠ACP=∠CBP,又∠APC=∠CPB,得出△ACP∽△CBP,根据相似三角形对应边成比例得到AP:CP=CP:BP,即AP•BP=CP2.【解答】证明:连接AC、BC、CO并延长交圆O于点M,连结AM.∵PC是圆O的切线,∴OC⊥PC,∴∠ACP+∠ACM=90°,又∵CM是直径,∴∠M+∠ACM=90°,∴∠ACP=∠M,∵∠M=∠CBP,∴∠ACP=∠CBP,又∵∠APC=∠CPB(公共角),∴△ACP∽△CBP,∴AP:CP=CP:BP,∴AP•BP=CP2.【点评】本题实际上证明了切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.涉及到的知识点有:切线的性质,圆周角定理,直角三角形的性质,余角的性质,相似三角形的判定与性质.准确作出辅助线是解题的关键.25.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象上点的坐标特征.【分析】(1)由于抛物线y=x2+bx+c与x轴交于A(﹣1,0),B (3,0)两点,那么可以得到方程x2+bx+c=0的两根为x=﹣1或x=3,然后利用根与系数即可确定b、c的值.(2)根据S△PAB=8,求得P的纵坐标,把纵坐标代入抛物线的解析式即可求得P点的坐标.【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B (3,0)两点,∴方程x2+bx+c=0的两根为x=﹣1或x=3,∴﹣1+3=﹣b,﹣1×3=c,∴b=﹣2,c=﹣3,∴二次函数解析式是y=x2﹣2x﹣3.(2)∵y=﹣x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴x=1,顶点坐标(1,﹣4).(3)设P的纵坐标为|y P|,∵S△PAB=8,∴AB•|y P|=8,∵AB=3+1=4,∴|y P|=4,∴y P=±4,把y P=4代入解析式得,4=x2﹣2x﹣3,解得,x=1±2,把y P=﹣4代入解析式得,﹣4=x2﹣2x﹣3,解得,x=1,∴点P在该抛物线上滑动到(1+2,4)或(1﹣2,4)或(1,﹣4)时,满足S△PAB=8.【点评】此题主要考查了利用抛物线与x轴的交点坐标确定函数解析式,二次函数的对称轴点的坐标以及二次函数的性质,二次函数图象上的坐标特征,解题的关键是利用待定系数法得到关于b、c的方程,解方程即可解决问题.。

2020—2021年人教版九年级数学上册第一次月考考试卷及参考答案

2020—2021年人教版九年级数学上册第一次月考考试卷及参考答案

2020—2021年人教版九年级数学上册第一次月考考试卷及参考答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.函数y =x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1≥x2.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人4.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.抛物线2y 3(x 1)1=-+的顶点坐标是( )A .()1,1B .()1,1-C .()1,1--D .()1,1-7.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°8.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,3),则点C 的坐标为( )A .(-3,1)B .(-1,3)C .(3,1)D .(-3,-1)10.如图,⊙O 是△ABC 的外接圆,∠OCB =40°,则∠A 的大小为( )A .40°B .50°C .80°D .100°二、填空题(本大题共6小题,每小题3分,共18分)112763的结果是__________.2.分解因式:2242a a ++=___________.3.函数2y x =-中,自变量x 的取值范围是__________.4.如图,ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC+BD=24厘米,△OAB 的周长是18厘米,则EF=__________厘米.5.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径作CD 交OB 于点D ,若OA=2,则阴影部分的面积为__________.6.如图,P 为平行四边形ABCD 边BC 上一点,E F 、分别为PA PD 、上的点,且3,3,PA PE PD PF ==,,PEF PDC PAB 的面积分别记为12,S S S 、.若2,S =则12S S +=__________.三、解答题(本大题共6小题,共72分)1.解方程:24111x x x -=--2.先化简,再求值:222221412()x x x x x x x x -+-+÷-+,且x 为满足﹣3<x <2的整数.3.如图,在四边形ABCD中,AB DC,AB AD=,对角线AC,BD交于点O,AC平分BAD⊥交AB的延长线于点E,连接OE.∠,过点C作CE AB(1)求证:四边形ABCD是菱形;(2)若5BD=,求OE的长.AB=,24.如图,AB是⊙O的直径,C是BD的中点,CE⊥AB于 E,BD交CE于点F.(1)求证:CF﹦BF;(2)若CD﹦6, AC﹦8,则⊙O的半径和CE的长.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、B5、B6、A7、A8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1.2、22(1)a +3、2x ≥4、35、12π+. 6、18三、解答题(本大题共6小题,共72分)1、3x =2、-53、(1)略;(2)2.4、(1)略(2)5 ,2455、(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x ≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元.。

2020—2021年人教版九年级数学上册第一次月考考试卷及答案

2020—2021年人教版九年级数学上册第一次月考考试卷及答案

2020—2021年人教版九年级数学上册第一次月考考试卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.函数1y x =-的自变量x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1≥x 2.已知=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,则2m n -的算术平方根为( )A .±2B .2C .2D .43.抛物线y =3(x ﹣2)2+5的顶点坐标是( )A .(﹣2,5)B .(﹣2,﹣5)C .(2,5)D .(2,﹣5)4.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.已知二次函数y=x 2﹣x+14m ﹣1的图象与x 轴有交点,则m 的取值范围是( )A .m ≤5B .m ≥2C .m <5D .m >2 7.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .8.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.29.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A为60︒角与直尺交点,3AB=,则光盘的直径是()A.3 B.33C.6D.6310.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若ABC60∠=,BAC80∠=,则1∠的度数为()A.50B.40C.30D.20二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是__________.2.分解因式:2218x-=______.33x- x 的取值范围是__________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=__________.5.如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM BN =,连接AC 交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF 的最小值是__________.6.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H ,30,23A CD ︒∠==,则⊙O 的半径是__________.三、解答题(本大题共6小题,共72分)1.(1)计算:1862(2)解方程:2533322x x x x --+=--2.计算:()011342604sin π-----+().3.如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF .4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.6.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、D5、B6、A7、D8、B9、D10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、2.2、2(3)(3)x x +-3、x ≥3415、36、2三、解答题(本大题共6小题,共72分)1、(1)2)4x =.2、33、略.4、(1)理由见详解;(2)2BD =或1,理由见详解.5、(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.6、(1)W 1=-2x ²+60x+8000,W 2=-19x+950;(2)当x=10时,W总最大为9160元.。

2020—2021年人教版九年级数学上册第一次月考测试卷(参考答案)

2020—2021年人教版九年级数学上册第一次月考测试卷(参考答案)

2020—2021年人教版九年级数学上册第一次月考测试卷(参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1 ) A .32 B .32- C .32± D .81162.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=5.若关于x 的不等式mx - n >0的解集是15x <,则关于x 的不等式()m n x n m >-+的解集是( ) A .23x >- B .23x <- C .23x < D .23x > 6.下列运算正确的是( )A .(﹣2a 3)2=4a 6B .a 2•a 3=a 6C .3a +a 2=3a 3D .(a ﹣b )2=a 2﹣b 27.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60°8.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=9.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是:( )A .B .C .D .10.直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A .(-3,0)B .(-6,0)C .(-52,0)D .(-32,0) 二、填空题(本大题共6小题,每小题3分,共18分)1.计算:22﹣|1﹣8|+(﹣12)﹣3=_____.2.因式分解:x3﹣4x=_______.3.函数2y x=-中,自变量x的取值范围是__________.4.如图1是一个由1~28的连续整数排成的“数阵”.如图2,用2×2的方框围住了其中的四个数,如果围住的这四个数中的某三个数的和是27,那么这三个数是a,b,c,d中的__________.5.如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是__________.6.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.计算:(1)sin30°﹣(π﹣3.14)0+(﹣12)﹣2(2)解方程;13223 x x=--2.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.3.如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC =(1)求抛物线的解析式及其对称轴;(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.4.如图,甲、乙两座建筑物的水平距离BC 为78m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48︒,测得底部C 处的俯角为58︒,求甲、乙建筑物的高度AB 和DC (结果取整数).参考数据:tan 48 1.11︒≈,tan 58 1.60︒≈.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为 ,图①中m 的值为 ;(2)求统计的这组销售额数据的平均数、众数和中位数.6.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y (本)与销售单价x (元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠(06)a a <≤元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a 的值.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、D5、B6、A7、A8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-72、x (x+2)(x ﹣2)3、2x ≥4、a ,b ,d 或a ,c ,d5、1276、2.5×10-6三、解答题(本大题共6小题,共72分)1、(1)72;(2)x =32、(1) △ABC 是等腰三角形;(2)△ABC 是直角三角形;(3) x 1=0,x 2=﹣1.3、(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 的周长最小1;(3)12(4,5),(8,45)P P --4、甲建筑物的高度AB 约为125m ,乙建筑物的高度DC 约为38m .5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、(1)10500(3038)y x x =-+;(2)2a =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年度第一学期福建省福州市三校联考九年级数学第一次月考试卷一、选择题(共10题;共40分)1.如果x=4是一元二次方程x²-3x=a²的一个根,则常数a的值是()A. 2B. ﹣2C. ±2D. ±42.用配方法解方程x2=4x+1,配方后得到的方程是()A. (x−2)2=5B. (x−2)2=4C. (x−2)2=3D. (x−2)2=143.关于x的一元二次方程(a-1)x2+2x-1=0有两个实数根,a的取值范围为()A. a≥0B. a<2C. a≥0且a≠1D. a≤2或a≠14.下列抛物线中,顶点坐标为(2,1)的是()A. y=(x+2)2+1B. y=(x−2)2+1C. y=(x+2)2−1D. y=(x−2)2−15.由抛物线y=−3x2−1得到抛物线y=−3(x+1)2+1是经过怎样平移的()A. 右移1个单位上移2个单位B. 右移1个单位下移2个单位C. 左移1个单位下移2个单位D. 左移1个单位上移2个单位6.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)间的关系为y=(x−4)2+3,由此可知铅球推出的距离是()−112A. 2mB. 8mC. 10mD. 127.已知抛物线y=ax2−3ax+a2+1(a≠0)图象上有两点A(x1,y1)、B(x2,y2),当x1<x2<−1时,有y1<y2;当−1≤x1≤2时,y1最小值是6 .则a的值为()A. −1B. −5C. 1或−5D. −1或−58.某商场将进价为20元∕件的玩具以30元∕件的价格出售时,每天可售出300件,经调查当单价每涨1元时,每天少售出10件.若商场想每天获得3750元利润,则每件玩具应涨多少元?若设每件玩具涨x元,则下列说法错误的是()A. 涨价后每件玩具的售价是(30+x)元B. 涨价后每天少售出玩具的数量是10x件C. 涨价后每天销售玩具的数量是(300−10x)件D. 可列方程为(30+x)(300−10x)=37509.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A. 10%B. 15%C. 20%D. 25%10.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是()A. 1B. 2C. 3D. 4二、填空题(共6题;共24分)11.当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,则m=________.12.将二次函数y=1+12(x+3)2的图像沿x轴对折后得到的图像解析式________.13.一元二次方程x2+2x−8=0的两根为x1,x2,则x2x1+2x x12+x1x2=________14.某一计算机的程序是:对于输入的每一个数,先计算这个数的平方的6倍,再减去这个数的4倍,再加上1,若一个数无论经过多少次这样的运算,其运算结果与输入的数相同,则称这个数是这种运算程序的不变数,这个运算程序的不变数是________.15.有两名流感病人,如果每轮传播中平均一个病人传染的人数相同,为了使两轮传播后,流感病人总数不超过288人,则每轮传播中平均一个病人传染的人数不能超过________人.16.学校组织学生去南京进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面土有一瓶洗手液(如图①),于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A下压如图②位置时,洗手液从喷口B流出,路线近似呈抛物线状,且a= −118。

洗手液瓶子的截面图下部分是矩形CGHD。

小王同学测得:洗手液瓶子的底面直径GH=12cm,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线.小王在距离台面15.5cm处接洗手液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是________cm。

三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.解方程:(1)x2−2x−3=0.(2)3x2+2x−1=0.18.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称.已知一次函数y=kx+b的图象经过该二次函数图象上的点A(-1,0)及点B.(1)求二次函数与一次函数的表达式.(2)根据图象,写出满足(x+2)2≥kx+b-m的x的取值范围19.如图,利用一面墙(墙EF最长可利用28米),围成一个矩形花园ABCD.与墙平行的一边BC上要预留2米宽的入口(如图中MN所示,不用砌墙)用60米长的墙的材料,当矩形的长BC为多少米时,矩形花园的面积为300平方米;能否围成430平方米的矩形花园?20.已知关于x的一元二次方程x2+(a+1)x+a=0.(1)求证:此方程总有两个实数根;的实数根,写出一个满足条件的a的值,并求此时方程的根.(2)如果此方程有两个不相等...21.已知:如图,抛物线y=ax2+4x+c经过原点O(0,0)和点A (3,3),P为拋物线上的一个动点,过点P 作x轴的垂线,垂足为B(m,0),并与直线OA交于点C。

(1)求抛物线的解析式;(2)当点P在直线OA上方时,求线段PC的最大值。

22.如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.23.某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:y x x的取值范围)(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是多少?24.已知,在平面直角坐标系中,抛物线y=x2−2mx+m2+2m−1的顶点为A,点B的坐标为(3,5)(1)求抛物线过点B时顶点A的坐标(2)点A的坐标记为(x,y),求y与x的函数表达式;(3)已知C点的坐标为(0,2),当m取何值时,抛物线y=x2−2mx+m2+2m−1与线段BC只有一个交点25.已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(1)当a=1,m=−3时,求该抛物线的顶点坐标;(2)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C ,过点C作直线l平行于x轴,E是直线l上的动点,F是y轴上的动点,EF=2√2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N ,当m为何值时,MN的最小值是√2?2答案一、选择题1.解:把x =4代入方程 x 2−3x =a 2可得16-12= a 2 ,解得a=±2,故答案为:C .2.解:方程移项得:x 2−4x=1,配方得:x 2−4x+4=5,即(x −2)2=5.故答案为:A .3.解:∵一元二次方程有两个实数根∴{a −1≠04−4×(a −1)×(−1)≥0) 解得,a ≥0且a ≠1故答案为;C.4.解: y=(x +2)2+1 的顶点坐标是 (−2,1) ,A 不符合题意,y=(x −2)2+1 的顶点坐标是 (2,1) ,B 符合题意,y=(x +2)2−1 的顶点坐标是 (−2,−1) ,C 不符合题意,y=(x −2)2−1 的顶点坐标是 (2,−1) ,D 不符合题意,故答案为:B .5.解: 抛物线 y =−3x 2−1 向左平移1个单位,再向上平移2个单位可得 抛物线 y =−3(x +1)2+1 . 故答案为:D.6.解:由题意可得y=0时, −112(x −4)2+3 =0,解得: (x −4)2 =36,即x 1=10,x 2=-2(舍去),所以铅球推出的距离是10m.故答案为:C.7.解:∵ y =ax 2−3ax +a 2+1∴ y =a(x −32)2−94a +a 2+1 ,即该抛物线的对称轴为x= 32∵ x 1<x 2<−1 时, y 1<y 2∴a <0∵x= 32 在 −1≤x 1≤2 范围内,∴当x= 32 时有最大值,x=-1时有最小值∴ a ·(−1)2−3a ·(−1)+a 2+1=6整理得 a 2+4a −5=0 ,解得a=1(舍去)或a=-5故答案为:B.8.设涨价x元,根据题意可得:A、∵(30+x)表示涨价后玩具的单价,∴A符合题意;B、∵10x表示涨价后少售出玩具的数量,∴B符合题意;C、∵(300-10x)表示涨价后销售玩具的数量,∴C符合题意;D、根据每天获利3750元可列方程(30+x-20)(300-10x)=3750,D不符合题意;,故答案为:D.9.解:设这两个月的营业额增长的百分率是x.则200×(1+x)2=288.(1+x)2=1.44∵1+x>0,∴1+x=1.2,∴x=0.2=20%.10.解:①∵抛物线的开口向下,对称轴为直线x=-1,抛物线与y轴的交点在y轴正半轴,∴a<0,b<0,c>0,∴abc>0,故①正确;②∵抛物线与x轴有两个交点,∴b2-4ac>0,∴4ac<b2,故②正确;③∵抛物线的对称轴为直线x=-1,∴-b2a=-1,∴b=2a,故③错误;④当x=-1时,y>2,∴a-b+c>2,故④正确.故答案为:C.二、填空题11.解:∵二次函数y=x2﹣4x+5=(x﹣2)2+1,∴该函数开口向上,对称轴为x=2,∵当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,∴当x=﹣1时,该函数取得最大值,此时m=(﹣1﹣2)2+1=10.故答案为:10.12.解:∵关于x轴对称的点横坐标不变,纵坐标互为相反数,∴函数y=1+12(x+3)2的图象沿x轴对折,得到的图象的解析式为- y=1+12(x+3)2,即y=−12(x+3)2−1;故答案为:y=−12(x+3)2−1 .13.∵x2+2x−8=0,∴a=1,b=2,c=−8,∴x1+x2=-ba =−2,x1·x2=ca=-8,∴x2x1+2x x12+x1x2=x22+x12x1x2+2x x12,= (x1+x2)2−2x x12x1x2+2x x12,= (−2)2−2×(−8)−8+2×(−8)=−372.故答案为−372.14.解:设这个输入的数为x,根据题意可得6x2﹣4x+1=x,即6x2﹣5x+1=0,∴(2x﹣1)(3x﹣1)=0,则2x﹣1=0或3x﹣1=0,解得:x= 12或x= 13,故答案为:12和1315.解:设每轮传染中平均一个人传染x人,由题意得,2+2x+(2+2x)x=288,解得:x1=11,x2=﹣13,答:每轮传染中平均一个人传染了11个人.故答案为:11.16.解:如图,以GH所在的直线为x轴,GH的垂直平分线所在的直线为y轴建立平面直角坐标系,喷口B为抛物线的顶点,B,D,H所在的直线是抛物线的对称轴,∵GH=12,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线.小王在距离台面15.5cm处接洗手液时,手心Q到直线DH的水平距离为3cm,∴点G(-6,0),点H(6,0),BH=16,∴点B(6,16),点Q(9,15.5)∵a=−118设函数解析式为y=−118(x−6)2+16=−118x2+23x+14当y=0时,−1(x−6)2+16=018解之:x1=6+12√2,x2=6−12√2(舍去)∴洗手液落在台面的位置距DH的水平距离为6+12√2−6=12√2.故答案为:12√2三、解答题17. (1)解: x2−2x−3=0(x+1)(x−3)=0∴x+1=0或x-3=0∴x1=−1,x2=3(2)解: 3x2+2x−1=0(x+1)(3x−1)=0∴x+1=0或3x-1=0∴x1=−1,x2=1318. (1)解:把A点代入二次函数,解得m=-1,∴二次函数表达式为y=(x+2)2-1∴B点坐标为(-4,3),从而一次函数为:y=-x-1(2)解:∵(x+2)2≥kx+b-m把m移到左边的式子可得:(x+2)2+m≥kx+b,即二次函数大于一次函数,由图像可得,x的取值范围为:x≥-1或者x≤-4(1)∵点A(-1,0)在抛物线上,∴把A点代入二次函数的解析式得,0=(-1+2)2+m,解得m=-1;∴二次函数表达式为y=(x+2)2-1;∵抛物线y=(x+2)2-1与y轴交于点C,∴点C(0,3),对称轴为直线x=-2,∵点B在抛物线上,且与点C关于抛物线的对称轴对称,∴可得B点坐标为(-4,3),设一次函数的解析式为y=kx+b,把点A、B的坐标代入解析式可得{−4k+b=3),−k+b=0解得k=-1,b=-1,∴一次函数的解析式为:y=-x-1;(2)∵(x+2)2≥kx+b-m,∴(x+2)2+m≥kx+b,即二次函数大于一次函数,由图像可得,x的取值范围为:x≥-1或者x≤-4。

相关文档
最新文档