福建省福州九年级上学期期中考试数学试卷
福建省福州市屏东、延安、十六中联考2024-2025学年上学期九年级期中考数学试卷(含答案)

2024-2025学年第一学期期中考试九年级数学试题(满分150分,完卷时间120分钟)班级______姓名______成绩______一、选择题(本大题共10小题,每小题4分,共40分.在每小题所给出的四个选项恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B.C. D.2.用配方法解一元二次方程的过程中,配方正确的是( )A. B. C. D.3.如图,在中,,则等于( )A. B. C. D.4.抛物线与轴的交点是( )A. B. C. D.5.正多边形的中心角为,则正多边形的边数是( )A.4B.6C.8D.126.如图,将绕点逆时针旋转,得到.若点在线段的延长线上,则的度数为( )A. B. C. D.7.在平面直角坐标系中,三个顶点的坐标分别为,,,以原点为位似中心,把这个三角形缩小为原来的,可以得到,则点的坐标为( )A. B.或C.或 D.2450x x --=()221x +=()221x -=()229x +=()229x -=O e 60ABC ∠=︒AOC ∠30︒60︒120︒150︒223y x =+y ()0,5()0,3()0,2()2,145︒ABC △A 100︒ADE △D BC B ∠30︒40︒50︒60︒ABC △()4,2A ()2,0B ()0,0C O 12A B C '''△A '()2,1()1,2()1,2--()2,1()2,1--()1,2--8.如图,在中,为上一点,连接、,且、交于点,,则为( )A. B. C. D.9.已知抛物线,与的部分对应值如表所示,下列说法错误是( )01230343A.开口向下 B.顶点坐标为C.当时,随的增大而减小D.10.如图,在矩形中,,,以点为圆心作与直线相切,点是上一个动点,连接交于点,则的最小值是( ).A. B.1D.二、填空题(本大题共6小题,每小题4分,共24分)11.在直角坐标系中,若点,点关于原点中心对称,则______.12.已知关于的一元二次方程有一个根为,则______.13.如图,在中,分别交、于点、;若,,,则的长为______.14.如图,四边形为的内接四边形,,则的度数为______.ABCD □E CD AE BD AE BD F :4:25DEF ABF S S =△△:DF BF 2:52:33:53:22y ax bx c =++y x x1-y m()1,41x <y x 0m =ABCD 8AB =6AD =C C e BD P C e AP BD T AT PT3512()1,A a (),2B b -a b +=x 20x x m -+=2-m =ABC △MN BC ∥AB AC M N 1AM =2MB =9BC =MN ABCD O e 100A ∠=︒DCE ∠15.若圆锥的高为,母线长为,则这个圆锥的侧面展开图的弧长是______.(结果保留)16.关于的一元二次方程有两个整数根且乘积为正,关于的一元二次方程同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②③;④,其中正确结论的结论是______.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题8分)用适当的方法解下列方程:(1)(2)18.(本小题8分)已知是关于的一元二次方程,求证:方程总有两个不相等的实数根.19.(本小题8分)为了测量水平地面上一棵直立大树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在与树底端相距8米的点处,然后沿着直线后退到点,这时恰好在镜子里看到树梢顶点,再用皮尺量得米,观察者目高米,求树的高度.20.(本小题8分)如图1、图2,,均是等腰直角三角形,,(1)在图1中,求证:;(2)若绕点顺时针旋转一定角度后如图2所示,请问与还相等吗?为什么?图1 图221.(本小题8分)如图,是的直径,过点作的切线,点是射线上的一点,连接,过点作,交于点,连接.8cm 10cm cm πx 2220x mx n ++=y 2220y ny m ++=22m n <()()22112m n -+-≥1221m n -≤-≤2240x x +-=()3284x x x -=-()2310x a x a ++++=x B E BE D A 1.6DE = 1.5CD =AB AOB △COD △90AOB COD ︒∠=∠=AC BD =COD △O AC BD AB O e A O e AC P AC OP B BD OP ∥O e D PD(1)请补全图形;(要求:尺规作图,不写作法,保留作图痕迹)(2)证明:是的切线.22.(本小题10分)如图,四边形内接于,为的直径,平分,,点在的延长线上,连接.(1)求直径的长;(2)若.23.(本小题10分)施工队要修建一个横断面为抛物线的公路隧道,其最高点距离地面高度为8米,宽度为16米.现以点为原点,所在直线为轴建立直角坐标系(如图所示).(1)求出这条抛物线的函数解析式,并写出自变量的取值范围;(2)隧道下的公路是单向双车道,车辆并行时,安全平行间距为2米,该双车道能否同时并行两辆宽2.5米、高5米的特种车辆?请通过计算说明;24.(本小题12分)问题背景:如图1,已知,求证:;尝试运用:如图2,在中,点是边上一动点,,且,,,与相交于点,在点运动的过程中,连接,当时,求的长度;拓展创新:如图3,是内一点,,,,,求的长.PD O e ABCD O e BD O e AC BAD ∠CD =E BC DE BD BE =P OM O OM x x ABC ADE ∽△△ABD ACE ∽△△ABC △D BC 90BAC DAE ︒∠=∠=ABC ADE ∠=∠4AB =3AC =AC DE F D CE 12CE CD =DE D ABC △BAD CBD ∠=∠12CD BD =90BDC ∠=︒3AB =AC =AD图1 图2图325.(本小题14分)已知抛物线过点和,与轴交于另一点,顶点为.(1)求抛物线的解析式,并直接写出点的坐标;(2)如图1,为线段上方的抛物线上一点,,垂足为,轴,垂足为,交于点.当时,求的面积;(3)如图2,与的延长线交于点,在轴上方的抛物线上是否存在点,使若存在,求出点的坐标;若不存在,请说明理由.图1 图22024-2025学年第一学期期中考试九年级数学参考答案及评分标准一、选择题(共10小题,每小题4分,满分40分)题号12345678910答案A D C B C B C A CD二、填空题(本大题共24分,每小题4分)11.112.13.314.15.16.①③④三、解答题(共8小题,满分86分)17.(1)解:.,,,22y ax ax c =-+()1,0A -()0,3C x B D D E BC EF BC ⊥F EM x ⊥M BC G BG CF =EFG △AC BD H x P OPB AHB ∠=∠P 6-100︒12π2240x x --=1a = 2b =-4c =-.,即,(2)解:或,.18.证明:,故方程总有两个不相等的实数根;19.解:根据题意,易得,则,则,即,解得:,答:树的高度为.20.解:(1)证明:,均是等腰直角三角形,,,,,;(2)答:相等.在图2中,,,,在和中,,,.21.解:(1)答:补全图形如图所示:()()2242414200b ac ∴∆=-=--⨯⨯-=>1x ∴===11x =+21x =()()3242x x x -=--()()32420x x x -+-=()()3420x x +-=340x +=20x -=12x ∴=243x =-()()()22223411694425140a a a a a a a a ∆=+-⨯⨯+=++--=++=++>90CDE ABE ∠=∠=︒CED AEB∠=∠ABE CDE ∽△△BE AB DE CD =81.6 1.5AB =7.5AB =AB 7.5m AOB △COD △90AOB COD ︒∠=∠=OA OB ∴=OC OD =OA OC OB OD ∴-=-AC BD ∴=90AOB COD ︒∠=∠=DOB COD COB ∠=∠-∠ COA AOB COB ∠=∠-∠DOB COA∴∠=∠DOB △COA △OD OC DOB COA OB OA =⎧⎪∠=∠⎨⎪=⎩()SAS DOB COA ∴≌△△BD AC ∴=(2)解:证明:连接,切于,,即,,,,,,在和中,,,,,即,是的半径,是的切线.22.(1)解:如图所示,连接,为的直径,平分,OD PA O e A PA AB ∴⊥90PAO ∠=︒OP BD ∥DBO AOP ∴∠=∠BDO DOP∠=∠OD OB = BDO DBO ∴∠=∠DOP AOP ∴∠=∠AOP △DOP △,AO DO AOP DOP PO PO =⎧⎪∠=∠⎨⎪=⎩()SAS AOP DOP ∴≌△△PDO PAO ∴∠=∠90PAO ︒∠= 90PDO ︒∴∠=OD PD ⊥OD O e PD ∴O e OC BD O e AC BAD ∠,,..,,,即...(2)解:如图所示,设其中小阴影面积为,大阴影面积为,弦与劣弧所形成的面积为,由(1)已知,,,,.,弦弦,劣弧劣弧..为的直径,,,,...23.(1)解:依题意:抛物线形的公路隧道,其高度为8米,宽度为16米,现在点为原点,点,顶点,设抛物线的解析式为,把点,点代入得:,90BAD ︒∴∠=11904522BAC DAC BAD ∠=∠=∠=⨯︒=︒OB OD=90COD ︒∴∠=CD = OC OD =222OD CD ∴=228OD =2OD ∴=224BD OD OB ∴=+=+=1S 3S CD CD 2S 90COD ∠=︒45DAC ∠=︒OC OD =4BD =()11180904522BDC COD ︒︒︒∴∠=-∠=⨯=DAC BDC ∠=∠ ∴BC =CD BC =CD 12S S ∴=BD O e CD =90BCD ECD ∴∠=∠=︒BC CD ==BE = CE BE BC ∴=-=-=11622ECD S CE CD ∴=⋅=⨯=△13236ECD S S S S S S ∴=+=+==阴影部分△OM O ∴()16,0M ()8,8P 2y ax bx =+()16,0M ()8,8P 6488256160a b a b +=⎧⎨+=⎩解得抛物线的解析式为,,自变量的取值范围为:.(2)解:当时,,故能同时并行两辆宽2.5米、高5米的特种车辆.24.证明:问题背景:,,,,,,.尝试应用:如图(2),连接,,,,,,,,,,,,,,,182a b ⎧=-⎪⎨⎪=⎩∴2128y x x =-+16OM = ()16,0M ∴x 016x ≤≤98 2.512x =--=21992072582232y ⎛⎫=-⨯+⨯=> ⎪⎝⎭ABC ADE ∽△△AB AC AD AE∴=BAC DAE ∠=∠BAD DAC DAC CAE ∴∠+∠=∠+∠BAD CAE ∴∠=∠AB AD AC AE=ABD ACE ∴∽△△CE 4AB = 3AC =90BAC ∠=︒5BC ∴===90BAC DAE ∠=∠=︒ ABC ADE ∠=∠ABC ADE ∴∽△△AB AC AD AE∴=43AB AD AC AE ∴==90BAC DAE ︒∠=∠= 90BAD CAE DAC ∴∠=∠=︒-∠BAD CAE ∴∽△△B ACE ∴∠=∠43AB BD AC CE ==设,,,,,,,,,,拓展创新:过点作的垂线,过点作的垂线,两垂线交于点,连接,图3,,,又,,,又,,即,,,,,,∴4BD x =3CE x =54CDx ∴=-90B ACB ︒∠+∠= 90ACE ACB ︒∴∠+∠=90DCE ︒∴∠=12EC DC = 31542x x ∴=-12x ∴=32EC ∴=3CD =DE ∴===A AB D AD M BM 90BAM ADM BDC ︒∴∠=∠=∠=BAD DBC ∠=∠ DAM BCD ∴∠=∠90ADM BDC ︒∠=∠= BDC MDA ∴∽△△BD DC MD DA∴=BDC ADM ∠=∠BDC CDM ADM CDM ∴∠+∠=∠+∠BDM CDA ∠=∠BDM CDA ∴∽△△BM DM BD AC AD DC∴==12CD BD = 2BD CD ∴=2BM AC ∴==2DM AD =,,,(舍去).25.解:(1)把点,代入中,,解得,,顶点;(2)方法一:如图1,抛物线,令,,或,.设的解析式为,将点,代入,得,解得,..设直线的解析式为,设点的坐标为,将点坐标代入中,得,,联立得.AM ∴===222AD DM AM += 22423AD AD ∴+=AD ∴=()1,0A -()0,3C 22y ax ax c =-+203a a c c ++=⎧⎨=⎩13a c =-⎧⎨=⎩223y x x ∴=-++∴()1,4D 223y x x =-++0y =1x ∴=-3x =()3,0B ∴BC ()0y kx b k =+≠()0,3C ()3,0B 330b k b =⎧⎨+=⎩13k b =-⎧⎨=⎩3y x ∴=-+EF CB ⊥ EF y x b =+E ()2,23m m m -++E y x b =+23b m m =-++23y x m m ∴=-++233y x y x m m =-+⎧⎨=-++⎩.把代入,得,..,即.解得或.点是上方抛物线上的点,(舍去).点,,,,,;方法二:图1如图所示,过点作、分别垂直,轴,分别交于,点设,由可知,则,则代入二次函数解析式化简的解得,(舍去)则22262m m x m m y ⎧-=⎪⎪∴⎨-++⎪=⎪⎩226,22m m m m F ⎛⎫--++∴ ⎪⎝⎭x m =3y x =-+3y m =-+(),3G m m ∴-+BG CF = 22BG CF ∴=()()2222223322m m m m m m ⎛⎫⎛⎫---+-=+ ⎪ ⎪⎝⎭⎝⎭2m =3m =- E BC 3,m ∴=-∴()2,3E ()1,2F ()2,1G EF ==FG ==112EFG S ∴==△F FR FH y x R H RF m =CF BG =CRF GMB ≌△△RF MB m ==32HM m ∴=-()232EG m =-()23263EM m m m ∴=-+=-()3,63E m m --2760m m -+=11m =26m =1121122EFG S EG FK ∴=⨯⨯=⨯⨯=△(3)如图2,过点作于,点,,.点,点,,联立得,.设,把代入,得,,联立得,,,..设点.过点作轴于点,在轴上作点使得,且点的坐标为.若在和中,,,.A AN HB ⊥N ()1,4D ()3,0B 26BD y x ∴=-+ ()1,0A -()0,3C 33AC y x ∴=+326y x y x =+⎧⎨=-+⎩35245x y ⎧=⎪⎪∴⎨⎪=⎪⎩324,55H ⎛⎫∴ ⎪⎝⎭12AN y x b =+()1,0-12b =1122y x ∴=+112226y x y x ⎧=+⎪⎨⎪=-+⎩11585x y ⎧=⎪⎪∴⎨⎪=⎪⎩118,55N ⎛⎫∴ ⎪⎝⎭2222211816815555AN ⎛⎫⎛⎫⎛⎫⎛⎫∴=++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22281655HN ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭AN HN ∴=45H ∴∠=︒()2,23P n n n -++P PR x ⊥R x S RS PR =45RSP ︒∴∠=S ()233,0n n -++45OPB AHB ︒∠=∠=OPS △OPB △POS POB ∠=∠OSP OPB ∠=∠OPS OBP ∴∽△△...或或(舍去).,,.OP OS OB OP∴=2OP OB OS ∴=⋅()()()222213333n n n n n ∴++-=⋅-++0n ∴=n =3n =()10,3P∴2P3P。
福建省福州市九年级上学期数学期中考试试卷

福建省福州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、填空题 (共6题;共6分)1. (1分) (2020九上·桂林期末) 若关于的一元二次方程有两个不相等的实数根,则的取值范围是________.2. (1分) (2017九上·东台月考) 菱形ABCD的一条对角线长为6,边AB的长是方程的一个根,则菱形ABCD的周长为________.3. (1分)(2017·河南模拟) 若关于x的一元二次方程x2+3x+k=0有两个不相等的实数根,则k的取值范围是________.4. (1分) (2016九上·威海期中) 若二次函数y=(m+1)x2+m2﹣2m﹣3的图象经过原点,则m=________.5. (1分)(2017·河源模拟) 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为________.6. (1分)二次函数的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x 轴的另一个交点为(3,0);④abc>0。
其中正确的结论是________(填写序号)二、解答题 (共6题;共50分)7. (5分) (2018九上·泰州月考) 已知关于的一元二次方程有两个不相等的实数根,,(1)求的取值范围;(2)若;求的值.8. (5分) (2018九上·临河期中) 二次函数y=ax2+bx+c的对称轴为x=3,最小值为−2,且过(0,1),求此函数的解析式.9. (10分)(2018·山西模拟) 下面方格中有一个四边形ABCD和点O,请在方格中画出以下图形(只要求画出平移、旋转后的图形,不要求写出作图步骤和过程).(1)①画出四边形ABCD以点O为旋转中心,逆时针旋转90°后得到的四边形A1B1C1D1;②画出四边形A1B1C1D1向右平移3格(3个小方格的边长)后得到的四边形A2B2C2D2;(2)填空:若每个小方格的边长为1,则四边形A1B1C1D1与四边形A2B2C2D2重叠部分的面积为________.10. (5分)(2017·洛阳模拟) 先化简,再求值:÷(a+2﹣),其中x2﹣2 x+a=0有两个不相等的实数根,且a为非负整数.11. (10分)为建设“生态园林城市”吉安市绿化提质改造工程正如火如茶地进行,某施工队计划购买甲、乙两种树苗共400棵对某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?12. (15分)(2018·宁夏模拟) 如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.(1)已知两条抛物线①:y=x2+2x﹣1,②:y=﹣x2+2x+1,判断这两条抛物线是否关联,并说明理由;(2)抛物线C1:y=(x+1)2﹣2,动点P的坐标为(t,2),将抛物线C1绕点P(t,2)旋转180°得到抛物线C2,若抛物线C2与C1关联,求抛物线C2的解析式.参考答案一、填空题 (共6题;共6分)1-1、2-1、3-1、4-1、5-1、6-1、二、解答题 (共6题;共50分)7-1、7-2、8-1、9-1、9-2、10-1、11-1、11-2、12-1、12-2、。
2019-2020学年福建省福州九年级上学期期中考试数学试卷及答案解析

第 1 页 共 21 页
2019-2020学年福建省福州九年级上学期期中考试数学试卷
一.选择题:共10小题,每小题4分,共40分.每小题只有一项是符合题目要求的.
1.(4分)在平面直角坐标系中,若点A 在第一象限,则点A 关于原点的中心对称点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.(4分)方程x 2=4的解是( )
A .x =2
B .x =﹣2
C .x =0
D .x =2或x =﹣2
3.(4分)抛物线y =﹣x 2+2019的对称轴是( )
A .直线x =2019
B .直线x =﹣2019
C .x =﹣1
D .y 轴
4.(4分)如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于( )
A .8
B .4
C .10
D .5
5.(4分)袋子中有2019个黑球、1个白球,他们除颜色外无其它差别.随机从袋子中摸出
一个球,则( )
A .摸到黑球、白球的可能性大小一样
B .这个球一定是黑球
C .事先能确定摸到什么颜色的球
D .这个球可能是白球
6.(4分)如图,一支反比例函数y =k x 的图象经过点A ,作AB ⊥x 轴于点B ,连接OA ,若
S △AOB =3,则k 的值为( )
A .﹣3
B .3
C .﹣6
D .6
7.(4分)国旗上大、小五角星的边长比是5:3,若大五角星的面积为50,则小五角星的
面积为( )。
省级重点 福建省福州第一中学2024-2025学年上学期九年级数学期中试卷(无答案)

福州一中2024-2025学年度第一学期期中考试初三数学试卷(完卷120分钟,满分150分)一、选择题(每小题4分,共40分,请把答案写在答题卷上)1.若两个相似图形的相似比是,则它们的面积比是( )A .B .C .D .2.把二次函数的图象向下平移1个单位长度后所得的图象的函数解析式为( )A .B .C .D .3.若关于x 的方程有一个根为,则a 的值为( )A .6B .C .4D .4.如图,将绕点A 顺时针旋转得到,若,,,则的长为( )A .5B .4C .3D .25.如图,C ,D 是上直径两侧的两点.设,则( )A .B .C .D .6.近年来,我国数字技术不断更新,影响着全民阅读形态,为预计某市2024年数字阅读市场规模,经查询得数据:该市2021年数字阅读市场规模为432万元,2023年数字阅读市场规模为507万元.设该市年平均增长率为x ,则下列方程正确的是( ).A .B .C .D .7.如表中列出了二次函数的一些对应值,则一元二次方程3:73:79:407:39:4922y x =22(1)y x =-22(1)y x =+221y x =-221y x =+250x x a ++=1-6-4-ABC △60︒AED △5AB =4AC =2BC =BE O e AB 25ABC ∠=︒BDC ∠=85︒75︒70︒65︒432(12)507x +=2432(12)507x +=2432(1)507x +=2432432(1)432(1)507x x ++++=2(0)y ax bx c a =++≠的一个近似解x 的范围是( )x…01…y…11…A .B .C .D .8.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为,宽为的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为( )A .B .C .D .9.把边长分别为1和2的两个正方形按图的方式放置.则图中阴影部分的面积为( )A.B .C .D .10.点,在抛物线上,且满足,,,则m 的取值范围是( )A .B .或C .D .或二、填空题(每题4分,共24分,请把答案写在答题卷上)11.在做抛掷均匀硬币实验时,抛一次硬币,正面朝上的概率为____________.12.点A 坐标为,点A 与点B 关于原点中心对称,点B 坐标为____________.13.已知抛物线与x 轴只有一个交点,则____________.14.如图,在中,是的弦,的半径为,C 为上一点,,则20(0)ax bx c a ++=≠3-2-1-11-5-1-10x -<<01x <<23x <<34x <<5m 4m 26m 27m 28m 29m 1613151411(,)A x y 22(,)B x y 221y mx mx =--12x x >122x x m +=-12y y <302m <<32m >0m <01m <<1m >0m <(1,2)22y x x c =-+c =O e AB O e O e 3cm O e 60ACB ∠=︒AB的长为____________.15.当与时,代数式的值相等,则时,代数式的值为____________.16.中,,,D 在线段上运动,以为斜边作,使,点E 和点A 位于的两侧,连接,则的最小值为____________.三、解答题(共86分,请把答案写在答题卷上)17.(本题8分)解方程:(1);(2).18.(本题8分)如图,在中,,,于E .求证:.19.(本题8分)如图,每个小正方形的边长均为1,方格纸中画有,、、均在小正方形的顶点上.(1)将绕点逆时针旋转得到,画出;(2)在(1)的旋转过程中,求点运动的路径的长度.cm x a =()x b a b =≠223x x --x a b =+223x x --ABC △90ACB ∠=︒AC BC ==AB CD Rt CDE △30DCE ∠=︒CD BE BE 2280x -=213502x x --=ABC △AB AC =BD CD =CE AB ⊥ABD CBE △∽△111A B C △1A 1B 1C 111A B C △1C 90︒221A B C △221A B C △1A20.(本题8分)如图,以线段为直径作,交射线于点C ,平分交于点D ,过点D 作直线于点E ,交的延长线于点F .连接并延长交于点M .(1)求证:直线是的切线;(2)求证:.21.(本题8分)已知抛物线经过点,,且有最大值4.(1)求抛物线的表达式;(2)若,求函数值y 的取值范围.22.(本题10分)一个不透明的袋中装有1个红球、2个黑球,它们除颜色不同外其余都相同.(1)若从袋中随机摸出一球,则该球是红球的概率为____________;(2)先往袋中加入1个红球或黑球(它们与袋中的球大小、质地完全一样),再从袋中依次抽取两球(不放回),若要使得抽取的这两球颜色相同的概率较大,则应往袋中加入红球还是黑球?请利用树状图或列表法说明理由.23.(本题10分)正五边形是一个具有和谐美的几何图形,其尺规作图法引起了学者们的关注,里士满提出了一个构造圆内接正五边形的尺规作图方法,并且通过计算得到,当圆的半径为1时,其内接正五边形.如图,圆O 的半径1,和是相互垂直的直径,直线l 是过点C 的圆的切线.(1)尺规作图:①作的中点E ,②以C 为圆心,的长为半径交切线于点F ,③以F 为圆心,的长半径交切线于点G ,且F 、G 在直线的两侧,连接、.(2)结合材料,在线段、、中,判断哪条线段的长度等于圆O 的内接正五边形的边长,并说明理由.24.(本题12分)根据以下的素材,制定方案,设计出面积最大的花圃:素材1:有一堵长m 米()的围墙,利用这堵墙和长为的篱笆围成矩形花圃,设花圃面积为y ,甲、乙、丙三人讨论如何设计一个面积最大的花圃.AB O e AC AD CAB ∠O e DE AC ⊥AB BD AC DE O e AB AM =(1,0)(3,0)13x -<<AC BD OC OE OF AC OF OG OF OG EF 020m <<60m素材2:甲的设计方案,利用墙面作为矩形花圃的一边(如图1),求解决过程如下:设平行于墙面的篱笆长为n米,则垂直于墙面的篱笆长为依题意得:∵函数开口向下,对称轴为直线∴当时,y 随n 的增大而增大∴时,y 的最大值为素材3:受甲的方案的启发,乙、丙各自有了新的设计方案.乙的方案:利用全部围墙作为矩形一边的一部分(如图2);丙的方案,利用部分围墙作为矩形一边的一部分(如图3)设墙左端篱笆长为x 米,解决下列问题:任务1:当时,对于乙的方案,则可知____________(用含x 的代数式表示),花圃面积____________(用含x 的代数式表示),求该方案对应的花圃面积的最大值.任务2:对于丙的方案,设所用墙的长度为a 米(),求该方案对应的花圃面积的最大值.任务3:比较甲、乙、丙三种方案,判断哪种方案设计出的花圃面积更大?并说明理由.25.(本题14分)如图是一张矩形纸片,点M 是对角线的中点,点E 在边上.(1)如图1,将沿直线折叠,使点C 落在对角线上的点F 处,连接,.①若,,求对角线的长;②若,求的度数及此时的值.(2)如图2,若,,连接、,将沿折叠,点C 的对应点为点G ,当线段与线段交于点H 且为直角三角形时,求此时的长.602n -2(60)130(020)22n n y n n n m -==-+<≤<30n =0n m <≤n m =21302m m-+AM 12m =BC AD ==y =MD a m <ABCD AC BC DCE △DE AC DF EF 30EDC ∠=︒1DE =AC MF CD =DAF ∠CD AC3CB =2CD =BM ME MEC △ME GE BM BHE △BE。
福建省福州市2024-2025学年九年级上学期人教版数学期中复习试卷(3)

福建省福州市2024-2025学年九年级上学期人教版数学期中复习试卷(3)一、单选题1.下列汽车商标设计中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.一元二次方程()2200,40ax bx c a b ac ++=≠-≥的求根公式是()A .x =B .x =C .42b x a-=D .42b x a=3.如图,点C 在以AB 为直径的O 上,且70BOC ∠=︒,则C ∠=()A .70︒B .35︒C .45︒D .30︒4.抛物线()2221y x =-+-的顶点坐标是()A .()2,1--B .2,−1C .()2,2-D .()2,2-5.如图,若正六边形ABCDEF 绕着中心点O 旋转α度后得到的图形与原来图形重合,则α的最小值为()A .1 20B . 90C . 45D . 606.用配方法解一元二次方程2450x x +-=,此方程可变形为()A .2(2)9x +=B .2(2)9x -=C .2(2)1x +=D .2(2)1x -=7.若123135(,)(1,)(,)43A yB yC y --、、为二次函数y=-x 2-4x+5的图象上的三点,则y 1、y 2、y 3的大小关系是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 38.某商品经过两次降价,销售单价由原来100元降到64元,则平均每次降价的百分率为()A .10%B .20%C .36%D .8%9.如图,点P 是等边ABC V 内一点,且1PA PB =,2PC =,则APB ∠的大小为()A .120︒B .130︒C .135︒D .150︒10.飞机着陆后滑行的距离()m s 关于滑行的时间的函数解析式为260 1.5s t t =-,下列能反映这一变化过程的图象是()A .B .C .D .二、填空题11.方程()20x x +=的根是.12.若=1x -是方程220x mx -+=的一个根,则m =.13.如图,A ,B ,C 是O 上的三个点,若四边形ABCO 为菱形,则B ∠=.14.抛物线22y ax ax c =-+经过点()3,0,则关于x 的一元二次方程220ax ax c -+=的另一个根是.15.若235a a =+,235b b =+,则22a b +的值等于.16.如图,点E 是矩形ABCD 的中点,点F 为BC 上一点,将BEF △沿EF 折叠得到PEF !,连接PD ,若46AB BC ==,,则PD 的最小值为.三、解答题17.解方程∶2410x x --=18.如图,AB CD ,是O 的两条弦,且AB CD OM AB =⊥,于M ,ON CD ⊥于N .求证:OM ON =.19.求证:关于x 的一元二次方程22330x x m m --+=一定有实数根.20.已知二次函数224y x x =-.(1)求它的开口方向、对称轴和顶点坐标.(2)判断点()1,6A -是否在此二次函数的图象上.21.如图,ABC 绕点A 逆时针旋转120︒得到ADE ,点C 的对应点为E .(1)尺规作图,画出旋转后的ADE .(保留痕迹,不写作法)(2)设直线BC 与D 相交于P ,求CPD ∠的大小.22.如图,AB 为O 的直径,点C ,D 为圆上两点, CDBC =,且有AC 平分BAD ∠,过C 作CE AD ⊥于E .(1)求证:CE 为O 的切线(2)若4CD CE ==,,求O 半径.23.已知实数a ,b ,c .(1)若>0,1c =-,0a b c -+=,求a b c ++的取值范围.(2)若a ,b ,c 都是整数,且a b c ++是偶数.求证:a b c +-,b c a +-,a c b +-都是偶数.24.如图,Rt ABC △中,90306C A AB ∠=︒∠=︒=,,,点D 在AB 上,DE BC ⊥于E ,DF AC ⊥于F ,连接EF .(1)求EF 的最小值.(2)要使四边形DECF 的面积最大,点D 应选在何处?25.已知抛物线2y ax bx c =++()0a >,顶点为()00,.(1)求b ,c 的值.(2)若1a =时,如图1,P 为y 轴右侧抛物线上一动点,过P 作直线PN x ⊥轴于点N ,交直线l :122y x =+于M 点,设P 点的横坐标为m ,当2PM PN =时,求m 的值.(3)若1a =时,如图2,直线2y nx =+与抛物线相交于A ,B ,当AB =时,求ABO S ∆的面积.。
福建省各地市九年级上学期数学期中考试试卷(12套)附答案解析

九年级上学期数学期中考试试卷一、单项选择题1.以下列图形是中心对称图形的是〔〕A. B. C. D.2.二次函数图象的对称轴是〔〕A. B. C. D.3.如图,AB为⊙O直径,∠BCD=30°,那么∠ABD为〔〕A. 30°B. 40°C. 50°D. 60°4.抛物线y=x2-4x+5的顶点坐标是〔〕A. 〔-2,1〕B. 〔2,1〕C. 〔-2,-1〕D. 〔2,-1〕5.如图,是⊙O的直径,切⊙O于点,交⊙O于点,假设,那么的度数为〔〕A. 40°B. 50°C. 60°D. 70°6.抛物线y=ax2+bx+c(a<0)过A(-3,0),B(1,0),C(-5,y1),D(5,y2)四点,那么y1与y2的大小关系是〔〕A. y1>y2B. y1=y2C. y1<y2D. 不能确定7.?九章算术?是我国古代内容极为丰富的数学名著.书中有以下问题“今有勾八步,股十五步,问勾中容圆径几何?〞其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?〞( )A. 3步B. 5步C. 6步D. 8步8.二次函数的图象如下列图,以下结论中正确的选项是A. B. C. 当时,y随x的增大而减小 D.9.在中,,,.如下列图,将绕点按逆时针方向旋转后得到.那么图中阴影局部面积为〔〕A. B. C. D.10.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点P是AB上一动点,以点C为旋转中心,将△ACP顺时针旋转到△BCQ的位置,那么PQ最小值为〔〕A. B. 2 C. D.二、填空题11.将抛物线向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是 .12.以原点为中心,把逆时针旋转90°得到点,那么点的坐标为 .13.如图,四个三角形拼成一个风车图形,假设,当风车转动90°时,点运动路径的长度为 .14.用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,那么这个圆锥的底面圆半径为________.15.如图,正六边形ABCDEF 内接于⊙O.假设直线PA 与⊙O 相切于点A,那么∠PAB= .16.二次函数的图象如下列图,对称轴为直线,假设关于的一元二次方程〔为实数〕在的范围内有解,那么的取值范围是 .三、解答题17.如图,在平面直角坐标系中,三个顶点的坐标分别是、、.〔1〕以点为旋转中心,将顺时针转动90°,得到,在坐标系中画出;〔2〕作出关于点的中心对称图形.18.二次函数的顶点坐标为,并经过点,求二次函数的解析式,并在所给的坐标平面内画出这条抛物线.〔不要求列表〕19.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,求线段AE的长.20.:如图,将△ADE绕点A顺时针旋转得到△ABC,点E对应点C恰在D的延长线上,假设BC∥AE.求证:△ABD为等边三角形.21.抛物线与轴有两个不同的交点.〔1〕求的取值范围;〔2〕证明该抛物线一定经过某一定点,并求出该定点的坐标.22.如图,是⊙O的直径,点在⊙O上,平分交⊙O于点,过点作,垂足为.〔1〕求证:与⊙O相切;〔2〕假设,,求的长.23.某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元〔售价每件不能高于45元〕,那么每星期少卖10件.设每件涨价x元〔x为非负整数〕,每星期的销量为y件.〔1〕求y与x的函数关系式及自变量x的取值范围;〔2〕如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?24.如图,四边形内接于⊙O,是⊙O的直径,是上一点,,连接.〔1〕求证:;〔2〕连接,假设,,求的长.25.如图,二次函数图象的顶点为,与轴交于点,点〔与顶点不重合〕在该函数的图象上.〔1〕当时,求的值;〔2〕当时,假设点在第三象限内,结合图象,求当时,自变量的取值范围;〔3〕作直线与轴相交于点.当点在轴下方,且在线段上时,求的取值范围.答案解析局部一、单项选择题1.【答案】 C【解析】【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故答案为:C.【分析】根据轴对称和中心对称图形特点分别分析判断,轴对称图形沿一条轴折叠180°,被折叠两局部能完全重合,中心对称图形绕其中心点旋转180°后图形仍和原来图形重合.2.【答案】 D【解析】【解答】解:∵= ,∴二次函数图象的对称轴是x= = ;故答案为:D.【分析】先把函数式化为二次函数的一般形式,然后根据对称轴公式“〞解答即可.3.【答案】 D【解析】【解答】解:∵AB为⊙O直径,∴∠ACB=90°,又∵∠BCD=30°,∴∠ABD=∠ACD=90°-∠BCD=90°-30°=60°.故答案为:D.【分析】由直径所对的圆周角等于90°求出∠ACB,根据同弧所对的圆周角相等结合∠BCD的度数,由4.【答案】B∠ABD=∠ACD=90°-∠BCD即可算出答案.【解析】【解答】解:∵y=x2-4x+5=〔x-2〕2+1,∴顶点坐标为〔2,1〕,故答案为:B.【分析】根据y=a(x+)2+将抛物线的解析式配成顶点式即可求解.5.【答案】 C【解析】【解答】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC.∴∠CAB=90°.又∵∠C=60°,∴∠CBA=30°.∴∠DOA=60°.故答案为:C.【分析】由切线的性质得出∠CAB=90°,根据直角三角形的性质求出∠CBA,然后根据同弧圆周角和圆心角的关系,即可解答.6.【答案】A【解析】【解答】解:∵抛物线过A〔﹣3,0〕、B〔1,0〕两点,∴抛物线的对称轴为x= =﹣1.∵a<0,抛物线开口向下,离对称轴越远,函数值越小,比较可知C点离对称轴远,对应的纵坐标值小,即y1>y2.故答案为:A.【分析】A、B两点皆为x轴上的两点,根据二次函数图像的轴对称性可得抛物线对称轴为x=-1,再根据抛物线开口向下的图像性质,可得y1与y2的大小关系。
福建省福州市福建师范大学附属中学2024-2025学年九年级上学期期中考数学试卷

福建省福州市福建师范大学附属中学2024-2025学年九年级上学期期中考数学试卷一、单选题1.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”“谷雨”“白露”“大雪”,其中是中心对称图形的是()A .B .C .D .2.下列事件中,属于必然事件的是()A .投掷一枚硬币时,硬币的正面朝上B .投掷飞镖一次,命中靶心C .从只装有白球的盒子里摸出一个球,摸到一个白球D .玩“石头,剪刀,布”,对方出“剪刀”3.已知O 的半径为5,点P 在O 内,则OP 的长可能是()A .7B .6C .5D .44.抛物线()214y x =+-的开口方向、顶点坐标分别是()A .开口向下,顶点坐标为()1,4--B .开口向下,顶点坐标为()1,4C .开口向上,顶点坐标为()1,4D .开口向上,顶点坐标为()1,4--5.方程x (x +2)=0的根是()A .x =2B .x =0C .x 1=0,x 2=﹣2D .x 1=0,x 2=26.新能源汽车已逐渐成为人们喜爱的交通工具,据某品牌新能源汽车经销商7月份至9月份统计,该品牌新能源汽车7月份销售1000辆,9月份销售1690辆.设月平均增长率为x ,根据题意,下列方程正确的是()A .()2169011000x -=B .()2100011690x +=C .()1000121690x +=D .()1000121690x x ++=7.若反比例函数2ky x=的图象分布在第一、三象限,则()A .2k <B .0k <C .2k >D .0k >8.如图,把△OAB 绕点O 逆时针旋转80°,到△OCD 的位置,若∠AOB=45°,则∠AOD 等于().A .35°B .90°C .45°D .50°9.如图,四边形ABCD 内接于O ,连接BD .若 AC BC=,50BDC ∠=︒,则ADB ∠的度数是()A .70︒B .75︒C .80︒D .85︒10.已知实数a 、b 、c 满足420a b c ++=,420a b c -+<则有()A .0b <,240b ac -≥B .0b >,240b ac -≤C .0b >,240b ac -≥D .0b <,240b ac -≤二、填空题11.在平面直角坐标系中,点(1,2)-关于原点对称的点的坐标是.12.一元二次方程2210x x --=有两个实根(填“相等”或“不等”).13.圆锥凝聚着时间和空间的美学,它不仅仅是一个简单的几何图形,更是一种象征,代表着从一点到无限延伸的可能性.圆锥母线长为6,底面半径为2,则该圆锥的侧面积为(结果用带π的数的形式表示).14.反比例函数3y x=关于y 轴对称的函数的解析式为.15.如图,一张纸片上有一个不规则的图案(图中的小兔子),小雅想知道该图案的面积是多少,她采取了以下的办法:用一个长为10cm ,宽为6cm 的长方形将该图案围起来,然后在适当位置随机地向长方形区域内掷点,通过大量重复试验,发现点落在图案部分的频率稳定在0.6左右,由此她估计此不规则图案的面积大约为2cm .16.如图,在ABC V 中,60BCA ∠=︒,45A ∠=︒,2AC =,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点M ,N ,则线段MN 长度的最小值为.三、解答题17.解方程x 2﹣4x +1=0.18.如图,ABC V 和DEF 关于点O 成中心对称,点A 、B 、C 的对应的分别是点D 、E 、F .(1)在图中找出对称中心O (保留画图痕迹);(2)若7AB =,5AC =,6BC =,求DEF 周长.19.不透明的袋子中装有2个红球和1个白球,这些球除颜色外完全相同.(1)若从袋子中随机摸出1个球,则摸到红球的概率为______.(2)若从袋子中随机摸出2个球,请用列表或画树状图的方法,求摸出的2个球颜色不同的概率.20.如图,它是反比例函数2m y x-=(m 为常数,且2m ≠)图象的一支.(1)m 的取值范围为;画出图象另一支的示意图;(2)在这个函数图象上任取点11(,)M x y 和22(,)N x y .若12x x <,判断1y 和2y 的大小关系,并说明.21.在Rt ABC △中,90A ∠=︒,22.5B ∠=︒,点P 为线段BC 上一动点,当点P 运动到某一位置时,它到点A ,B 的距离都等于a ,到点P 的距离等于a 的所有点组成的图形为W ,点D 为线段BC 延长线上一点,且点D 到点A 的距离也等于a .(1)依题意补全图形;(2)求直线DA 与图形W 的公共点的个数.22.如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x 012m 4567…y7261528152n72…(1)①m =______,n =______;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米;②求v 的值.23.如图,在ABC V 中,以边AB 为直径作O ,O 交边BC 于点D ,延长CA 交O 于点E ,连接DE 交AB 于点F ,且DE DC =.(1)求证:BD CD =;(2)若3EF DF ==,求图中阴影部分的面积.24.在平面直角坐标系xOy 中,()11,M x y ,()22,N x y 为抛物线2(0)y ax bx c a =++>上任意两点,其中11x x <,设抛物线的对称轴为直线x t =.(1)若22x =,2y c =,求t 的值;(2)若对于123x x +>,都有12y y <,求t 的取值范围.25.(1)问题提出如图①,在Rt ABC △与Rt DEC △中,90ABC DEC ∠=∠=︒,30BAC ∠=︒,点D 在边BC 上,连接AD ,点E 在边AC 上,点F 为AD 的中点,连接BE ,BF ,EF ,则BEF △的形状是;(2)问题探究如图②,将图①中的DEC 绕点C 按逆时针方向旋转,当点D 在线段AE 上时,求证:BE BF =;(3)拓展延伸在图②中,若4CE =,45CD BC =,求线段EF 的长.。
福建省福州市长乐区2024-2025学年九年级上学期期中考试数学试卷(含答案)

2024—2025学年第一学期期中适应性练习九年级数学(全卷满分:150分,考试时间:120分钟)友情提示:请将答案写在答题卡规定位置上,不得错位、越界答题.一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代典籍《周易》用“卦”描述万物的变化.如图为部分“卦”的符号,其中不是中心对称图形的是()A .B .C .D .2.将抛物线向右平移2个单位,然后向上平移3个单位,则平移后得到的抛物线解析式是( )A .B .C .D .3.如图,是的直径,点在上.若,.则的半径长为( )第3题A .1B .2CD4.下列一元二次方程中,根是的方程是()A .B.C .D .5.已知一个圆心角为120°,半径为3的扇形,则这个扇形的弧长是( )A .B .C .D .6.对于二次函数,下列判断正确的是( )A .当时,取得最大值B .当时,取得最小值2y x =()223y x =--()223y x =+-()223y x =-+()223y x =++AB O e C O e 2AC =BC =O e x =23210x x +-=23210x x --=23410x x +-=2230x x --+=π2π3π4π()226y x =--+2x =y 2x =yC .当时,取得最大值D .当时,取得最小值7.一根排水管的截面如图所示,截面水深是4dm ,水面宽是16dm ,则排水管的截面圆的半径是()第7题A .6dmB .10dmC .D .20dm8.将点绕原点逆时针旋转90°得到点,则点的坐标为( )A .B .C .D .9.如图,,分别切于,两点,点在优弧上,,则的度数为()第9题A .40°B .50°C .80°D .100°10.已知二次函数的图象上有两点和(其中),则下列判断正确的是()A .若时,B .若时,C .若,时,D .若,时,二、填空题:本题共6小题,每小题4分,共24分.11.若一元二次方程的一个根为,则的值为______.12.一元二次方程根的判别式的值是______.13.已知的半径是5cm ,若圆心到直线的距离是4cm ,则直线与的位置关系是______.(填“相交”、“相切”或“相离”)14.如图,在等边三角形中,为的中点,,与关于点中心对称,连接,则的长为______.2x =-y 2x =-y CD ABOB ()2,3A O B B ()2,3-()2,3-()3,2-()3,2-PA PB O e A B C ACB 80P ∠=︒C ∠()220y ax ax c a =-+≠()11,A x y ()22,B x y 12x x <122x x +<120y y ->122x x +>120y y ->0a >122x x +>120y y ->0a <122x x +<120y y -<210x ax +-=1x =a 2310x x --=O e O AB AB O e ABC O BC 2AB =BPQ △BAO △B CP CP第14题15.某品牌汽车刹车后行驶的距离(单位:m )与滑行时间(单位:s )的函数关系式是.汽车刹车后到停下来前进了______m .16.我国魏晋时期数学家刘徽在《九章算术注》中提出了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.如图,的半径为1,如用的内接正十二边形面积来近似估计圆的面积,则可得的近似值为3.若用半径为1的圆的内接正八边形面积作近似估计,可得的近似值为______.(参考数据:,结果精确到0.1)第16题三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解方程.18.(8分)已知二次函数.(1)完成下表:…0123……__________________…(2)根据(1)的结果在如图所示的平面直角坐标系中,利用描点法画出这个二次函数的图象;(3)结合函数图象,当时,的取值范围是______19.(8分)已知二次函数.求证:不论取何值,该函数图象与轴总有两个交点.s t 2156s t t =-O e O e ππ1.414≈ 1.732≈2410x x --=223y x x =--x 1-223y x x =--0y <x ()2221y x m x m =-++-m x20.(8分)如图,,是的直径,点在上,,求证:.21.(8分)如图,在中,,,,以点为圆心,2.4为半径作.求证:是的切线.22.(10分)如图,二次函数的图象与轴交于,两点,与轴交于点,其中,.(1)求二次函数的解析式;(2)若是二次函数图象上的一点,且点在第一象限,线段交轴于点,,求点的坐标.23.(10分)如图,在矩形中,,.将绕点顺时针旋转一个角度得到,点,的对应点分别为点,.图1图2(1)如图1,若点落在边上,求旋转角的度数;(2)如图2,若点落在线段上,与交于点,求的长.24.(12分)长乐栽培龙眼历史悠久,据文献记载宋光宗皇帝曾赐匾青山龙眼为“黄龙”.请你运用数学知识,根据素材,帮果农解决问题.信息及素材AB CD O e E »BC»»BD BE =CE AB ∥Rt OAB △90AOB ∠=︒3OA =4OB =O O e AB O e 2y x bx c =++x A B y C ()1,0A -()3,0B P P PC x D PAD CAD S S =△△PABCD AB =2BC =ABC △C αFEC △A B F E E AD αE AF CE AD G AG素材一在专业种植技术人员的正确指导下,果农对龙眼种植技术进行了研究与改进,使产量得到了增长,根据果农们的记录,2021年龙眼平均年产量是2.8万吨,2023年达到了3.2万吨,每年的增长率基本相同.素材二龙眼一般用长方体包装盒包装后进行售卖.素材三果农们通过调查发现,顾客们也很愿意购买用美观漂亮的其它造型的纸盒包装的龙眼.任务1:设龙眼产量的年平均增长率为,根据素材一列方程得______;任务2:现有长80cm ,宽75cm 的长方形纸板,将四角各裁掉一个正方形(如图1),折成无盖长方体纸盒(如图2).为了放下适当数量的龙眼,需要设计底面积为的纸盒,计算此时纸盒的高;图1 图2任务3:为了增加包装盒的种类,打算将任务2中的纸板通过图3的方式裁剪,得到底面为正六边形的无盖纸盒(如图4),求纸盒的底面边长.(图中实线表示剪切线,虚线表示折痕.板厚度及剪切接缝处损耗忽略,结果取整数)图3 图425.(14分)学习完一元二次方程的知识后,数学兴趣小组对关于的一元二次方程开展探究.(1)当时,该方程的正根称为“黄金分割数”,求“黄金分割数”;(2)若实数,满足,,且,求的值;(3)若两个不相等的实数,满足,,求的值.x 21400cm 1.732≈x 210x mx +-=1m =a b 21a ma -=224b mb +=2b a ≠-ab p q 21p mp q +-=21q mq p +-=pq m -2024—2025学年第一学期期中阶段反馈练习九年级数学参考答案一、选择题:本题共10小题,每小题4分,共40分.1-5 ACDAB6-10 ABDBD二、填空题:本题共6小题,每小题4分,共24分11.0 12.13 13.相交 14.15.9.375 16.2.8三、解答题:本题共9小题,共86分.17.(8分)解:∴另解:∵,,∴∴∴18.(8分)(1)完成下表:…0123………解:(2)描点、连线,如图所示;(3).19.(8分)证明:令,则241x x -=24414x x -+=+()225x -=2x -=12x =22x =1a =4b =-1c =-()()2244411b ac ∆=-=--⨯⨯-200=>x =2=±12x =22x =x 1-223y x x =--3-4-3-13x -<<0y =()22210x m x m -++-=()()224121m m ⎡⎤∆=-+-⨯⨯-⎣⎦()2240m =-+>∴方程总有两个不相等的实数根∴不论取何值,该函数图象与轴总有两个交点.20.(8分)证明:连接∵ ∴ ∴∵ ∴ ∴.21.(8分)证明:过点作,垂足为∵,, ∴∵ ∴∵的半径为2.4 ∴ ∴是的切线.22.(10分)解:(1)∵二次函数的图象过点,∴ 解得∴二次函数的解析式为;(2)设(,)在中,当时,∴m x OE»»BDBE =BOD BOE ∠=∠12BOD DOE ∠=∠12C DOE ∠=∠BOD C ∠=∠CE AB ∥O OC AB ⊥C90AOB ∠=︒3OA =4OB=5AB ===1122OAB S OA OB AB OC =⋅=⋅△342.45OA OB OC AB ⋅⨯===O e r OC r =AB O e 2y x bx c =++()1,0A -()3,0B 10930b c b c -+=⎧⎨++=⎩23b c =-⎧⎨=-⎩223y x x =--(),P m n 0m >0n >223y x x =--0x =3y =-3OC =∵∴∴∵点在二次函数图象上 ∴解得(舍去)∴点的坐标为. 23.(10分)解:(1)∵四边形是矩形图1∴, ∴由旋转,得,在中,∴ ∴∴旋转角的度数为45°;(2)由旋转,得,图2∴ ∵∴ ∴∵四边形是矩形∴,,∴ ∴ ∴设,则,在中, ∴解得 ∴的长为.PAD CAD S S =△△1122AD n AD OC ⋅=⋅3n =(),P m n 2233m m --=11m =21m =P ()1ABCD CD AB ==90D ∠=︒AD BC ∥DEC BCE∠=∠2CE BC ==BCE α∠=Rt CDE △DE ===CD DE =45DEC ∠=︒α90FEC B ∠=∠=︒CE BC=90AEC B ∠=∠=︒AC AC=()Rt Rt HL AEC ABC ≌△△ACE ACB ∠=∠ABCD AD BC ∥2AD BC ==CD AB ==90D ∠=︒GAC ACB ∠=∠GAC ACE ∠=∠AG CG =AG m =CG m =2DG AD AG m =-=-Rt CDG △222CG CD DG =+()2222m m =+-32m =AG 3224.(12分)解:任务1:;任务2:设裁掉正方形的边长为,根据题意,得解得,(不合题意,舍去)答:此时纸盒的高为20cm ;任务3:设底面正六边形为,连接,,,和交于点,和交于点,所在直线交长方形纸板的边于点,设底面正六边形的边长为,纸盒的高为∵正六边形的每条边相等,每个内角都为120°∴为等腰三角形, ∴由正六边形的性质可得平分 ∴ ∴∴, 同理可得∵ ∴①∵左侧小三角形顶点的角度∴左侧小三角形是边长为的等边三角形根据图形的轴对称可得与长方形纸板的左右两边垂直∴为等边三角形的高 ∴ 同理可得∵四边形是矩形 ∴∵ ∴②联立①②式可得答:纸盒的底面边长约为30cm .25.(14分)解:(1)将代入,得解得.()22.813.2x +=cm m ()()7528021400m m --=120m =21152m =ABCDEF AC FD BE AC BE G FD BE H BE M Ncm acmb ABC △120ABC ∠=︒30BAC BCA∠=∠=︒BE ABC ∠60ABE ∠=︒90AGB ∠=︒1122BG AB a ==AG CG==12HE BG a ==75b AG CG b +++=275b +=B 360120909060︒︒︒︒︒=---=b MN BM BM =EN BM ==AGHF GH AF a==80BM BG GH HE EN ++++=280a +=16030a =-≈1m =210x mx +-=210x x +-=x ==;(2)∵ ∴ ∴∵ ∴∵ ∴,是一元二次方程的两个根∴ ∴;(3)①,②①-②,得∴∵ ∴ ∴∴③,④将④代入①,得 ∴将③代入②,得 ∴∴,是一元二次方程的两个根∴ ∴.224b mb +=2240b mb +-=21022b b m ⎛⎫+⋅-= ⎪⎝⎭21a ma -=()()210a m a -+⋅--=2b a ≠-a -2b210x mx +-=12ba -⋅=-2ab =21p mp q +-=21q mq p +-=()22p q m p q q p-+-=-()()()()p q p q m p q p q -++-=--p q ≠()1p q m ++=-1p q m +=--1p m q =---1q m p =---211p mp m p +-=---()210p m p m +++=211q mq m q +-=---()210q m q m +++=p q ()210x m x m +++=pq m =0pq m -=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年福建省福州九年级上期中考试数学试卷解析版一.选择题:共10小题,每小题4分,共40分.每小题只有一项是符合题目要求的. 1.(4分)在平面直角坐标系中,若点A在第一象限,则点A关于原点的中心对称点在()A.第一象限B.第二象限C.第三象限D.第四象限
【解答】解:点A在第一象限,则其关于原点对称的点的坐标位于第三象限,
故选:C.
2.(4分)方程x2=4的解是()
A.x=2B.x=﹣2C.x=0D.x=2或x=﹣2【解答】解:∵x2=4,
∴x=±2,
∴x1=2,x2=﹣2.
故选:D.
3.(4分)抛物线y=﹣x2+2019的对称轴是()
A.直线x=2019B.直线x=﹣2019
C.x=﹣1D.y轴
【解答】解:∵抛物线y=﹣x2+2019,
∴对称轴是y轴,
故选:D.
4.(4分)如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()
A.8B.4C.10D.5
【解答】解:连接OA,
∵M是AB的中点,
∴OM⊥AB,且AM=4
在直角△OAM中,OA=√AM2+OM2=5
故选:D.
5.(4分)袋子中有2019个黑球、1个白球,他们除颜色外无其它差别.随机从袋子中摸出
一个球,则( )
A .摸到黑球、白球的可能性大小一样
B .这个球一定是黑球
C .事先能确定摸到什么颜色的球
D .这个球可能是白球
【解答】解:袋子中2020个,每一个球被摸出的可能性是均等的,因此摸出黑球的可能性为20192020,摸出白球的可能性为12020,
因此D 选项正确.
故选:D .
6.(4分)如图,一支反比例函数y =k x 的图象经过点A ,作AB ⊥x 轴于点B ,连接OA ,若
S △AOB =3,则k 的值为( )
A .﹣3
B .3
C .﹣6
D .6
【解答】解:设A 点坐标为A (x ,y ),
由图可知A 点在第二象限,
∴x <0,y >0,
又∵AB ⊥x 轴,
∴|AB |=y ,|OB |=|x |,
∴S △AOB =12×|AB |×|OB |=12×y ×|x |=3,
∴﹣xy =6,
∴k =﹣6。