小学五年级奥数数学余数问题课件PPT
余数的除法解决问题课堂ppt

余数的值是小于除数的,且余数的值是0、正数或负数。
特殊除法的认识
整除
01
当余数为0时,称除数为被除数的因数,此时被除数被整除。
余数为0的特殊情况
02
当被除数为0时,商为任意数,余数为0。当除数为0时,无法
进行除法运算,无意义。
不完全整除
03
当余数不为0时,称被除数无法被除数整除,此时不完全整除
规律
余数除法的结果是一个整数加上一个余数,其中整数表示商,余数表示余数 。
技巧
掌握一些常见的余数除法技巧,如倍数法、尾数法等,可以简化计算过程, 提高解题速度。
培养学生的数学思维和解决问题的能力
数学思维
通过余数除法的应用,可以培养学生的逻辑思维、数学思维和抽象思维等方面的 能力。
解决问题能力
余数除法解决问题课堂不仅传授知识,更注重培养学生的解决问题能力。通过引 导学生主动探究、发现规律、应用规律,帮助学生积累解决问题的经验,提高解 决问题的能力。
。
03
余数在生活中的应用
用余数解决时间分配问题
总结词
公平分配、优化资源
详细描述
在时间分配问题中,余数可以用于公平地分配时间资源,使得每个人都能够得到 他们所需要的合理时间。例如,可以将一天的时间划分为30份,每个人都按需分 配,余下的时间可以作为公共资源进行优化配置。
用余数解决物资分配问题
总结词
讲解如何利用余数的除法解决实际问题 总结并预告下次课的主题和内容
THANKS
感谢观看
05
本堂课小结
回顾余数在生活中的应用
分配问题
在分配物品时,常常会遇到剩余物品和不足整份分配的问题 。此时,余数除法可以帮助我们确定剩余物品的数量和如何 进行再次分配。
五年级尾数余数ppt课件

3、9×9×9×…×9[91个9]积的个位数是几?
思路导航:只要找出一个9相乘,积的个位是9, 两个9相乘,积的个位是1。三个9相乘,积的个位 是9,就可以发现规律性。
1,444…4÷6[100个4],当商是整数时,余数是几?
7 4 0 7 4 0…
6 4 4 4 4 4 4 4…4
42
24 24
已知,甲数除以9余7,乙数除以9余5,甲数 比乙数大。 (1)甲、乙两数的和除以9余数是几? (2)甲、乙两数的差除以9余数是几? (3)甲、乙两数的积除以9余数是几?
思路导航:1、甲、乙余数的和除以9与甲、乙两数的和除以9余数相同。(5+7) ÷9=1 …3
2、甲、乙两数的差除以9的余数与甲、乙两数余数的差除以9的余数相等。(7-5) ÷9=0 …2
分析:首先对317-2=315,再把315分解质因数: 315=3×3×5×7 ,所有符合条件的两位数再去组合 在一起。
2、写出除349后余4的全部两位数。
思路分析:首先对349-4=345,再把345分解质因数: 345=3×5×23 ,所有符合条件的两位数再去组合 在一起。
3、写出除1095后余3的全部三位数。
一列数
3 10 13 23 36 59 95 154 249 403 652 1055 1707 2762 4469 …
余数
0 1 12 0
2
21
0
1
1
2
0
2
2…
思路:从这列数除以3后的余数中来寻找规律性。从表中可以 发现,这些余数是按照(0、1、1、2、0、2、2、1)顺序出现的。 因为1991÷8=248组…7,即是第249组中的第7个余数是2。
1、61×61×61×…×61[2011个6]积的尾数是几?
五年级奥数-数论之余数问题

数论之余数问题余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b=q ……r ,也就是a =b ×q +r,0≤r <b ;我们称上面的除法算式为一个带余除法算式。
这里:(1)当时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图,这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理0r =0r ≠a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m 同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。
五年级奥数余数问题讲练PPT

验证:
两两作差求公因数,除数就是公因数
45÷1274==2362‧‧‧‧‧‧‧‧‧3‧3‧1 59-45=14
5599÷÷217=4==2849‧‧‧‧‧‧‧3‧31 101-59=42 101÷1274==51704 ‧‧‧‧‧‧‧313
14的因数有:1、2、7、14 42的因数有:1、2、3、6、7、14、21、42
15×4-1=59 59÷7=8 ‧‧‧‧‧‧ 3 (不符合)
精炼1
(1)3356+7685+904除以13的余数是多少?
3356÷13=258 ‧‧‧‧‧‧ 2 7685÷13=591 ‧‧‧‧‧‧ 2 904÷13=பைடு நூலகம்9 ‧‧‧‧‧‧ 7 2+2+7=11 11<13 答:3356+7685+904除以13的余数是11。
精炼1
(2)17×354×409×672除以13的余数是多少?
答:这个数可能是2、7或14。
精炼2
73、216、227被某个数b除余数相同,那么,108被这个数除的余数是多少?
216-73=143
143的因数有:1、11、13、143
227-216=11
11的因数有:1、11
108÷11=9 ‧‧‧‧‧‧ 9
答:108被这个数除的余数是9。
例题3
一个大于1的数去除290、235、200时,得余数分别为a,a+2,a+5,则这个自然
17÷13=1 ‧‧‧‧‧‧ 4
354÷13=26 ‧‧‧‧‧‧ 6
409÷13=31 ‧‧‧‧‧‧ 6 672÷13=51 ‧‧‧‧‧‧ 9
4×6×6×9=1296
1296>13
1296÷13=99 ‧‧‧‧‧‧ 9
小学奥林匹克数学 竞赛数学 五年级 第16讲-余数

知识点回顾一、替换求余:可加性、可减性以及可乘性二、特性求余:例如2、3、4、5、7、8、9、11、13、99等1111除以一个两位数,余数是66,求这个两位数.1111661045-=104551119=⨯⨯1045的约数大于余数66 这个两位数是9521421421421421个(1)除以4和125的余数分别为多少?(2)除以9和11的余数分别是多少? 21808808808808个(1)一个数除以4的余数只需考虑它的末两位除以4的余数. 除以4余121除以4余1 (2)一个数除以9的余数等于它的各位数字之和除以9的余数.(88)21336+⨯=除以9余3一个数除以11的余数等于奇数位数字和减去偶数位数字和的差除以11的余数. (88)11176+⨯=(88)10160+⨯=除以11余5 176-160=16 16÷11=1余5一个数除以125的余数只考虑末三位除以125的余数. 421125346÷=除以125余46一年有365天,轮船制造厂每天都可以生产零件1234个.年终将这些零件按19个一包的规格打包,最后一包不够19个.请问:最后一包有多少个零件? 1234196418÷=36519194÷=1234365⨯18472⨯=72除以19余15 最后一包有15个零件.67222221⨯⨯⨯⨯-个自然数的个位数字是多少? 22⨯222⨯⨯2222⨯⨯⨯22222⨯⨯⨯⨯2 ……个位 2 4 8 6 267除以4余36722222⨯⨯⨯⨯个的个位数字是8 个位数字就是729一年有365天,轮船制造厂每天都可以生产零件1234个。
年终将这些零件按19个一包的规格打包,最后一包不够19个。
请问:最后一包有多少个零件?20072007200720071232006+++⋅⋅⋅+算式计算结果的个位数字是多少?1、5、6、10的2007次方的个位数字就是1,5,6,0.1次方2次方3次方4次方5次方6次方…2007次方2 2 4 8 6 2 4 (8)3 3 9 7 1 3 9 74 4 6 4 6 4 6 47 7 9 3 1 7 9 38 8 4 2 6 8 4 29 9 1 9 1 9 1 9 156087432945+++++++++= 2007200720071210+++的个位数字是5 200720072007 200120022006+++的个位数等于的个位数是118745631+++++=的个位数,为152001⨯+108888888+⨯++⨯⨯⨯个除以5的余数是多少?8除以5余310333333+⨯++⨯⨯⨯个3 3,23,33,43,⋅⋅⋅除以5的余数依次为3,4,2,1,3,4,⋅⋅⋅342110+++=347+=余2如果某个自然数除以49余23,除以48也余23.那么这个自然数被14除余数是多少?这个数减去23后是49和48的一个公倍数23,2349481+⨯⨯,2349482+⨯⨯,⋅⋅⋅23÷14=1余9一个自然数除以19余9,除以23余7.那么这个自然数最小是多少?被23除余7的所有数:7,30,53,76,99,122,145,168,191,214,237,…第一个除以19余9的数是237刘叔叔养了400多只兔子,如果3只一个笼,那么最后一笼只有2只;如果5只一笼,那么最后一笼只有4只;如果7只一笼,那么最后一笼只有5只.刘叔叔一共养了多少只兔子?除以3余2 除以5余4 除以7余5 3×5-1=14 14,14+15 , 14+15×2 ,14+15×3,…14+15×5=89 89+105×3=404只100多名小朋友站成一列.从第一人开始一次按1,2,3,…,11的顺序循环报数,最后一名同学报的数是9;如果按照1,2,3,…,13的顺序循环报数,那么最后一名同学报的数是11.请问:一共有多少名小朋友?除以11余9 除以13余11 少2 11132141⨯-=123123123123123个除以99的余数是多少?99的整除特性:两位截断求和 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 …… 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3123÷2=61余1 12+31+23=66 66×61+23+1=405040+50=90把63个苹果,90个桔子,130个梨平均分给一些同学.最后一共剩下25个水果没有分出去.请问:剩下个数最多的水果剩下多少个?++=6390130283-=283252582582343=⨯⨯258的约数有1,2,3,6,43,86,129和25810<人数<63 人数只能是43个分完后苹果剩20个,桔子剩4个,梨剩1个。
五年级奥数-数论之余数问题

数论之余数问题余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b=q ……r ,也就是a =b ×q +r,0≤r <b ;我们称上面的除法算式为一个带余除法算式。
这里:(1)当时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图,这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理0r =0r ≠a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m 同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。
五年级奥数专题第一讲 尾数和余数

五年级奥数专题第一讲 尾数和余数【一】 写出除85后余1的数有哪些?练习1、写出除98余2的数有哪些?2、写出除105后余3的数有哪些?【二】 2×2×2×2×2×2×2×2积的尾数是几?练习1、5×5×5×5×5×5×5积的尾数是几?2、16×16×16×16×16×16积的尾数是几?【三】 写出除214后余4的全部两位数。
练习1、写出除111后余6的全部两位数。
2、180除以一个两位数后余数是5,适合条件的两位数有哪些?【四】 ”个“125100125125125125⨯⨯⨯⨯积的尾数是几?练习1、)个()()262110026212621()2621(⨯⨯⨯⨯⨯⨯⨯积的尾数是几?2、”个“45044444⨯⨯⨯⨯的积的个位数字是几?【五】”个“41004444÷6当商是整数时,余数是几?练习1、”个“5200855555÷13当商是整数时,余数是几?2、当商是整数时,余数是几?(1) ”个“6506666÷4 (2)”个“8808888÷7(3) ”个“410004444÷74 (4)”个“110001111÷5【六】 有一列数,前两个数是3与4,从第3个数开始,每一个数都是前两个数的和。
这一串数中第2000个数除以4,余数是多少?练习1、有一串数排成一行,其中第一个数是3,第二个数是10,从第三个数起,每个数恰好是前两个数的和。
在这一串数中,第2006个数被3除,所得的余数是几?2、一列数1、2、4、7、11、16、22、29……这一列数的规律是第二个数比第一个数多1;第三个数比第二个数多2;第四个数比第三个数多3,依次类推。
这列数左起第1000个数被5除余数是几?【七】 甲数除以11余9,乙数除以11余7。
五年级奥数:第14讲 余数问题

五年级奥数:第14讲余数问题在整数的除法中,只有能整除与不能整除两种情况。
当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。
余数有如下一些重要性质(a,b,c均为自然数):(1)余数小于除数。
(2)被除数=除数×商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数。
(3)如果a,b除以c的余数相同,那么a与b的差能被c整除。
例如,17与11除以3的余数都是2,所以17-11能被3整除。
(4)a与b的和除以c的余数,等于a,b分别除以c的余数之和(或这个和除以c的余数)。
例如,23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于3+1=4。
注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。
(5)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c 的余数)。
例如,23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于3×1=3。
注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23×19)除以5的余数等于(3×4)除以5的余数。
性质(4)(5)都可以推广到多个自然数的情形。
例1 5122除以一个两位数得到的余数是66,求这个两位数。
分析与解:由性质(2)知,除数×商=被除数-余数。
5122-66=5056,5056应是除数的整数倍。
将5056分解质因数,得到5056=26×79。
由性质(1)知,除数应大于66,再由除数是两位数,得到除数在67~99之间,符合题意的5056的约数只有79,所以这个两位数是79。
例2 被除数、除数、商与余数之和是2143,已知商是33,余数是52,求被除数和除数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题【五】(★ ★ ★ ★)
在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,
则将这几个数归为一组. 这样的数组共有
组.
要求:和的余数为7 余数依次是6,0,2,3,5 余数和是7:2+5, 0+2+5; 3+6+2+5; 0+2+5+3+6 共有4组符合题意要求。
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
您的内容打在这里,或者 通过复制您的文本后,在 此框中选择粘贴,并选择 只保留文字。在此录入上 述图表的综合描述说明。
自然数 3100 - 1的个位数字是多少?
3100=3×3×3×……×3 100÷4=25 余数:1-1=0
31=3 32=3×3=9 33=3×3×3=27 34=3×3×3×3=81 35=……=243 ……
例题【四】(★ ★ ★ ★ )
有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整 数是 .
例题【六】(★ ★ ★ ★)
六张卡片上分别标上2357、2367、4143、1419、2485、8465六个
数, 甲取4张,乙取1张,丙取1张,结果发现甲、乙各自手中卡片上
的数之和一个人是另一个人的8倍,则丙手中卡片上的数是
.
甲、乙手中卡数字和应9的倍数 以9的余数:8,0,3,6,1,5 因为,这个6个数的和除数是5, 所以,多了余5的卡片
以下赠品教育通用模板
前言
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。您的内容打在这 里,或者通过复制您的文本后,在此框中选择粘贴,并选择只保留文字。 在此录入上述图表的综合描述说明。 您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。您的内容打在这 里,或者通过复制您的文本后。
例题【一】(★ ★ )
⑴ 123+456+789除以11的余数是多少? ⑵ 123×456×789的结果除以23的余数是多少?
(2) 123÷23=…8 456÷23=…19 789÷23=…7
(8÷19×7)÷23 (56×19)÷23
=10×19÷23 =…6
例题【二】(★ ★ ★)
188+288+388+…+2088除以9、11的余数各是多少?
290=29×10=2×5×29
70÷A=□…a
约数:1、2、5、29、10、58、
110÷A=□…b
145、280
160÷A=□…c
A:29、58
(170+660+160)÷A=…50
如果A=58 a=12 b=52
300÷A=…50
如果A=29 a=12 b=23
340-50=190
∴290被A整除 C=15
讲余数定理
五年级 第十三课
本讲主线
2、余数的三大性质 3、三性的实际应用
例题【一】(★ ★ )
⑴ 123+456+789除以11的余数是多少? ⑵ 123×456×789的结果除以23的余数是多少?
(1)和的余数=余数的和 123÷11=…2 456÷11=…5 789÷11=…8 2+5+8=15 15÷11=1…4
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。
例题【六】(★ ★ ★ ★)
从1~20中最多可以选取多少个数,使得取出的 数中任意三个数的和能被3整除?
1~20,对于3而言:1,2,0,1,0,1,2… 要想任意3个数的和是3的倍数 所以,按余数分组(1,1…1)3个(2,2,2,2)7个 (0,0…0) 最多可以选出7个数
知识链接
1、余数的三大性质 ⑴ 和的余数等于余数的和 ⑵ 差的余数等于余数的差 ⑶ 积的余数等于余数的积 2、替换求余法 3、整除判定法则—特征求 余法
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。
01 点击此处添加标题 02 点击此处添加标题 03 点击此处添加标题
您的内容打在这里Байду номын сангаас或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
原式=(188+2088)×20÷2 =2276×10
除以:8×1=8 除以:10×10=100
100÷11=9…1
知识链接
2、特征求余法: ⑴ 尾数系,(2、5) ,(4、25) ,(8、125) ⑵ 和系,3,9 ⑶ 11:奇数位数字之和-偶数位数字之和的差. ⑷ . 7、11、13:截断法.
您的内容打在这里,或者 通过复制您的文本后,在 此框中选择粘贴,并选择 只保留文字。在此录入上 述图表的综合描述说明。
例题【三】(★ ★ ★)
一年有365天,轮船制造厂每天都可以生产零件1234个. 年终将这些零件 按19个一包的规格打包,最后一包不够19个. 请问:最后一包有多少个 零件?
本质,零件总数÷19的余数, 即,(1234×365)÷19 余数18×4=72 72÷19=3…15 最后一包有15个
【巩固】(★★★)
目录
01
单击添加标题
02
单击添加标题
03
单击添加标题
04
单击添加标题
01 点击添加文字
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。