单像空间后方交会 习题

合集下载

第五讲 单片空间后方交会

第五讲 单片空间后方交会

x12 − f (1 + 2 ) f xy − 1 1 f
2 x2 − f (1 + 2 ) f

x1 y1 f
y12 − f (1 + 2 ) f − x2 y2 f
x y − 2 2 f
2 x3 − f (1 + 2 ) f
2 y2 − f (1 + 2 ) f

x3 y3 f
xy − 3 3 f
Y B
A
C X
利用航摄像片上三个以上像点坐标和对应像 点坐标和对应地面点坐标,计算像片外方位元 素的工作,称为单张像片的空间后方交会。 进行空间后方交会运算,常用的一个基本公 式是前面提到的共线方程。式中的未知数,是 六个外方位元素。由于一个已知点可列出两个 方程式,如有三个不在一条直线上的已知点, 就可列出六个独立的方程式,解求六个外方位 元素。由于共线条件方程的严密关系式是非线 性函数,不便于计算机迭代计算。为此,要由 严密公式推导出一次项近似公式,即变为线性 函数。
(5) 用所取未知数的初始值和控制点的地面坐标,代入共线方程式,逐 ) 用所取未知数的初始值和控制点的地面坐标,代入共线方程式, 点计算像点坐标的近似值 ( x), ( y ) 并计算 lx , l y a ( X − X S ) + b1 (Y − YS ) + c1 ( Z − Z S ) x=−f 1 a3 ( X − X S ) + b3 (Y − YS ) + c3 ( Z − Z S ) a ( X − X S ) + b2 (Y − YS ) + c2 ( Z − Z S ) y=−f 2 a3 ( X − X S ) + b3 (Y − YS ) + c3 ( Z − Z S ) (6) 组成误差方程式。 ) 组成误差方程式。 7) 计算法方程式的系数矩阵与常数项,组成法方程式。 (7) 计算法方程式的系数矩阵与常数项,组成法方程式。 (8) 解算法方程,迭代求得未知数的改正数。 ) 解算法方程,迭代求得未知数的改正数。

摄影测量习题整理

摄影测量习题整理

习题——认识摄影测量1、下列关于摄影测量的发展阶段的说法中,不正确的是(B)(A)数字摄影测量处理的原始资料是数字影像或数字化影像(B)数字摄影测量和解析摄影测量使用的投影方式分别是数字投影和物理投影(C)模拟摄影测量和解析摄影测量处理的原始数据都是像片(均为数字投影)(D)数字摄影测量是以计算机视觉代替人的立体观测与识别,完成影像几何与物理信息的自动提取2、下列有关数字地面模型的相关概念的描述中,不正确的是(D)(A)数字地面模型DTM是地理信息系统的基础数据,可用于土地利用现状的分析、合理规划及洪水子险情预报等(B)数字地面模型DTM是地形表面形态等多种信息的一个数字表示(C)数字高程模型DEM只考虑DTM的地形分量,在计算机高级语言中,它就是一个三维数组或数学上的一个三维矩阵(D)与TIN相比,DEM能较好地顾及地貌特征点、线、面,表示复杂地形表面,其缺点是数据量较大,数据结构较复杂(与DEM相比,TIN能较好地顾及地貌特征点线、面,表示复杂地形表面,其缺点是数据量较大,数据结构较复杂。

)3、摄影测量的技术手段不包括(C)A模拟法B.解析法C实地法D数字法4、光学纠正仪是(A)时代的产品,其投影方式属于机械投影。

A模拟摄影测量B解析摄影测量C数字摄影测量D数字投影5、摄影机框架四边中点设有的框标记号,叫做光学框标。

(×)6、现有地图的数字化方法有手扶跟踪数字化和扫描数字化7、随着摄影测量技术的发展,摄影测量经历了(模拟摄影测量阶段)、(解析摄影测量阶段)与(数字摄影测量阶段 )三个发展阶段。

摄影测量的技术手段有(模拟法)、(解析法)、(数字法)。

8、摄影测量的基本问题,就是将中心投影的像片转换为正射投影的地形图9、数字摄影测量数字摄影测量是基于数字影像和摄影测量的基本原理,应用计算机技术、数字影像处理、影像匹配、模式识别等多学科的理论与方法,提取所摄对像以数字方式表达的几何与物理信息的摄影测量学的分支学科。

单像空间后方交会实验报告(c++版)

单像空间后方交会实验报告(c++版)

单像空间后方交会实验报告(c++版)单像空间后方交会姓名:学号:时间:目录一、作业任务..................................................... - 4 -二、计算原理..................................................... - 4 -三、算法流程..................................................... - 8 -四、源程序....................................................... - 9 -五、计算结果..................................................... - 9 -六、结果分析..................................................... - 9 -七、心得与体会................................................... - 9 -八、附页......................................................... - 9 -1.c++程序.................................................. - 10 -2.C++程序截图.............................................. - 17 -3.matlb程序 ............................................... - 17 -一、 作业任务已知条件:摄影机主距f=153.24mm ,x0=0,y0=0, 像片比例尺为1:40000,有四对点的像点坐标与相应的地面坐标如下表。

摄影测量学部分课后习题答案

摄影测量学部分课后习题答案

第一章1.摄影测量学:摄影测量是从非接触成像系统,通过记录、量测、分析与表达等处理,获取地球及其环境和其他物体的几何、属性等可靠信息的工艺、科学与技术。

1.2摄影测量学的任务:地形测量领域 :各种比例尺的地形图、专题图、特种地图 、正射影像地图、景观图 ;建立各种数据库 ;提供地理信息系统和土地信息系统所需要的基础数据 。

非地形测量领域:生物医学、公安侦破、古文物、古建筑、建筑物变形监测2.摄影测量的三个发展阶段及其特点:模拟摄影测量阶段:(1)使用的影像资料为硬拷贝像片。

(2)利用光学机械模拟装置,实现了复杂的摄影测量解算。

(3)得到的是(或说主要是)模拟产品。

(4)摄影测量科技的发展可以说基本上是围绕着十分昂贵的立体测图仪进行的。

(5)利用几何反转原理,建立缩小模型。

(6)最直观,好理解。

解析摄影测量阶段:(1)使用的影像资料为硬拷贝像片。

(2)使用的是数字投影方式,用精确的数字解算代替了精度较低的模拟解算。

(3)得到的是模拟产品和数字产品。

(4)引入了半自动化的机助作业, 因此,免除了定向的繁琐过程及测图过程中的许多手工作业方式。

但需要人用手去操纵(或指挥)仪器,同时用眼进行观测。

数字摄影测量阶段 :(1)使用的资料是数字化影像、(2)使用的是数字投影方式 。

(3)得到的是数字产品、模拟产品。

(4)它是自动化操作,加人员做辅助。

3.数字摄影测量与模拟、解析摄影摄影测量的根本区别在于:1.两者采用的原始原始资料不同,前者是是数字影像,后者是硬拷贝影像。

2.两者的投影方式不同,前者是数字投影,后者是物理投影。

3.两者的操作方式不同,前者是自动化,人员做辅助,后者是其本人人工进行。

第二章3.摄影测量学的航摄资料有哪些基本要求?答:1.航影仪应安装在飞机的一定角度,飞行航线一般为东西方向。

2.相邻两像片要有60%左右的重叠度,相邻两航线间要有30%左右的重叠度。

3.航摄机在摄影曝光的瞬间物镜主光轴保持垂直地面。

摄影测量学单像空间后方交会程序设计作业

摄影测量学单像空间后方交会程序设计作业

using System;using System.Collections.Generic;using System.Linq;using System.Text;namespace 单像空间后方交会{class Program{static void Main(string[] args){int x0, y0, i, j; double f, m;Console.Write("请输入像片比例尺:");m = double.Parse(Console.ReadLine());Console.Write("请输入像片的内方位元素x0:");//均以毫米为单位x0 = int.Parse(Console.ReadLine());Console.Write("请输入像片的内方位元素y0:");y0 = int.Parse(Console.ReadLine());Console.Write("请输入摄影机主距f:");f = double.Parse(Console.ReadLine());Console.WriteLine();//输入坐标数据double[,] zuobiao = new double[4, 5];for (i = 0; i < 4; i++){for (j = 0; j < 5; j++){if (j < 3){Console.Write("请输入第{0}个点的第{1}个地面坐标:", i + 1, j + 1);zuobiao[i, j] =double.Parse(Console.ReadLine());}else{Console.Write("请输入第{0}个点的第{1}个像点坐标:", i + 1, j - 2);zuobiao[i, j] =double.Parse(Console.ReadLine());}} Console.WriteLine();}//归算像点坐标for (i = 0; i < 4; i++){for (j = 3; j < 5; j++){if (j == 3)zuobiao[i, j] = zuobiao[i, j] - x0;elsezuobiao[i, j] = zuobiao[i, j] - y0;}}//计算和确定初值double zs0 = m * f, xs0 = 0, ys0 = 0;for (i = 0; i < 4; i++){xs0 = xs0 + zuobiao[i, 0];ys0 = ys0 + zuobiao[i, 1];}xs0 = xs0 / 4;ys0 = ys0 / 4;//逐点计算误差方程系数double[,] xishu = new double[8, 6];for (i = 0; i < 8; i += 2){double x, y;x = zuobiao[i / 2, 3]; y = zuobiao[i / 2, 4];xishu[i, 0] = xishu[i + 1, 1] = -1 / m; xishu[i, 1] = xishu[i + 1, 0] = 0; xishu[i, 2] = -x / (m * f); xishu[i, 3] = -f * (1 + x * x / (f * f));xishu[i, 4] = xishu[i + 1, 3] = -x * y / f; xishu[i, 5] = y; xishu[i + 1, 2] = -y / (m * f); xishu[i + 1, 4] = -f * (1 + y * y / (f * f)); xishu[i + 1, 5] = -x;}//计算逆阵double[,] dMatrix =matrixChe(matrixTrans(xishu), xishu);double[,] dReturn = ReverseMatrix(dMatrix, 6);Console.WriteLine("逆矩阵为:");if (dReturn != null){matrixOut(dReturn);}//求解过程double phi0 = 0, omega0 = 0, kappa0 = 0; int q = 0;double[,] r = new double[3, 3];double[,] jinsi = new double[4, 2];double[] chazhi = new double[8];double[] jieguo = new double[6];double[,] zhong = matrixChe(dReturn,matrixTrans(xishu));do{ //计算旋转矩阵rr[0, 0] = Math.Cos(phi0) * Math.Cos(kappa0) - Math.Sin(phi0) * Math.Sin(omega0) * Math.Sin(kappa0);r[0, 1] = -Math.Cos(phi0) * Math.Sin(kappa0) - Math.Sin(phi0) * Math.Sin(omega0) * Math.Cos(kappa0);r[0, 2] = -Math.Sin(phi0) * Math.Cos(omega0);r[1, 0] = Math.Cos(omega0) * Math.Sin(kappa0);r[1, 1] = Math.Cos(omega0) * Math.Cos(kappa0);r[1, 2] = -Math.Sin(omega0);r[2, 0] = Math.Sin(phi0) * Math.Cos(kappa0) + Math.Cos(phi0) * Math.Sin(omega0) * Math.Sin(kappa0);r[2, 1] = -Math.Sin(phi0) * Math.Sin(kappa0) + Math.Cos(phi0) * Math.Sin(omega0) * Math.Cos(kappa0);r[2, 2] = Math.Cos(phi0) * Math.Cos(omega0);//计算x,y的近似值for (i = 0; i < 4; i++){jinsi[i, 0] = -f * (r[0, 0] * (zuobiao[i, 0] - xs0) + r[1, 0] * (zuobiao[i, 1] - ys0) + r[2, 0] * (zuobiao[i, 2] - zs0)) / (r[0, 2] * (zuobiao[i, 0] - xs0) + r[1, 2] * (zuobiao[i, 1] - ys0) + r[2, 2] * (zuobiao[i, 2] - zs0));jinsi[i, 1] = -f * (r[0, 1] * (zuobiao[i, 0] - xs0) + r[1, 1] * (zuobiao[i, 1] - ys0) + r[2, 1] * (zuobiao[i, 2] - zs0)) / (r[0, 2] * (zuobiao[i, 0] - xs0) + r[1, 2] * (zuobiao[i, 1] - ys0) + r[2, 2] * (zuobiao[i, 2] - zs0));}for (i = 0; i < 8; i += 2){chazhi[i] = zuobiao[i / 2, 3] - jinsi[i / 2, 0];chazhi[i + 1] = zuobiao[i / 2, 4] - jinsi[i / 2, 1];}for (i = 0; i < zhong.GetLength(0); i++){double k = 0;for (j = 0; j < zhong.GetLength(1); j++){k = k + zhong[i, j] * chazhi[j];}jieguo[i] = k;}//求新的近似值xs0 += jieguo[0]; ys0 += jieguo[1]; zs0 += jieguo[2];phi0 += jieguo[3]; omega0 += jieguo[4]; kappa0 += jieguo[5];q++;if (q > 1000)break;} while ((Math.Abs(jieguo[0]) > 0.020 ||Math.Abs(jieguo[1]) > 0.020) || Math.Abs(jieguo[2]) > 0.020);Console.WriteLine("共进行了{0}次运算", q);Console.WriteLine("旋转矩阵为");matrixOut(r);for (i = 0; i < jieguo.GetLength(0); i++){Console.Write("第{0}个外方位元素为:{1}", i + 1, jieguo[i]);}}//矩阵转置public static double[,] matrixTrans(double[,] X){double[,] A = X;double[,] C = new double[A.GetLength(1),A.GetLength(0)];for (int i = 0; i < A.GetLength(1); i++)for (int j = 0; j < A.GetLength(0); j++){C[i, j] = A[j, i];}return C;}//矩阵输出public static void matrixOut(double[,] X){double[,] C = X;for (int i = 0; i < C.GetLength(0); i++){for (int j = 0; j < C.GetLength(1); j++){Console.Write(" {0}", C[i, j]);}Console.Write("\n");}}//二维矩阵相乘public static double[,] matrixChe(double[,] X, double[,] Y){int i, j, n; double m;double[,] C = X; double[,] D = Y;double[,] E = new double[C.GetLength(0),C.GetLength(0)];for (i = 0; i < C.GetLength(0); i++){for (n = 0; n < C.GetLength(0); n++){m = 0;for (j = 0; j < C.GetLength(1); j++){m = m + C[i, j] * D[j, n];}E[i, n] = m;}}return E;}//计算行列式的值public static double MatrixValue(double[,] MatrixList, int Level){double[,] dMatrix = new double[Level, Level];for (int i = 0; i < Level; i++)for (int j = 0; j < Level; j++)dMatrix[i, j] = MatrixList[i, j];double c, x;int k = 1;for (int i = 0, j = 0; i < Level && j < Level; i++, j++){if (dMatrix[i, j] == 0){int m = i;for (; dMatrix[m, j] == 0; m++) ;if (m == Level)return 0;else{for (int n = j; n < Level; n++){c = dMatrix[i, n];dMatrix[i, n] = dMatrix[m, n];dMatrix[m, n] = c;}k *= (-1);}}for (int s = Level - 1; s > i; s--){x = dMatrix[s, j];for (int t = j; t < Level; t++)dMatrix[s, t] -= dMatrix[i, t] * (x / dMatrix[i, j]);}}double sn = 1;for (int i = 0; i < Level; i++){if (dMatrix[i, i] != 0)sn *= dMatrix[i, i];elsereturn 0;}return k * sn;}//计算逆阵public static double[,] ReverseMatrix(double[,] dMatrix, int Level){double dMatrixValue = MatrixValue(dMatrix, Level);if (dMatrixValue == 0) return null;double[,] dReverseMatrix = new double[Level, 2 * Level];double x, c;for (int i = 0; i < Level; i++){for (int j = 0; j < 2 * Level; j++){if (j < Level)dReverseMatrix[i, j] = dMatrix[i, j];elsedReverseMatrix[i, j] = 0;}dReverseMatrix[i, Level + i] = 1;}for (int i = 0, j = 0; i < Level && j < Level; i++, j++){if (dReverseMatrix[i, j] == 0){int m = i;for (; dMatrix[m, j] == 0; m++) ;if (m == Level)return null;else{for (int n = j; n < 2 * Level; n++)dReverseMatrix[i, n] += dReverseMatrix[m, n];}}x = dReverseMatrix[i, j];if (x != 1){for (int n = j; n < 2 * Level; n++)if (dReverseMatrix[i, n] != 0)dReverseMatrix[i, n] /= x;}for (int s = Level - 1; s > i; s--){x = dReverseMatrix[s, j];for (int t = j; t < 2 * Level; t++)dReverseMatrix[s, t] -= (dReverseMatrix[i, t] * x);}}for (int i = Level - 2; i >= 0; i--){for (int j = i + 1; j < Level; j++)if (dReverseMatrix[i, j] != 0){c = dReverseMatrix[i, j];for (int n = j; n < 2 * Level; n++)dReverseMatrix[i, n] -= (c * dReverseMatrix[j, n]);}}double[,] dReturn = new double[Level, Level];for (int i = 0; i < Level; i++)for (int j = 0; j < Level; j++)dReturn[i, j] = dReverseMatrix[i, j + Level];return dReturn;}}}。

网上搜的摄影测量题目

网上搜的摄影测量题目

《摄影测量》课程期末统一考试题(卷)[B]一、名词解释(20分,每个4分)1、单片空间后方交会:在摄影之后,利用一定数量的地面控制点,根据共线方程条件方程式反求像片的外方位元素。

P502、同名核线:同一核面与左、右两像片相交的两条核线称为同名核线。

P723、影像匹配:4、影像的外方位元素:在恢复内方位元素(即恢复了摄影光束)的基础上,确定摄影光束在摄影瞬间的空间位置和姿态的参数,称为外方位元素,一张像片的外方位元素包括六个参数,其中三个是直线元素,用于描述摄影中心的空间坐标值;另外三个是角元素,用于描述像片的空间姿态。

P375、解析相对定向:根据同名光线对对相交这一立体像对对内在的几何关系,通过测量的像点坐标,用解析计算的方法解求相对定向元素,建立于地面相似的立体模型,确认模型点的三维坐标。

P77(相对定向与像片的绝对位置无关,不需要地面控制点)二、填空题(20分,每空1分)1、表示航摄像片的外方位角元素可以采用、和三种转角系统。

2、航摄像片是所覆盖地物的中心投影投影,地形图是所表示内容的正射投影投影。

3、摄影测量加密按数学模型可分为航带法、独立模型法和光束法三种方法。

4、摄影测量中常用的坐标系有像平面坐标系、像空间坐标系、像空间辅助坐标系、摄影测量坐标系、地面摄影测量坐标系和地面测量坐标系。

5、要将地物点在摄影测量坐标系中的模型坐标转换到地面摄影测量坐标系,最少需要个和个地面控制点。

6、摄影测量的发展经历了模拟摄影测量、解析摄影测量和数字摄影测量三个阶段。

三、简答题(30分)1、请说明实现自动相对定向的方法原理和关键技术2、什么是数字高程模型?并说明DEM的几种常用的表示形式及特点。

四、综合题(30分)1、推导摄影中心点、像点与其对应物点三点位于一条直线上的共线条件方程,说明式中各符号的意义,用图示意航摄像片的内、外方位元素,并简要叙述以上方程在摄影测量中的主要用途。

2、简述一种框幅式航空影像制作其核线影像的方法。

摄影测量作业3-空间后方交会计算

摄影测量作业3-空间后方交会计算
5
CFileDialog dlgOpenFile(TRUE, _T("txt"), NULL, OFN_FILEMUSTEXIST, _T("(文本文件)|*.txt|(所有文件)|*.*)||"));
if (dlgOpenFile.DoModal() == IDCANCEL) return;//如果选择取消按钮,则退出
原理、算法流程、源程序、计算结果、结果分析、心得体会等。
三.实验所用到的数学公式及程序计算步骤。
单张影像的空间后方交会:利用已知地面控制点数据及相应像点坐标 根据共线方程反 求影像的外方位元素。 数学模型:共线条件方程式:
3
求解过程: (1)获取已知数据。从航摄资料中查取平均航高与摄影机主距;获取控制点的地面测
CMatrix X,_A,_AA,N_AA; _A = ~A;//A 的转置 _AA = _A*A; N_AA = _AA.Inv();//_AA 的逆矩阵 X = N_AA*_A*L; return X; }
CMatrix CKongJianHouFangJiaoHuiDlg::GetA(CMatrix xyXYZ, double f, CMatrix XX)//计算系数矩 阵A {
CMatrix CKongJianHouFangJiaoHuiDlg::GetL(CMatrix xyXYZ, double f, CMatrix XX)//计算 L 矩阵 {
int iRow = xyXYZ.Row(); CMatrix L(2 * iRow, 1); double XS = XX(0, 0); double YS = XX(0, 1); double ZS = XX(0, 2);
A(2*i, 3) = y*sin(w) - (x*(x*cos(k) - y*sin(k)) / f + f*cos(k))*cos(w); A(2*i, 4) = -f*sin(k) - x*(x*sin(k) + y*cos(k)) / f; A(2*i, 5) = y; A(2*i+1, 0) = (a2*f + a3*y) / _Z; A(2 * i + 1, 1) = (b2*f + b3*y) / _Z; A(2 * i + 1, 2) = (c2*f + c3*y) / _Z; A(2 * i + 1, 3) = -x*sin(w) - (y*(x*cos(k) - y*sin(k)) / f - f*sin(k))*cos(w); A(2 * i + 1, 4) = -f*cos(k) - y/ f*(x*sin(k) + y*cos(k)); A(2 * i + 1, 5) = -x; } return A; }

摄影测量课后练习题总结

摄影测量课后练习题总结

第三章1、摄影测量对航摄资料有哪些基本要求?答:1)影像的色调要求影像清晰,色调一致,反差适中,像片上不应有妨碍测图的阴影。

2)像片重叠同一航线上要求两相邻像片应有一定的重叠,称航向重叠。

航向重叠:60% ~ 65% ,最小不应小于53%;相邻航线间也应有足够的重叠称旁向重叠。

旁向重叠:30% ~40% 最小不得小于15%3)像片倾角在摄影瞬间摄影机轴发生了倾斜,摄影机轴与铅直方向的夹角称为相片倾角,不大于2°,最大不超过3°。

4)航线弯曲受技术和自然条件限制,飞机往往不能按预定航线飞行而产生弯曲,造成漏摄或旁向重叠过小从而影像内业成图。

一般要求航摄最大偏距与全航线长之比不大于3%。

5)像片旋角相邻像片的主点连线与像幅沿航线方向两框标连线间的夹角称像片旋角,一般要求像片旋角不超过6°,最大不超过8°。

2、什么是像片重叠?为什么要求相邻像片之间及航线之间的像片要有一定的重叠?答:两张相邻的像片之间重叠的部分叫像片重叠为了满足测图的需要,在同一航线上,相邻两像片应有一定范围的重叠,称为航向重叠。

相邻航线也应有足够的重叠,称为旁向重叠。

3、什么是中心投影?什么是正射投影?答:若投影光线相互平行且垂直于投影面,称为正射投影若投影光线汇聚于一点,称为中心投影4、画图说明航摄像片上特殊的点、线、面。

P为倾斜的像片,即投影面,E为水平的地面,也称为基准面,S为摄影中心,E面与P面的交线TT又称为透视轴,透视轴上的点称为二重点。

5、摄影测量常用那些坐标系?各坐标系又是如何定义的?像方坐标系:像平面坐标系、像空间坐标系、像空间辅助坐标系;像平面坐标系:是以像主点为原点的右手平面坐标系。

像空间坐标系:以摄影中心S为坐标原点,x、y轴与像平面坐标系的x、y轴平行,z轴与光轴重合,形成像空间右手指教坐标系S-xyz。

像空间辅助坐标系:像点坐标可以直接从像片上量取获得,而各个像片的像空间坐标是不统一的,给计算带来了困难,就需要建立统一的坐标系,于是有了像空间辅助在坐标系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单像空间后方交会(遥感07-1、2学生适用)测绘学院 王双亭1 概述1.1 定义利用一定数量的地面控制点和对应像点坐标求解单张像片外方位元素的方法称为空间后方交会。

1.2 所需控制点个数与分布共线条件方程的一般形式为:⎪⎪⎩⎪⎪⎨⎧-+-+--+-+--=--+-+--+-+--=-)()()()()()()()()()()()(33322203331110S S S S S S S S S S S S Z Z c Y Y b X X a Z Z c Y Y b X X a f y y Z Z c Y Y b X X a Z Z c Y Y b X Xa f x x (1)式中包含有六个外方位元素,即κωϕ、、、、、S S S Z Y X ,只有确定了这六个外方位元素的值,才能利用共线条件方程真正确定一张像片的任一像点与对应地面点的坐标关系。

个数:对任一控制点,我们已知其地面坐标)(i i i Z Y X 、、和对应像点坐标)(i i y x 、,代入共线条件方程可以列出两个方程式,因此,只少需要3个控制点才能解算出六个外方位元素。

在实际应用中,为了避免粗差,应有多余检查点,因此,一般需要4~6个控制点。

分布:为了最有效地控制整张像片,控制点应均匀分布于像片边缘,如下图所示。

由于共线条件方程是非线性的,直接答解十分困难,所以首先将共线方程改化为线性形式,然后再答解最为简单的线性方程组。

分布合理 分布合理 分布不合理2 空间后方交会的基本思路2.1 共线条件方程线性化的基本思路在共线条件方程中,令)()()()()()()()()(333222111S S S S S S S S S Z Z c Y Y b X X a Z Z Z c Y Y b X X a Y Z Z c Y Y b X X a X -+-+-=-+-+-=-+-+-= (2) 则共线方程变为⎪⎪⎩⎪⎪⎨⎧-=--=-ZY fy y Z Xf x x 00 (3) 对上式两侧同乘Z ,并移至方程同侧,则有⎩⎨⎧=-+=-+0)(0)(00Z y y Y f Z x x X f (4) 令⎩⎨⎧-+=-+=Zy y Y f Fy Zx x X f Fx )()(00 (5) 由于上式是共线方程的变形,因此,Fy Fx 、是κωϕ、、、、、S S S Z Y X 的函数。

对Fy Fx 、分别按泰劳级数展开,并且只保留一次项,得⎪⎪⎩⎪⎪⎨⎧∆∂∂+∆∂∂+∆∂∂+∆∂∂+∆∂∂+∆∂∂+=∆∂∂+∆∂∂+∆∂∂+∆∂∂+∆∂∂+∆∂∂+=κκωωϕϕκκωωϕϕFyFy Fy Z Z Fy Y Y Fy X X Fy Fy Fy Fx Fx Fx Z Z Fx Y Y Fx X X Fx Fx Fx S S S S S S S SS S S S 00)()((6) 式中,0)(Fx 、0)(Fy 分别是Fx 和Fy 的初值;•∂∂Fx 、•∂∂Fy分别是Fx 和Fy 对各个外方位元素的偏导数;κωϕ∆∆∆∆∆∆、、、、、S S S Z Y X 分别是κωϕ、、、、、S S S Z Y X 初值的增量。

为了明确(6)式中常数项的意义,对(6)式两侧同乘以Z1-,则⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧∆∂∂-+∆∂∂-+∆∂∂-+∆∂∂-+∆∂∂-+∆∂∂-+-=-∆∂∂-+∆∂∂-+∆∂∂-+∆∂∂-+∆∂∂-+∆∂∂-+-=-κκωωϕϕκκωωϕϕFy Z Fy Z Fy Z Z Z FyZ Y Y Fy Z X X Fy Z Fy Z Fy Z Fx Z Fx Z Fx Z Z Z Fx Z Y Y Fx Z X X Fx Z Fx Z Fx Z SSS S S S S S S S S S )1()1()1()1()1()1()(11)1()1()1()1()1()1()(1100(7) 考查(7)式中的常数项,有)()]()[()]()[(])([1)(100000计计=-x x x x x x Z Xf x x Z x x X f Z Fx Z -----=----=-+-=-(8)式中x 是像点坐标的观测值;计x 是由相应地面坐标和外方位元素初值计算出的像点坐标。

这样(7)式中的常数项就有明确的意义,即为像点观测值和计算值之差。

同样也可以得到,)()]()[()]()[(])([1)(100000计计=-y y y y y y Z Y f y y Z y y Y f Z Fy Z -----=----=-+-=-(9)现将(7)式改写为⎩⎨⎧-∆+∆+∆+∆+∆+∆=-∆+∆+∆+∆+∆+∆=y S S S yxS S S x l a a a Z a Y a X a v l a a a Z a Y a X a v κωϕκωϕ262524232221161514131211 (10) 式中,y x v v 、为残差;ij a 为系数;κωϕ∆∆∆∆∆∆、、、、、S S S Z Y X 是待求值,y x l l 、是像点观测值和计算值之差。

与(7)式相比较,显然有计====x x l Fx Z a Fx Z a Fx Z a Fx Z a Fx Z a X Fx Z a x S S S -=∂∂-∂∂-∂∂-∂∂-∂∂-=∂∂-=κωϕ111Z 1Y 11615141312111 计====y y l FyZ a FyZ a FyZ a Fy Z a FyZ a X FyZ a y S S S -=∂∂-∂∂-∂∂-∂∂-∂∂-=∂∂-=κωϕ111Z 1Y 11262524232212 (10a ) 式(10)就是以外方位元素增量为待求值的共线条件方程线性化公式,也称误差方程式。

要得到完整的线性化形式,关键是求各个系数ij a ,而求ij a 的关键是求出Fy Fx 、对各个外方位元素的偏导数。

如何求偏导数,将在共线方程线性化部分介绍。

2.2 答解外方位元素的基本过程每个控制点都可以按(10)式列出两个误差方程式,n 个控制点可列出2n 个方程,用矩阵形式可表示为:L AX V -= (11)式中[]Tny n x y x yxv v v v v v 2211=V ;⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=n n n n n n a a a a a a a a a a a a a a a a a a 261622122111226216222212221211126116122112121111A ; []TSSS Z Y X κωϕ∆∆∆∆∆∆=X ;[]Tn y nxy xy xl l l l l l 2211=L 。

如果能答解这2n 个方程构成的方程组,则可得到外方位元素的增量。

具体的求解过程应是一个迭代过程:(1)给出外方位元素的初值,0000κωϕ、、、、、S S S Z Y X ;(2)对每个控制点计算误差方程式系数ij a 和y x l l 、,从而按(10)式组成误差方程式; (3)答解线性方程组,得到每个外方位元素的增量κωϕ∆∆∆∆∆∆、、、、、S S S Z Y X ;(4)将增量和初值相加,得到新的外方位元素值;(5)各个增量是否小于规定的限差?若是,则停止迭代运算;若不是,则将新外方位元素值作为初值重复(2)~(5)。

2.3 误差方程组的答解方法(最小二乘原理)式(11)是一个由2n 个方程组成的误差方程组,且方程个数多于待求值的个数,对这样的方程组应如何答解呢?在摄影测量中一般按最小二乘原理进行答解。

按最小二乘原理,求出的待求参数的最佳估计值应使各误差方程式的残差平方和为最小,即满足min =V V T (12)这样就转化为V V T对待求值的求极值问题。

下面以式(11)为例,说明求极值后误差方程式的变化。

将VV T 分别对κωϕ∆∆∆∆∆∆、、、、、S S S Z Y X 求极值,即令00000=∆∂∂=∆∂∂=∆∂∂=∆∂∂=∆∂∂=∆∂∂κωϕV V V V V V V V V V V V T T T S T S T S T Z Y X (13) 这样将得到六个新的线性方程式,方程式的个数与待求值的个数相同。

解这个方程组,则可得到κωϕ∆∆∆∆∆∆、、、、、S S S Z Y X 的最佳估计值。

在测量平差中把由式(11)变为式(13)的过程称为误差方程式的法化,法化后的方程式称为法方程式。

显然,法方程式的系数和常数项将与误差方程式不同。

究竟法方程式的系数、常数项和原误差方程式有什么变化,又有什么关系呢?这可以通过较复杂的推导过程来找到。

在这里,我们略去推导过程,只按矩阵方式给出结论。

由于L L L A X AX A X L AX L AX V V T T T T T T T +-=--=2)()(则022=-=∂∂L A AX A XVV T T T 整理后有L A AX A T T =令A A N T= 即为法方程式的系数阵。

两边同乘以1-N ,则可求出X ,即L A N X T 1-= (14)该式即为κωϕ∆∆∆∆∆∆、、、、、S S S Z Y X 的解。

3 共线条件方程的线性化在“共线条件方程线性化的基本思路”中,我们知道:共线条件方程线性化的关健是求各个偏导数(•∂∂Fx 和•∂∂Fy),下面我们分别求取线元素和角元素的偏导数。

3.1 线元素的偏导数已知⎩⎨⎧-+=-+=Z y y Y f Fy Zx x X f Fx )()(00 和 )()()()()()()()()(333222111S S S S S S S S S Z Z c Y Y b X X a Z Z Z c Y Y b X X a Y Z Z c Y Y b X X a X -+-+-=-+-+-=-+-+-= 则)()()()()()()()()()()()(032003200320031003100310y y c f c Z Zy y Z Y f Z Fy y y b f b Y Zy y Y Y f Y Fy y y a f a X Zy y X Y f X Fy x x c f c Z Zx x Z X f Z Fx x x b f b Y Zx x Y X f Y Fx x x a f a X Zx x X X f X Fx SS S S S S S S S S S S S S S S S S ---=∂∂-+∂∂=∂∂---=∂∂-+∂∂=∂∂---=∂∂-+∂∂=∂∂---=∂∂-+∂∂=∂∂---=∂∂-+∂∂=∂∂---=∂∂-+∂∂=∂∂ (15)如果把内方位元素也作为未知数进行答解,则Z x Fx -=∂∂0 00=∂∂y Fx X f Fx =∂∂ 00=∂∂x Fy Z y Fy -=∂∂0 Y fFy=∂∂3.2 角元素的偏导数Fx 和Fy 是角元素κωϕ、、的复合函数,为了推导的方便,我们将对角元素求导数的过程分为三个步骤。

相关文档
最新文档