配制化学镍
碱性化学镀镍液配方

碱性化学镀镍液配方(2011/11/06 10:18)目录:公司动态浏览字体:大中小配方l 低温化学刷镀镍硫酸镍20g/L次磷酸钠30g/L柠檬酸钠l0g/L氯化铵30g/L氢氧化铵适量水加至1L工艺条件:pH值8.5~9.5,温度30℃。
化学镀镍是以钯为催化剂,以次磷酸盐为还原剂的氧化还原过程,所获得的金属层实质上是镍磷合金层。
本剂用于刷镀技术的化学镀镍。
配方2 低温化学镀镍硫酸镍30g/L次亚磷酸钠20g/L柠檬酸铵50g/L水加至lL工艺条件:pH值8.5—9.5,温度30—40℃。
配方3 化学镀镍(一)次亚磷酸钠l0g/L氯化镍30g/L氯化铵50g/L水加至1L工艺条件:pH值8—10,温度90℃。
配方4 化学镀镍(二)氯化镍30.00g/L乙二胺62.00g/L巯基乙酸l.00g/L氯化铅0.01g/L硼氢化钠0.50g/L水加至1.00L工艺条件:pH值12,温度50℃。
配方5 ZLl04铸铝化学镀镍工艺流程:ZLl04铸件→除油→热水洗→冷水洗→流动水洗→烘干→酸蚀去膜→水洗→流水洗→浸锌镍合金→水洗→水洗→镀碱性镍→水洗→水洗→化学镀镍→水洗→水洗→热水烫干→烘干→检验→成品。
主要工艺配方如下:① 除油碳酸钠30—50g/L磷酸钠30—40g/L洗涤剂5—15mL /L温度70一80℃采用弱碱性化学除油,除去高压压铸过程中铸件表面的石墨和少量油脂,除油后表面发灰。
② 酸蚀去膜硝酸75%氢氟酸25%工艺条件:温度常温,时间l~3s。
酸蚀可除去表面灰膜,使其暴露出银白色基体。
③ 浸锌镍合金氢氧化钠lg /L酒石酸钾钠50g/L氯化镍16g/L三氯化铁4g/L硝酸钠2g/L氧化锌16g/L工艺条件:温度20—45℃,时间8—14s。
酸蚀去膜后,带水状态转入浸锌镍合金,铸铝表面迅速生成一层发灰的锌镍合金层。
④ 镀碱性镍硫酸镍26g/L次亚磷酸钠26g/L焦磷酸钠50g/L氨水24mL/L工艺条件:pH值9.6—11.0,温度30—35℃,时间3—5min。
化学镀镍的原理及配方构成

反应速度
镍的化学还原反应速度取决于下列变量:
溶液的温度 酸碱度 溶液的搅拌 表面积与体积比 镍离子的浓度
反应速度
镍的化学还原反应速度取决于下列变量:
溶液的温度 酸碱度 溶液的搅拌 表面积与体积比 镍离子浓度 次亚磷酸盐浓度
反应速度
镍的化学还原反应速度取决于下列变量:
溶液温度 酸碱度 溶液的搅拌 表面积与体积比 镍离子的浓度 次磷酸盐的浓度 配位剂的特性
2H2PO3- + H2 + 2H+ + Nio
碱镍—磷体系 Ni2+ + 2H2PO2- + 4OH-*
Ni + 2HPO3- + 2H2O + H2
*催化反应
反应
1. H2PO2- ads + OH– ads 2. H2PO2- + H2O ads 3. H+ + e 4. H + H 5. Ni2+ + H2O 6. NiOH+ ads + 2e 7. H2PO2- ads 8. H2PO2- ads + 2H+ + e
关键点
•合金沉积 •化学还原 •要求表面有催化性质 •不需要连续电流
化学镀工艺
铜 钴 金 镍 钯
化学镀工艺
铜 钴 金 镍 钯
还原剂
次亚磷酸盐 甲醛 硼胺 硼氢化物 肼,联氨
最重要的工艺
铜
甲醛
镍
次亚磷酸盐
硼胺
硼氢化物
肼
钴
次亚磷酸盐
次亚磷酸盐还原系统
酸镍—磷体系 Ni2+ + 2H2PO2- + 2H20*
化学镀镍艺配方

Sample
Substructure Sample 1 Sample 2 Sample 3
他们的工作是研究从柠檬酸镀液中电沉积镍一钨合金, 镀液在高温下进行。阴极是一个钢筒,钢筒内部按装上阳极, 仅在钢筒内的表面被镀覆。
4
1 化学镀镍历史(3)
镀层显示出很高的内应力,Brenner和Riddell认为存在柠檬 酸的氧化产物。为了解决这个问题,他们加入了一定量的还 原剂次亚磷酸盐。这时他们发现钢筒的外表除此以外镀上镍, 而且电流效率非常高,达到理论值的120%,这个结果说明 发生了类似电沉积的化学反应---发明化学镀镍。
2.2
羟基乙酸
HOCH2COOH
-
乙二胺
H2NCH2CH2COOH
13.5
丙二酸
HOOOCH2COOH
4.2
焦磷酸
H2O3POPO3H2
5.3
苹果酸
HOOOCH2CH(OH)COOH
3.4
21
4 化学镀镍溶液组成(7)
3) 配位体
丁二酸
水杨酸 酒石酸 苯二甲酸
乳酸 羟基醋酸
甘氨酸
22
4 化学镀镍溶液组成(8)
19
4 化学镀镍溶液组成(5)
3) 配位体
• 化学镀镍溶液经过几个循环(MTO)之后,必须补充镀液 中的配位体,以避免因生成亚磷酸镍而使镀液成糊状。
• 配位体对镀镍磷合金化学镀层耐蚀性影响深刻,同镍离子 生成五元环和六元环鳌合物的配位体所组成的镀液,其镀 层耐盐雾试验性能最佳。一般说来强络合剂比弱络合剂获 得的镀层磷含量高。
4 ) 缓冲剂 由于化学镀镍反应过程中,副产物氢离子的产生,所
以在沉积过程中溶液的pH值会连续下降。缓冲剂能有效 地稳定溶液的pH值。缓冲NaA和H+反应如下:
EDTA法测镍

EDTA容量法测镍EDTA:乙二胺四乙酸 C10H16N2O8a.称取样品0.5~0.7g于300ml烧杯中,加0.5g氟化铵,用少量水润湿摇散矿样,加10mlHCL,煮沸。
b.加5mlHNO3继续加热数分钟,视有机物多少加HCLO42~5ml。
继续加热至白烟将尽,取下冷却。
c.加10mlHCL,加热溶解盐类,用水仔细冲洗表皿和杯壁,加入70~80 ℃的水至150~170ml,加30%柠檬酸钠10ml,加热至80℃左右。
d.加8~10滴酚酞,用1+1氨水调至红色,边加边搅拌加1%丁二酮肟10~12ml (对红土镍矿而言)保温30min以上(不能煮沸)。
e.取下用脱脂棉过滤,用热水将沉淀全部转移至漏斗上,用水洗沉淀5~6次,用煮沸的(1+1)HCL溶解沉淀于原烧杯中,溶完后再洗8~10次,用水洗2~3次,加数滴氨水检查棉花是否洗净(如有红色表示未洗净,应继续用HCL洗至不再显红色为止)将烧杯至于电热板上,蒸发至2ml左右。
f.取下用水仔细冲洗表皿和杯壁,控制体积在30ml左右,加0.1gKF和少许硫脲,以二甲酚橙为指示剂,用(1+1)氨水中和至浅紫色,加PH=5.5~6的HAc-NaAc缓冲液20ml。
g.煮沸趁热准确加入0.03的EDTA标准溶液10ml,再用0.03的ZnSO4标准溶液滴至浅紫红色为终色。
计算公式:Ni%=------------------------消耗体积,ml----------------------消耗体积,mlK--------------------------ZnSO4标液换算成EDTA标液的体积系数T-----------------------------滴定度,EDTA求助编辑百科名片EDTAEDTA 是一种重要的络合剂。
EDTA用途很广,可用作彩色感光材料冲洗加工的漂白定影液,染色助剂,纤维处理助剂,化妆品添加剂,血液抗凝剂,洗涤剂,稳定剂,合成橡胶聚合引发剂,EDTA是螯合剂的代表性物质。
水溶液中化学还原法制备超细镍粉(已处理)

水溶液中化学还原法制备超细镍粉水溶液中化学还原法制备超细镍粉摘要用水合肼在不同反应条件下,在水溶液中通过化学还原氯化镍制得了超细镍粉。
还原性环境下所产生的水合物在碱性溶液中溶解。
镍粉是通过一台X 射线衍射仪,扫描电子显微镜,BET法,热重法和X射线光电子能谱研究来表征的。
在本次研究中,镍粉的平均粒径随Ni2 +的浓度增加而减小,通过引入表面活性剂和丙醇溶剂使结块减少。
结果表明,镍粉的制备在60℃时用不同体积比的丙醇-水,N2H4/Ni2+的摩尔比为 2.0。
Ni2+的浓度为0.8mol/L。
羧甲基纤维素钠浓度4g/L,制备出粒径介于0.27-0.85μm的镍粉且不结块。
关键词:镍;粉末;还原;溶液;形态1引言在过去十年中对超细镍粉进行了广泛的研究,由于其具有潜在的技术应用价值,例如在油漆、可充电电池、化学催化剂、光电、磁记录材料等方面的用途。
最近,由于其良好的导电性、高熔点、成本低,可以作为一种廉价的陶瓷电容内部电极。
他们引起了高度的重视,要想成为这种最重要的电极材料,必须用比较经济的方法制备出电极材料[4]的成型与烧结中最理想的状态,即镍粉颗粒呈球形且不结块,小粒径镍粉颗粒分散性好。
球磨,电,热等离子体,多元醇法,化学气相沉积法,在水溶液中的超声化学沉积,微波水热法等多种方法,湿化学还原法已应用到精细金属粉末的制备[5-7]。
然而,这些方法都不是超细金属粉末大规模生产的最佳方法。
根据金属粉末所需的属性和反应过程的经济方面的需要,可能的制备方法之一是利用较强的还原剂从金属盐类的溶液中还原出金属离子的化学还原方法[8-10]。
由于镍盐在水溶液中具有良好的溶解性和密集性,较低反应温度和简单的反应过程[11],对精细镍粉在水溶液中的制备进行了研究,在此方法中,镍粉的形状和颗粒大小,粒度分布和集聚程度,可以很容易地通过反应参数来控制,如溶剂组成、成核剂、还原剂、表面活性剂等[12-14]。
在这项工作中,用水合肼还原镍的盐溶液制备得到了超细镍粉,在水溶液中的化学还原方法由此得到证明。
化学镀镍药水配置方法

化学镀镍药水配置方法
化学镀镍药水的配置方法如下:
1. 准备所需材料:化学镀镍药水是由多种化学品配制而成的,包括硫酸镍、氯化镍、硼酸、硫酸、氢氧化钠等。
在配制药水之前,需要先准备好这些材料。
2. 称取所需化学品:根据药水配方,称取所需的化学品的重量。
例如,如果药水配方中硫酸镍的质量分数为 10%,需要称取 100 克硫酸镍,并加入到 900 毫升的去离子水中。
3. 溶解化学品:将称取的化学品加入到去离子水中,并搅拌均匀,直到化学品完全溶解为止。
4. 调整药水 pH 值:化学镀镍药水的 pH 值通常在 4-6 之间。
可以使用氢氧化钠或硫酸来调整药水的 pH 值。
如果药水的 pH 值过高,可以加入少量硫酸来降低 pH 值;如果药水的 pH 值过低,可以加入少量氢氧化钠来提高 pH 值。
5. 制备完成:将药水搅拌均匀后,即可使用。
化学镀镍药水的配置方法需要严格控制各种化学品的重量和比例,以确保药水的质量和稳定性。
在配制药水时,需要戴好实验室防护用具,避免直接接触化学品。
化学镀镍-碱性化学镀镍液配方

酸蚀可除去表面灰膜,使其暴露出银白色基体。
③浸锌镍合金
氢氧化钠lg/L
酒石酸钾钠50g/L
氯化镍16g/L
三氯化铁4g/L
硝酸钠2g/L
氧化锌16g/L
工艺条件:温度20—45℃,时间8—14s。
酸蚀去膜后,带水状态转入浸锌镍合金,铸铝表面迅速生成一层发灰的锌镍合金层。
④镀碱性镍
硫酸镍26g/L
次亚磷酸钠26g/L
焦磷酸钠50g/L
氨水24mL/L
工艺条件:pH值9.6—11.0,温度30—35℃,时间3—5min。
碱性镍层(0.5μm)可以避免铝基体件直接进入酸性化学镀镍溶液中,锌镍合金层被迅速溶解,产生结合力不良现象。
⑤化学镀镍
硫酸镍30g/L
次亚磷酸钠30g/L
醋酸l5mL/L
乳酸25mL/L
醋酸钠35g/L
工艺条件:pH值4.0(用氨水调节),温度85~90℃,时间30-40min。
铸铝经化学镀镍可生成厚度达25μm以上的光亮镍层,再经热水烫干、烘干得成品。
由锦州新生开关有限责任公司研究开发。
配方6低温化学镀镍
硫酸镍30g/L
次磷酸钠30g/L
硫酸铵30g/L
络合剂20g/L
乙酸钠10g/L
加速剂(无机添加剂,通过添加加速剂降低了化学镀镍反应活化能,加速化学镀层沉积速度)4g/L
工艺条件:温度40—60℃,pH值8—9。
本剂具有工艺简单、镀层均匀、耐磨耐蚀性好等特点,可应用于汽车、电子、计算机、化工、机械等领域。
化学镍的最新配方

化学镍的最新配方化学镍是一种重要的化学试剂,在许多领域都有广泛的应用。
然而,由于其毒性和环境污染问题,研究人员正努力开发新的配方,以减少其对环境和人体的危害。
本文将介绍化学镍的最新配方及其在不同领域的应用。
化学镍主要用于金属镍的电镀和催化剂等领域。
然而,传统的化学镍配方往往含有有害物质,如六价铬(Cr(VI))和有毒有机化合物。
这些物质对环境和人体健康造成严重影响,因此迫切需要寻找替代的化学镍配方。
目前,研究人员开发出了一种新型的化学镍配方,它不含有害物质,同时具有良好的性能和稳定性。
这种新的配方主要基于无机盐和有机化合物的组合。
其中,无机盐主要用于提供金属镍离子,而有机化合物则用作络合剂和稳定剂。
这种结合使用无机盐和有机化合物的方法,可以降低化学镍对环境和人体的危害,同时保证其在金属镍电镀和催化剂等领域的应用性能。
在电镀领域,新的化学镍配方可以有效地提高镀层的质量和光泽度。
通过优化无机盐和有机化合物的配比和浓度,可以调节电解液的pH值和离子浓度,从而控制电镀层的厚度和表面形貌。
此外,还可以添加其他添加剂,如表面活性剂和阻燃剂,以提高镀层的附着力和耐腐蚀性。
这些改进可以使电镀的金属镍层更加均匀、光泽、耐腐蚀,从而满足不同领域的需求,如汽车制造和电子器件。
在催化剂领域,新的化学镍配方可以提高催化剂的活性和选择性。
通过调节无机盐和有机化合物的组合和浓度,可以控制催化剂表面的活性位点密度和电子结构,从而优化催化反应的速率和选择性。
此外,还可以引入新型的载体材料和辅助剂,如金属氧化物和离子液体,以增强催化剂的稳定性和可循环性。
这些改进可以提高催化剂在氢化、氧化和加氢脱硫等反应中的性能,从而降低工业过程中的能耗和废弃物产生。
除了电镀和催化剂领域,新的化学镍配方还可以应用于其他领域,如电池材料、化学传感器和纳米材料合成。
在电池材料方面,新的化学镍配方可以提高镍基电池的循环寿命和能量密度,从而推动可再生能源的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学镍配伍硫酸镍400-460g/L A剂次磷酸钠180-200g/L+络合剂+稳定剂+促进剂 B 剂次磷酸钠480-520g/L+光剂+稳定剂 C剂化学镀镍化学镀镍已成为国际上表面处理领域中发展最快的工业技术之一,以其优良的性能,在几乎所有的工业部门都得到了广泛应用,每年总产值达10亿美元,而且每年还以5%~7%的速度递增。
一、性质和用途用次磷酸钠作还原剂获得的镀层实际上是镍磷合金。
依含磷量不同可分为低磷(1%~4%)、中磷(4%~10%)和高磷(10%~12%)。
从不同pH值的镀液中可获得不同含磷量的镀层,在弱酸性液(pH=4~5)中可获得中磷和高磷合金;从弱碱性液(pH=8~10)中可获得低磷和中磷合金。
含磷为8%以上的Ni-P合金是一种非晶态镀层。
因无晶界所以抗腐性能特别优良。
经过热处理(300~400℃)变成非晶态与晶态的混合物时硬度可高达HV=1155;化学复合镀层硬度更高,如Ni-P-SiC,镀态HV=700,350℃热处理后可达到HV=1300。
非晶态合金是开发新材料的方向,现已成为工程学科的一大热门。
近年低磷化学镀镍是研究开发的又一热点,含磷1%~4%的Ni-P合金,镀态的HV=700,热处理后接近硬铬的硬度,是替代硬铬层的理想镀层,又是可在铝上施镀的好镀种。
化学镀层的种类、性质和主要用途,列于表3-1-2。
化学镀镍层与电镀镍层的性能比较,列于表3-1-3。
表3-1-2 化学镀镍种类性质和主要用途表3-1-3 化学镀镍与电镀镍的性能比较化学镀镍的脆性较大,在钢上仅能经受2.2%的塑性变形而不出现裂纹。
在620℃下退火后,塑性变形能力可提高到6%;当热处理温度达840℃时,其塑性还可进一步改善。
化学镀镍层同钢铁、铜及其合金、镍和钴等基体金属有良好的结合力。
在铁上镀覆10~12μm的化学镀镍层,经反复弯曲180°后未出现任何裂纹和脱落现象。
但与高碳钢、不锈钢的结合力比上述金属差;同非金属材料的结合力会更差些,重要的是取决于非金属材料镀前预处理质量。
化学镀镍层的化学稳定性在大多数介质中都比电镀镍高,在大气中曝晒试验、盐雾加速试验中,其耐蚀性显著地优于镍;在海水、氨和染料等介质中相当稳定。
化学镀镍层以其高耐蚀、高耐磨、高均匀性、兼有防腐、装饰及机能方面的作用,故用途十分广泛,诸如电子和计算机、化学和化工、机械、航空航天、石油和天然气、汽车、食品加工、医药和纺织等工业部门。
具体应用举例:1.计算机工业主要用于数量巨大的硬盘片铝镁合金上化学镀镍,使其具有足够的硬度以保护铝合金基体不变形和磨损,同时防止基体氧化腐蚀。
2.电子工业除需要耐磨耐蚀的化学镀层外,还大量需要低电阻温度系数、扩散阻挡层及良好的焊接性能的化学镀层。
Ni-Cr-P、Ni-W-P等多元合金化学镀层具有低电阻温度系数,在薄膜电阻器的制造中很有用。
Ni-B、Ni-P-B、Ni-P等化学镀层的钎焊性接近于金镀层。
3.机器制造工业凡需要耐磨或耐蚀的零部件一般都可用化学镀镍来提高其寿命,如液压轴、曲轴、传动链带、齿轮和离合器、工、卡、模具等。
4.石油和天然气、化学工业化学镍层对含硫化氢的石油和天然气环境,对酸、碱、盐等化工腐蚀介质有优良的抗蚀性,所以在采油设备、输油管道中有广泛用途。
在普通钢或低合金钢上镀一层50~70μm的Ni-P合金,其寿命可提高3~6倍。
化学工业的容器、阀、管道、泵等的化学镀镍可替代不锈钢和纯镍。
5.汽车工业汽车工业中使用化学镀镍是利用其耐蚀、耐磨性能,如形状复杂的齿轮、散热器和喷油嘴、制动瓦片、减震器等等。
6.其它航空业中的喷气发动机的一些零件,陶瓷、轴瓦合金、不锈钢在还原气氛中的结合材料,铝、镁、铍材料制成的航空零部件和电子元件等。
二、以次磷酸钠为还原剂的化学镀镍1.酸性化学镀镍的工艺规范(见表3-1-4)。
2.碱性化学镀镍的工艺规范(见表3-1-5)。
表3-1-4 酸性化学镀镍的工艺规范3.化学镀镍液的配制方法化学镀镍配方多,使用成分多,且有弱酸性和弱碱性两种,特别要根据选用的配方采用正确的配制方法,防止因配制不当产生镍的氢氧化物沉淀。
这里介绍配制应遵循的顺序:(1)用不锈钢、搪瓷、塑料作镀槽。
(2)用配槽总体积的1/3水量加热溶解镍盐。
(3)用另外1/3的水量溶解络合剂、缓冲剂及其它化合物,然后将镍盐溶液在搅拌下倒入其中,澄清过滤。
(4)用余下1/3水量溶解次磷酸钠,过滤,在将要使用前在搅拌下倒入上述混和液中,稀至总体积,用1:10的H 2SO 4或1:4的氨水调pH 值。
表3-1-5 碱性化学镀镍工艺规范4.化学镀镍简单原理化学镀镍的反应历程如下:第一步:溶液中的次磷酸根在催化表面上催化脱氢,同时氢化物离子转移到催化表面,而本身氧化成亚磷酸根[H2PO2]-+H2[HPOO3]2-+H++2[H-](吸附于催化表面)第二步:吸附于催化表面上的活性氢化物与镍离子进行还原反应而沉积镍,而本身氧化成氢气Ni2++2[H-]→Ni0+H2 2H ↑总反应式为2+2H2O+Ni2+→Ni0+H2↑+4H++2H部分次磷酸根被氢化物还原成单质磷,同时进入镀层H2+[H-](催化表面)→P+H2O+OH 上述还原反应是周期地进行的,其反应速度取决于界面上的pH值。
pH值较高时,镍离子还原容易;而pH值较低时磷还原变得容易,所以化学镀镍层中含磷量随pH值升高而降低。
除上述反应外,化学镀镍中还有副反应发生,即-由于存在副反应,实际每消耗2mol次磷酸钠大约能沉积0.7mol的镍原子。
加入槽中的次磷酸盐最终约90%转化为亚磷酸盐,亚磷酸镍溶解度低,当有络合剂存在,游离镍离子少时,不产生沉淀物。
当有亚磷酸镍固体沉淀物存在时,将触发溶液的自分解。
在化学镀中不可避免地会有微量的镍在槽壁和镀液中析出,容易导致自催化反应在均相中发生,需要用稳定剂加以控制。
反应中生成的氢离子将降低镀液pH值,从而降低沉积速度,所以需加pH值缓冲剂和及时调pH值。
铝合金化学镀镍工艺1 二次锌酸盐处理众所周知,铝上电镀(或化学镀)存在许多困难,由于铝化学性质活泼,电化学电位很负(E=-1.66V),对氧有高度亲和力、极易氧化;铝的线膨胀系数比一般金属大(24×10-6/℃);它又是两性金属,在酸碱中均不稳定,化学反应复杂;镀层有内应力,因而铝上电镀(或化学镀)能否成功,关键是要解决附着力问题。
铝表面的氧化膜经酸碱腐蚀去除后,在空气或水溶液中能迅速重新生成。
为此,铝上电镀必须进行特殊前处理,其目的在于去除这些氧化膜,使其不能重新形成,并迅速赋予一层薄而均匀的金属镀层作为进一步按正常工艺电镀的底层。
可见,能否置取这样一层理想的金属层乃是获得铝上电镀(化学镀)层附着力良好的工艺关键,习惯置取该金属薄层的工艺方法有浸锌酸盐法、浸锡酸盐法、电镀锌法、磷酸阳氧化法等。
浸锌酸盐法由于Zn在强碱溶液中呈络离子存在,它的电位变得比简单盐中的Fe或Ni负得多,与Al十分接近,因而当Al浸入锌酸盐溶液中能得到较薄的均匀Zn层,有助于与铝基体牢固结合,这正是目前应用较普遍的主要原因。
两次浸锌处理比一次浸锌处理而言,它能降低Zn含量,使Zn层结晶更细致。
有作者经扫描电镜(SEM)观察证明,第一次浸Zn后能看到晶粒之间仍有未变化的铝表面区域,其锌酸盐膜结构呈网状、不连续分布,尺寸为0.2~1.0μm范围。
而两次浸Zn膜比第一次浸Zn膜致密得多,晶粒度分布均匀,大致相同(150~300mm),看不到未镀覆铝表面,原因在于除去第一层Zn 膜后,重新形成的氧化膜比原先的氧化膜更均匀,故随后第二次浸渍Zn 层易于均匀复盖上全部铝表面。
为此,我们选择配方(1)、(2)和改进配方(3)、(4)进行比较试验,见表1。
并测定了在4种不同锌酸盐溶液中所形成的锌层重量,见表2。
表1 锌酸盐溶液<DIV align=center></DIV>表2 不同浸锌工艺的锌层质量<DIV align=center> </DIV>表2数据证明,两次浸锌得到的锌层比一次浸锌薄,配方2与配方1均是典型的浓溶液与稀溶液,锌层呈光亮,深蓝灰色,配方(1)碱浓度太高,粘度大,工件不易清洗干净,配方(2)碱浓度低,含锌量太少故需经常校正,溶液稳定性差,而改进配方(3)与(4)碱浓度适中,特别是含有镍盐,NaOH对Zn2+的摩尔浓度比值由10提高到13~14,将酒石酸钾钠含量升高到100~120g/L,又引进添加剂,使镍离子呈更稳定络离子形式存在,从而能使镍离子与锌离子一起缓慢而均匀地置换沉积在铝表面,得到的锌镍合金层比配方(1)、(2)更薄更均匀。
有文献报导浸Zn层质量大致应在1.6~1.7mg/dm2范围(最佳<3.1mg/dm2),通过试验,我们发现控制Zn-Ni层质量在1~2mg/dm2范围的浸锌工艺能充分保证铝上镀层附着力良好。
特别是含镍的锌层为随后的化学预镀镍沉积初期提供了充足的催化核心,这是提高随后镍镀层附着力的一个重要因素。
2 碱性化学镀镍预镀实践证明,两次浸锌工艺是铝合金获得附着力优异的化学镀镍层的前提条件,但是这层薄而致密的锌层在随后的化学镀镍溶液中会发生化学溶解作用,常规化学镀镍使用酸性溶液(pH=4~5),工作温度高(90℃),显而易见如果铝合金浸锌后直接在酸性镀液中化学镀镍,锌层很快溶解掉,而且溶解的锌会污染镀液,为了减缓锌层的溶解作用,提高化学镀镍层对基体铝合金的结合力,延长化学镀镍溶液的使用寿命,必须采用碱性化学镀镍预镀工艺,这也是铝合金化学镀镍成功与否的关键所在。
有人研究了化学镀镍反应初期基体铝上镍镀层的化学成分,发现大部分锌层溶解在化学镀镍溶液中,这种溶解作用的强弱取决于下列五种因素,化学镀镍液的温度、pH值、镍离子浓度、络合配位体种类和络合物浓度。
为此,碱性化学镀镍作为预镀底层必须综合考虑镀液pH值、温度、沉积速度、络合剂种类和浓度之间的平衡关系,作者选择了4种代表性配方进行比较。
见表3。
表3 碱性化学镀镍溶液<DIV align=center></DIV>为保证镀液稳定、沉积速度适中,经过试验改变还原剂和络合剂的浓度,确认配方(4)呈强碱性(pH=8.5~9),工作温度低(35~45℃),由于采用复合络合剂,进一步降低镍离子有效浓度,氧化还原反应速度变得缓慢使结晶更细致均匀,从而能有效减弱浸锌层的溶解,而且在锌层被置换的同时即发生镍的自催化沉积,所以最终能在铝表面直接得到一层结晶细小、均匀、结合良好的薄镍层,而几乎不参杂有氧化物或锌层。
通过近两年的生产实践,证明该配方与国外引进的ENPLATEAL-100化学闪镀镍具有相似的功能,经过预镀能在铝表面得到一层薄而均匀、活泼的镍层,是随后酸性化学镀镍的理想底层。