组合恒等式证明八法
初中数学重点梳理恒等式证明

初中数学重点梳理恒等式证明初中数学中的恒等式证明是一个重要的知识点,也是数学学习中的基础内容。
恒等式证明主要通过逐步推导,将一个式子转化为另一个等价的式子,从而证明恒等式成立。
下面是初中数学中常见的恒等式证明的一些重点梳理。
1.基本的恒等式:-交换律:a+b=b+a,a×b=b×a-结合律:(a+b)+c=a+(b+c),(a×b)×c=a×(b×c)-分配律:a×(b+c)=a×b+a×c2.等式转换的基本方法:-两边加减相等的量-两边乘除相等的量-合并同类项-提取公因式-分解因式3.恒等式证明的常见例题:- 证明两个三角函数的恒等式,如证明sin²θ + cos²θ = 1-证明平方差等式,如证明a²-b²=(a+b)(a-b)- 证明平方和等式,如证明(a + b)² = a² + 2ab + b²-证明乘法公式,如证明(a+b)×(a-b)=a²-b²4.使用排列组合证明恒等式:-利用组合数等恒等式,如证明C(n,r)=C(n,n-r)-利用排列数等恒等式,如证明A(n,m)=n!/(n-m)!-利用二项式定理等恒等式,如证明(a+b)ⁿ=C(n,0)aⁿ+C(n,1)aⁿ⁻¹b+...+C(n,n)bⁿ5.使用数学归纳法证明恒等式:数学归纳法是一种证明恒等式的常用方法,通过证明基础情况成立,以及假设n=k时等式成立,再证明n=k+1时等式成立来证明恒等式的真实性。
6.利用三角恒等关系证明恒等式:三角恒等关系是三角函数中常见的等式,通过变换、代入等方法,可以将一个三角函数的恒等式转化为另一个等价的恒等式。
7.利用代数运算规律证明恒等式:例如利用加法运算的逆元、乘法运算的逆元以及分配律等运算规律,可以将一个等式转化为另一个等价的等式。
浅谈组合恒等式证明的常用方法

浅谈组合恒等式证明的常用方法组合恒等式是组合数学中常见的等式形式,它们描述了一些集合之间的数量关系。
证明组合恒等式的方法有很多种,下面将介绍几种常见的方法。
一、代数证明法代数证明法利用组合数的性质以及代数运算的法则来证明组合恒等式。
该方法的关键在于将组合数的定义表示为代数式,并对其进行适当的变换,最终证明等式左边和右边是相等的。
例如,要证明组合恒等式$\binom{n}{k} = \binom{n-1}{k-1} +\binom{n-1}{k}$。
首先,使用组合数的定义$\binom{n}{k} = \frac{n!}{k!(n-k)!}$,然后对等式两边应用阶乘的性质进行变换。
$\frac{n!}{k!(n-k)!} = \frac{(n-1)!}{(k-1)!(n-k)!} +\frac{(n-1)!}{k!(n-k-1)!}$接着,利用阶乘的定义$n! = n \cdot (n-1)!$,并化简分子部分的阶乘。
$\frac{n!}{k!(n-k)!} = \frac{n}{k} \cdot \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{n-k}{k} \cdot \frac{(n-1)!}{k!(n-k-1)!}$继续变换,将分式化为组合数的形式。
$\frac{n}{k} \cdot \binom{n-1}{k-1} + \frac{n-k}{k} \cdot\binom{n-1}{k} = \binom{n}{k}$最后,通过代数运算的法则,将等式两边进行合并,从而证明了组合恒等式。
二、递归证明法递归证明法是一种基于递归关系的证明方法。
该方法的关键在于通过归纳法证明递归关系成立,从而证明组合恒等式。
例如,要证明组合恒等式$\binom{n}{k} = \binom{n-1}{k-1} +\binom{n-1}{k}$。
首先,考虑递归关系$\binom{n}{k} = \binom{n-1}{k-1} +\binom{n-1}{k}$。
组合恒等式的证明方法与技巧

证明组合恒等式的方法与技巧前言组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排前言列组合、二项式定理为基础.组合恒等式的证明有一定的难度和特殊的技巧,且灵活性很强,要求学生掌握这部分知识,不但要学好有关的基础知识,基本概念和基本技能,而且还要适当诱导学生拓宽思路、发挥才智,培养解决问题方法多样化的思想.下面就以例题讲解的形式,把证明组合恒等式的常见方法与技巧一一列举出来.1. 利用组合公式证明组合公式:mn C =n!!n m m (-)!例1. 求证:m mn C =n 11m n C --分析:这是组合恒等式的一个基本性质,等式两边都只是一个简单的组合数.由此,我们只要把组合公式代入,经过简化比较,等号两边相等即可.证:∵ m mn C =m n!!n m m (-)!11m n C --=n n !1!n m m (-1)(-)(-)!=n n !m 1!n m m m (-1)(-)(-)!=m n!!n m m (-)!∴ m mn C =n --11m n C .技巧:利用组合公式证明时,只须将等式中的组合数用公式代入,经过化简比较即可,此方法思路清晰,对处理比较简单的等式证明很有效,但运算量比较大,如遇到比较复杂一点的组合恒等式,此方法而不可取.2. 利用组合数性质证明组合数的基本性质:(1)m n C =n mnC -(2)1mn C +=mn C +1m nC -(3)k kn C =n k 11n C --(4)++...+=012n 2nn n n n C C C C-+-+...+(-1)=00123n nn n n n n C C C C C (5)例2:求证:-++3...+n =n 123n 122n n n n n C C C C分析:等式左边各项组合数的系数与该项组合数上标相等,且各项上标是递增加1的,由此我们联想到组合数的基本性质:k kn C =n k 11n C -- ,利用它可以将各项组合数的系数化为相等,再利用性质++...+=012n 2n n n n n C C C C 可得到证明.证:由k kn C =n k 11n C -- 得123n2n n n n C C C C ++3...+n=012n 11111n n n n n n n C C C C -----++...+n =n (012n 11111n n n n C C C C -----++...+) =n n 12-.例3.求证:012k 1k 1m m 1m 2m k 1m k C C C C C --+++-++++...+=分析: 观察到,等式左边各项的组合数的上标和下标存在联系:上标+m =下标,而且各项下标是递增+1的.由此我们想到性质(2),将左边自第二项各项裂项相消,然后整理而得到求证.证:由性质(2)可得i m i 1C ++=i m i C ++i 1m i C -+ (i ∈N ) 即im i C +=i m i 1C ++-i 1m i C -+令i =1,2,…,k -1,并将这k -1个等式相加,得12k 1m 1m 2m k 1C C C -+++-++...+ =1021k 1k 2m 2m 1m m m k m k C C C C C C --+++3+2++-1-+-+...+- =-0m 1C ++k 1m k C -+ =-0m C +k 1m k C -+∴012k 1k 1m m 1m 2m k 1m k C C C C C --+++-++++...+=.技巧:例2和例3的证明分别利用性质(3)(5)、(2)此方法的技巧关键在于观察,分析各项组合数存在的联系,读者应在平时实践做题总结,把它们对号入座,什么样的联系用什么样的性质来解决.3. 利用二项式定理证明我们都知道二项式定理:n n 1n 2n 2n 1n n n n n a b a a b a b ab b C C C -1-2--1(+)=+++...++,对于某些比较特殊的组合恒等式可以用它来证明,下面以两个例子说明3.1.直接代值例4.求证:(1)-1-1+3+3+...+3+3=122n n 1n 2n n n n 2C C C (2)---1--++...+(-1)+(-1)=n n 11n 22n n 1nn n n 22221C C C 分析:以上两题左边的各项组合数都是以 i n ii n ab C - 的形式出现,这样自然会联想到二项式定理.证:设n n 1n 2n 2n 1n n n n n a b a a b a b ab b C C C -1-2--1(+)=+++...++ ① ⑴ 令a =1,b =3,代入①,得 -1-+)=1+3+3+...+3+3n 122n n 1n n n n (13C C C 即, -1-1+3+3+...+3+3=122n n 1n 2n n n n 2C C C(2) 令a =2,b =-1,代入①,得n n n 11n-22n 1n 1n n n n 121C C C ---(2-1)=2-2+2+...+(-)+(-)即,---1--++...+(-1)+(-1)=n n 11n 22n n 1n n n n 22221C C C .技巧:此方法的关键在于代值,在一般情况,a ,b 值都不会很大,一般都是0, 1,-1,2,-2 , 3,—3这些数,而且a ,b 值与恒等式右边也有必然的联系,如上题中1+3=22,2-1=1,在做题的时候要抓住这点.3. 2.求导代值例5.求证: -+3+...+(-1)=(-1)23nn 2n n n 212nn n n 2C C C (n ≧2)分析:观察左边各项组合数的系数发现不可以直接运用二项式定理,但系数也有一定的规律,系数都是i(i-1) i=2,3,…n 我们又知道(x i)’’=i(i-1)x i-2由此我们想到了求导的方法.证:对n 0122n n n n n n x x x x C C C C (1+)=+++...+ 两边求二阶导数,得n 223n n 2n n n n n 1x 212x n n x C C C --(-1)(+)=+3+...+(-1)令x=1得 -+3+...+(-1)=(-1)23n n 2n n n 212n n n n 2C C C (n ≧2)技巧:此方法证明组合恒等式的步骤是,先对恒等式na x (+)=i 1mnn i i C ax -=∑ 两边对x 求一阶或二阶导数,然后适当选取x 的值代入.4. 比较系数法比较系数法主要利用二项式定理中两边多项式相等的充要条件为同次幂的系数相等加以证明.例6.求证:2222++)+()+()+...+()=012m m 1m 22(n nn n C C C C C (范德蒙恒等式)分析:本题若考虑上面所讲和方法来证明是比较困难的,注意到等式左边各项恰是二项展开式中各项二项式系数的平方,考虑二项展开式 (1+)n x =+0n C ++...+122n nn n n x x x C C C 和(1+)=+++...+n 012n n n n n 2n 1111x x x xC C C C 这两个展开式乘积中常数项且好式是2222++)+()+()+...+()012m m 1m 2(n n C C C C证:∵n 0122n n n n n n x x x x C C C C (1+)=+++...+ (1+)=+++...+n 012n n nn n 2n 1111x x x xC C C C ∴n1x (1)n x+(1+)=(+++...+0122n n n nn n x x x C C C C ) (+++...+012n n nn n 2n 111x x xC C C C ) 又有,n1x (1)n x+(1+)=2nn(1+x)x 比较两边的常数项,左边常数项为2222++)+()+()+...+()012m m 1m 2(n n C C C C右边的常数项为2nn C ,根据二项展开式中对应项的唯一性得 2222++)+()+()+...+()=012m m 1m 22(n n n n C C C C C技巧:此方法关键是适当地选择一个已知的恒等式,然后比较两边x 同次幂的系数.当然,已知恒等式的选择不是唯一的,例5也可以选择已知恒等式n 2x (1)(1)n nx x +=+(1+) ,只须比较恒等式中两边含有nx 的系数即可得证,证明留给读者.5. 利用数列求和方法证明回到例2,除了利用组合数的性质,我们还可以有其他方法.观察,恒等式左边的各项组合数的系数为等差数列,现在我们仿照求和公式(1)12 (2)n n n -+++=的证明来证明例2 证:设123nn n n n s=C 2C 3C ...n C +++ ① 则nn-121n n n n s=n C n-1)C ...2C C +(++ 01n-2n-1n n n n =n C n-1)C ...2C C +(++ ② ①+②得01n-1nn n n n 2s=n C C ...n C C n +++n 01n-1nn n n n =n(C C ...C C )+++=n 2n∴ 12n s n -=技巧:此方法的证明有一定的特殊性,分析等式中组合数系数的变化规律尤其重要,知识的迁移在此方法是一个很好的见证.6. 利用数学归纳法证明我们都知道数学归纳法,在证明数列的题目中,我们就体会了数学归纳法的好处,只要按照数学归纳法的两个步骤进行就可以了.那么,组合恒等式的证明可不可以用数学归纳法来证明呢看下面的一个例题 例7.已知{n a }是任意的等差数列,且n ≧2,求证:123n n+1a -a +a -...+(-1)a +(-1)a =0012n-1n-1nn n n n n n C C C C C分析:由于本题恒等式左边的各项组合数系数是一个不确定的等差数列,用上面的方法处理就比较困难,又因为等式含有数列,我们不妨用数学归纳法试试.证:i) 当n =2时,因为2132a a a a -=-所以12320a a a -+=,故等式成立,ii) 假设,当n =k (k ≧2)时等式成立,即对任何等差数列{n a },有,123k k+1a -a +a -...+(-1)a +(-1)a =0012k-1k-1kk k k k k k C C C C C ① 则当n =k +1时,利用组合数性质,有+1+1+2+13+1k +1k+2a -a +a -...+(-1)a +(-1)a 012k k k k +111+1k k k k k C C C C C123-+1k +1k+2=a -(+)a +(+)a -... +(-1)(+)a +(-1)a 01021k k k 1k k k k k k k k k k C C C C C C C C 123k +1--234k +1k +2=a -a +a -...+(1)a -a -a +a -...+(1)a +(1)a 012k k 012k 1k 1k k[-][--]k k k k k k k k k C C C C C C C C C因为根据归纳假设,当n =k 时,对任意等差数列12k 123k 2a a a a a a ++,,...,与,,①式都成立,所以上式右端的两个方括号都等于零.于是我们证明了当n =k +1时等式也成立,根据(1)和(2)可知,等式对n ≧2的任何自然数都成立.技巧:用本方法证明的思路清晰,只须分两步进行即可,但归纳法的关键是由“假设n =k 成立,推导到n =k +1也成立”这一步中间的变换过程比较复杂,在“无路可走”的情况之下,归纳法也是一个好的选择.7. 利用组合分析方法证明所谓组合分析法就是通过构造具体的组合计数模型,采用了“算两次”的方法,再根据组合数的加法原理和乘法原理得到恒等式两边相等.例8.证明:--++...+=0112n 1n n 12n n n n n n n C C C C C C C (n ≧2)证明:算右边,假设有2n 个球,现要在2n 个球中任取出(n -1个,取法有 -n 12n C 种,算左边,把2n 个球分成两堆,每堆个n 个,现要 在2n 个球在中取出(n -1)个,取法是,在第一堆取0个,第二堆取(n -1)个,或第一堆取1个,第二堆 取(n -2)个,或…或第一堆取(n -1)个,第二堆 取0.再根据加法原理总的取法有 ---++...+0n 11n 2n 10n n n n n n C C C C C C 又因为---++...+0n 11n 2n 10n n n n n n C C C C C C =-++...+0112n 1nn n n n n n C C C C C C所以,左右两边都是在2n 个球中取出(n -1)个球,因此有,--++...+=0112n 1n n 12n n n n n n n C C C C C C C (n ≧2)技巧:用组合分析法证明组合恒等式的步骤是:选指出式子的一边是某个问题的解,然后应用加法原理和乘法原理等去证明式子的另一边也是该组合问题的解.用此方法也可以证明例6,证明过程非常简洁.8概率法证排列组合基本理论是古典概型计算的基石.能否用古典概型来解决某些排列组合问题我们来看下面的例子 例9证明组合数加法题推公式:.21111C C C C k n k n k n k n ----+++=分析:把特征等式经过适当变形,使之右端变为1,而左端为若干项之和,根据左端和式中各项的特点,构造以概率模型,并找到样本空间的一个特殊分化,使之相应概率等于左端和式的各项,从而得证. 证明:我们将公示变形为.11211111=+++--+--+CC CC CC k n k n k n k n k n k n下面利用超几何分布概率公式构建摸球模型来证明:设袋中有1+n 只球,其中有1只黑球,1只白球,现随机地抽取k 只球()11+≤≤n k .设事件A :“抽取的k 只球中含有黑球”,B :“抽取的k 只球中含有白球”,则()CC C kn knA P 101+= 由全概率公式得()()()()()B A P B P B A P B P A P +==CC C CC C CC C CC C knk n k n k n k nk n k n k n 1111101121111111--+---+-•+• =CC CCkn k n k n k n 111121+--+--+ 由()()1=+A P A P ,立即得证该公式技巧:利用概率对立事件发生的概率和为1,或是在某种情况下必然事件的概率也为1.可以与实际相结合,容易理解.9 几何法例10 证明nnn n n C C C 21=+++ 分析:主要是利用组合的几何意义来证明.无重组合Cn 1n +的几何意义表示平面坐标上的(0,0)点到整点(n,m )(这里n,m 都是整数)的递增路径的总和.一条从点(0,0)到点(n,m )的递增路径是 指一个有长度为1的端点为整点的线段首尾连接所组成的折线, 并且每一条线段的后一个端点的坐标或者在x 上或者在y 上,比 前一个端点增加一的单位长,水平走一步为x,垂直走一步为y,图 1中的递增路径可表示为:x,y,x,x,y,y,x,x,y,y 证明:由图2可知等式的左边,Cn0表示从(0,0)到(0,n )点的增路径,Cn1表示从(0,0)到(1,n-1)点的增路径数,┄,Cn n1-表示从(0,0)到(n-1,1)点的的增路径数,Cn n表示从(0,0)到(n,0)点的的增路径数1,而这所有的地 增路径之和就是从(0,0)点到斜边上的整点的递增路径. 另一方面,从(0,0)点到斜边上任何一整点的递增路径是 n 步步长,每一步是x 或者y ,有两种选择,由乘法法则,n 步的不同方法的总数为2n ,所以等式成立.10 用幂级数法我们知道,()1-1--n x 可展成如下幂级数: ()=---11n x k k k kn x C∑∞=+01<x现在我们用次展开式证明下列等式 例11 证明C C C C n m n n m n n n n n 111+++++=+++证明:因为 ()()()111-1-+--x x n =()21---n x左边应为:()()()1111-+---x x n =∑∑∞=∞=+•0i ikk nk n x x C右边应为:()=---21n x k k n k n x C ∑∞=+++011比较两边nx 的系数可知,原等式成立.技巧:对组合求和,当组合下标变动时,常用幂级数方法.11微积分法例11 求证:()∑∑==-=-nk kn nk k kkC 11111 分析:利用微分与积分的相互转化是问题得以解决,求导后再积回去,不改变原等式的性质. 证明:令 ()()k k nnk k x kx f C∑=--=111则 ()00=f ,()()Ck nnk k kf ∑=--=1111()()1111-=-∑-='k nk kn k xx f C =()k n k k n kx x C ∑=--111=()x x n---11=()()x x n----1111 =()()()121111--++-+-+n x x x即()()∑-=-='11n j jx x f上式两边同时求积分得 ()()C x j x f n j j +-+-=∑-=+11111所以 ()C j f n j ++-==∑-=11100 ⇒ ∑∑-===+=101111n j nk kj C 从而 ()()∑∑=-=++-+-=n k n j j kx j x f 1111111()()∑∑==-==-nk knnk k k f kC 111111 12 递推公式法上述例12是否还可以用递推公式的方法解决,我们来看一下· 证明:令()∑=--=nk k nk n Ckf 111 ( ,3,2,1=n )则 ,11=f 当2≥n 时,n f =()()C C k n k n nk k11111-k 1----=+∑=()()∑∑=-----=--+-nk k n k kn n k k CC kk1111111111=()∑=---n k k n k n C n f 1111=()⎥⎦⎤⎢⎣⎡---∑=-11101n k k n kn C n f=()1011---n f n =n f n 11+- 所以 n f f n n 11+=-=n n f n 1112+-+-=nf 131211++++==∑==++++n k kn 1113121113 生成函数法首先介绍生成函数相关定义和定理.定义1 设{}n a 是一个数列,做形式幂级数() +++++=nn x a x a x a a x f 2210称()x f 为数列{}n a 的生成函数. 定义2 对任何实数r 和整数k 有=Ck r()()!111k k r r r +-- 000>=<k k k定理1 设数列{}{}n n b a ,的生成函数为()()x B x A ,,若∑==ni i n a b 0,则()()xx A x B -=1 定理2 设m 是一个有理数,R a ∈,有()∑∞==+01k k k kmmx a ax C例13 设n ∈N,有())3)(2(11123+++++n n n n Cn n证明:设数列Ck kkn +2的生成函数A(x),即A(x)=xC k kk kn k +∞=∑02设∑==n i i n a b 1,先求A(x),由()x n --11-=xC kk kkn ∑∞=+1对上式两边求导得:()()xC k k kk n n k x n 11211-∞=+--∑=-+两边同乘x 得:()()x C kkk n k n k x n +∞=--∑=-+1211对上式两边求导得:()()()()()2311121-----++-++n n x n x x n n =xC k k k kn k 112-+∞=∑两边同乘x 得:()()()()()x x n x x n n n n 22311121-----++-++=xC kkk kn k +∞=∑12=A(x)由定理1=-=xx A x B 1)()(()()()()()x x n x x n n n n 32411121-----++-++ 由⑴式得()41---n x 中2-n x的系数为Cn n 212-+,()3-1--n x 中1-n x的系数为Cn n 112-+.因此)(x B 展开式中nx 的系数为 =n b ()()()121112212++++-+-+n n n C C n n n n =()()()3211123+++++n n n n Cn n因此Ck kkn nk +=∑12=()()()3211123+++++n n n n Cn n14 牛顿公式法相关定理及定义:定义1 设(){}0≥n n f 为任一数列,令△()()()n f n f n f -+=1 () ,2,1,0=n△()n f k =△()11+-n f k -△()n f k 1- () ,2,1,0=n这里△成为差分算子.定义2 设(){}0≥n n f 为任一数列,令()()1+=n f n Ef () ,2,1,0=n()n f E k ()()k n f n f E k +=+=-11 () ,2,1,0=n这里称E 移位算子定义3 设(){}0≥n n f 为任一数列,令()()n f n If = () ,2,1,0=n()()()n f n f I n f I k k ==-1 () ,2,1,0=n这里称I 为恒等因子.定理1 设(){}0≥n n f 为任一数列,R b a ∈,,则△()()()=+n bg n af a △()n f +b △()n g ,约定:△I I E ===000定理2 (牛顿公式)n E =(△+I )∑==nj j n n C 0△j△()()j j n jn n j n n EI E C -=∑-=-=01例14 ()l f =m m l a l a a +++ 10(其中0≠m a ,R a i ∈ ,N l ∈),有()()C kn n k k n l f ∑-=-01={nm a m n m m =<,!0,证明:由牛顿公式()()=∑-=-C j n n j j n l f 11()∑-=-n j j n 11,()=-j l f E C jj n △f n ,实际上是证明△f n ={nm a m n m m =<,!,0 ⑴对()f ∂用数学归纳法证明当()n f <∂时,有△()l f n=0 当()1=∂f 时,令()b al l f +=(0≠a )△()l f ()()=-+l f l f 1()()a b al b l a =+-++1,△()02=-=a a l f 假设()m f <∂时命题成立,当()m f =∂且n m <时,令()m m l a l a a l f +++= 10△()=l f ()()()m m m m l a l a a l a l a a +++-+++++ 101011 显然∂(△()l f )11-<-≤n m ,由归纳法设△()l f n=△1-n (△()l f )=0 ⑵设()=l f n n l a l a a +++ 10(其中0≠n a )对n 用归纳法证明△()n n a n l f !=当()1=∂f 时,令()b al l f += ()0≠a△()=l f ()()l f l f -+1=()()a b al b l a =+-++1假设()m f <∂时命题成立当()m f =∂时△()=l f ()()()=+++-+++++m m m m l a l a a l a l a a 101011()l g l ma m m +-1()2-≤∂m l g ,由⑴有 △()01=-l g m由归纳假设有 △11-m -m l =()!1-m 因此 △()=l f m △1-m (△()l f )=△()11--m m m l ma +△()l g m 1-=m ma △11--m m l =m a m !因此,命题成立.结束语关于组合恒等式的证明方法还有很多,例如,倒序求和法,二项式反演公式法,母函数等等.本文介绍的主要是几种方法中,大多是以高中知识为基础,也可以说是组合恒等式证明的初等方法,也有大学学的方法,比较深入,不是很好理解.通过学习,我们要学会具体问题具体分析和解决问题多样化的思想.顺便指出,以上例题的解法不是唯一的,本文也有提及.细心的话也可以留意到,各种方法之间也存在着一定的联系,在这里就不再累赘了.参考文献⑴陈智敏,组合恒等式新的证明方法,广州大学学报,2006(04).⑵侯为波、卓泽强,古典概型在排列组合恒等式证明中的应用,淮北师范大学学报,1996(04).⑶概率在证明组合恒等式中的应用,淮南师范大学学报,2004(02).⑷周棉刚,关于组合恒等式的几种证法,黔南民族师范学院学报,2003(3).⑸何宗祥,漫谈组合恒等式的证明,中国数学月刊1994(2).⑹几何法,数学教学,1989(01).⑺杨青文,有关组合恒等式的几种证法,青海师专学报,1995(2).⑻杜庆坤,组合恒等式的证明技巧,临沂师范学报,2003(12).⑼曹汝成,组合数学,华南理工大学出版社,广州,2011⑽卢开澄,组合数学,清华大学出版社(第二版),北京.。
组合恒等式的证明方法与技巧

证明组合恒等式的方法与技巧前言组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排前言列组合、二项式定理为基础.组合恒等式的证明有一定的难度和特殊的技巧,且灵活性很强,要求学生掌握这部分知识,不但要学好有关的基础知识,基本概念和基本技能,而且还要适当诱导学生拓宽思路、发挥才智,培养解决问题方法多样化的思想.下面就以例题讲解的形式,把证明组合恒等式的常见方法与技巧一一列举出来.1. 利用组合公式证明组合公式:mn C =n!!n m m (-)!例1. 求证:m mn C =n 11m n C --分析:这是组合恒等式的一个基本性质,等式两边都只是一个简单的组合数.由此,我们只要把组合公式代入,经过简化比较,等号两边相等即可.证:∵ m mn C =m n!!n m m (-)!…11m n C --=n n !1!n m m (-1)(-)(-)!=n n !m 1!n m m m (-1)(-)(-)!=m n!!n m m (-)!∴ m mn C =n --11m n C .技巧:利用组合公式证明时,只须将等式中的组合数用公式代入,经过化简比较即可,此方法思路清晰,对处理比较简单的等式证明很有效,但运算量比较大,如遇到比较复杂一点的组合恒等式,此方法而不可取.2. 利用组合数性质证明组合数的基本性质:(1)m n C =n mnC -(2)1mn C +=mn C +1m nC -(3)k kn C =n k 11n C --(4)++...+=012n 2nn n n n C C C C?-+-+...+(-1)=00123n nn n n n n C C C C C (5) 例2:求证:-++3...+n =n 123n122n n n n n C C C C分析:等式左边各项组合数的系数与该项组合数上标相等,且各项上标是递增加1的,由此我们联想到组合数的基本性质:kk n C =n k 11n C -- ,利用它可以将各项组合数的系数化为相等,再利用性质++...+=012n 2n n n n n C C C C 可得到证明.证:由k kn C =n k 11n C -- 得123n2n n n n C C C C ++3...+n=012n 11111n n n n n n n C C C C -----++...+n =n (012n 11111n n n n C C C C -----++...+) =nn 12-.、例3.求证:012k 1k 1m m 1m 2m k 1m k C C C C C --+++-++++...+=分析: 观察到,等式左边各项的组合数的上标和下标存在联系:上标+m =下标,而且各项下标是递增+1的.由此我们想到性质(2),将左边自第二项各项裂项相消,然后整理而得到求证.证:由性质(2)可得im i 1C ++=i m i C ++i 1m i C -+ (i ∈N )即im i C +=i m i 1C ++-i 1m i C -+令i =1,2,…,k -1,并将这k -1个等式相加,得12k 1m 1m 2m k 1C C C -+++-++...+=1021k 1k 2m 2m 1m m m k m k C C C C C C --+++3+2++-1-+-+...+-—=-0m 1C ++k 1m k C -+ =-0m C +k 1m k C -+∴012k 1k 1m m 1m 2m k 1m k C C C C C --+++-++++...+=.技巧:例2和例3的证明分别利用性质(3)(5)、(2)此方法的技巧关键在于观察,分析各项组合数存在的联系,读者应在平时实践做题总结,把它们对号入座,什么样的联系用什么样的性质来解决.3. 利用二项式定理证明我们都知道二项式定理:n n 1n 2n 2n 1n n n n n a b a a b a b ab b C C C -1-2--1(+)=+++...++,对于某些比较特殊的组合恒等式可以用它来证明,下面以两个例子说明3.1.直接代值;例4.求证:(1)-1-1+3+3+...+3+3=122n n 1n 2n n n n 2C C C (2)---1--++...+(-1)+(-1)=n n 11n 22n n 1nn n n 22221C C C 分析:以上两题左边的各项组合数都是以 i n i in a b C - 的形式出现,这样自然会联想到二项式定理.证:设 n n 1n 2n 2n 1n n n n n a b a a b a b ab b C C C -1-2--1(+)=+++...++ ① ⑴ 令a =1,b =3,代入①,得 -1-+)=1+3+3+...+3+3n 122n n 1n n n n (13C C C 即, -1-1+3+3+...+3+3=122n n 1n 2n n n n 2C C C(2) 令a =2,b =-1,代入①,得n n n 11n-22n 1n 1n n n n 121C C C ---(2-1)=2-2+2+...+(-)+(-)即,---1--++...+(-1)+(-1)=n n 11n 22n n 1n n n n 22221C C C .技巧:此方法的关键在于代值,在一般情况,a ,b 值都不会很大,一般都是0, 1,-1,2,-2 , 3,—3这些数,而且a ,b 值与恒等式右边也有必然的联系,如上题中1+3=22,2-1=1,在做题的时候要抓住这点.;3. 2.求导代值例5.求证: -+3+...+(-1)=(-1)23n n 2n n n 212nn n n 2C C C (n ≧2) 分析:观察左边各项组合数的系数发现不可以直接运用二项式定理,但系数也有一定的规律,系数都是i(i-1) i=2,3,…n 我们又知道(x i )’’=i(i-1)x i-2 由此我们想到了求导的方法.证:对n 0122n n n n n n x x x x C C C C (1+)=+++...+ 两边求二阶导数,得n 223n n 2n n n n n 1x 212x n n x C C C --(-1)(+)=+3+...+(-1)令x=1得 -+3+...+(-1)=(-1)23n n 2n n n 212n n n n 2C C C (n ≧2) 技巧:此方法证明组合恒等式的步骤是,先对恒等式na x (+)=i 1mnn i i C ax -=∑ 两边对x 求一阶或二阶导数,然后适当选取x 的值代入.4. 比较系数法·比较系数法主要利用二项式定理中两边多项式相等的充要条件为同次幂的系数相等加以证明.例6.求证:2222++)+()+()+...+()=012m m 1m 22(n nn n C C C C C (范德蒙恒等式)分析:本题若考虑上面所讲和方法来证明是比较困难的,注意到等式左边各项恰是二项展开式中各项二项式系数的平方,考虑二项展开式 (1+)n x =+0n C ++...+122n nn n n x x x C C C 和(1+)=+++...+n 012n n n n n 2n 1111x x x xC C C C 这两个展开式乘积中常数项且好式是 2222++)+()+()+...+()012m m 1m 2(n n C C C C证:∵n 0122n n n n n n x x x x C C C C (1+)=+++...+ (1+)=+++...+n 012n n nn n 2n 1111x x x xC C C C ∴n1x (1)n x+(1+)=(+++...+0122n n n nn n x x x C C C C ) (+++...+012n n nn n 2n 111x x xC C C C ) 又有,n1x (1)n x+(1+)=2nn(1+x)x ,比较两边的常数项,左边常数项为2222++)+()+()+...+()012m m 1m 2(n n C C C C右边的常数项为2nn C ,根据二项展开式中对应项的唯一性得 2222++)+()+()+...+()=012m m 1m 22(n n n n C C C C C技巧:此方法关键是适当地选择一个已知的恒等式,然后比较两边x 同次幂的系数.当然,已知恒等式的选择不是唯一的,例5也可以选择已知恒等式 n 2x (1)(1)n nx x +=+(1+) ,只须比较恒等式中两边含有n x 的系数即可得证,证明留给读者.5. 利用数列求和方法证明回到例2,除了利用组合数的性质,我们还可以有其他方法.观察,恒等式左边的各项组合数的系数为等差数列,现在我们仿照求和公式(1)12 (2)n n n -+++=的证明来证明例2 证:设123nn n n n s=C 2C 3C ...n C +++ ① 则n n-121n n n n s=n C n-1)C ...2C C +(++ 01n-2n-1n n n n =n C n-1)C ...2C C +(++ ②:①+②得01n-1nn n n n 2s=n C C ...n C C n +++n 01n-1nn n n n =n(C C ...C C )+++=n 2n∴ 12n s n -=技巧:此方法的证明有一定的特殊性,分析等式中组合数系数的变化规律尤其重要,知识的迁移在此方法是一个很好的见证.6. 利用数学归纳法证明我们都知道数学归纳法,在证明数列的题目中,我们就体会了数学归纳法的好处,只要按照数学归纳法的两个步骤进行就可以了.那么,组合恒等式的证明可不可以用数学归纳法来证明呢看下面的一个例题(例7.已知{n a }是任意的等差数列,且n ≧2,求证:123n n+1a -a +a -...+(-1)a +(-1)a =0012n-1n-1nn n n n n n C C C C C分析:由于本题恒等式左边的各项组合数系数是一个不确定的等差数列,用上面的方法处理就比较困难,又因为等式含有数列,我们不妨用数学归纳法试试.证:i) 当n =2时,因为2132a a a a -=-所以12320a a a -+=,故等式成立,ii) 假设,当n =k (k ≧2)时等式成立,即对任何等差数列{n a },有,123k k+1a -a +a -...+(-1)a +(-1)a =0012k-1k-1kk k k k k k C C C C C ① 则当n =k +1时,利用组合数性质,有+1+1+2+13+1k +1k+2a -a +a -...+(-1)a +(-1)a 012k k k k +111+1k k k k k C C C C C123-+1k +1k+2=a -(+)a +(+)a -... +(-1)(+)a +(-1)a 01021k k k 1k k k k k k k k k k C C C C C C C C 123k +1--234k +1k +2=a -a +a -...+(1)a -a -a +a -...+(1)a +(1)a 012k k 012k 1k 1k k[-][--]k k k k k k k k k C C C C C C C C C[因为根据归纳假设,当n =k 时,对任意等差数列12k 123k 2a a a a a a ++,,...,与,,①式都成立,所以上式右端的两个方括号都等于零.于是我们证明了当n =k +1时等式也成立,根据(1)和(2)可知,等式对n ≧2的任何自然数都成立.技巧:用本方法证明的思路清晰,只须分两步进行即可,但归纳法的关键是由“假设n =k 成立,推导到n =k +1也成立”这一步中间的变换过程比较复杂,在“无路可走”的情况之下,归纳法也是一个好的选择.7. 利用组合分析方法证明所谓组合分析法就是通过构造具体的组合计数模型,采用了“算两次”的方法,再根据组合数的加法原理和乘法原理得到恒等式两边相等.例8.证明:--++...+=0112n 1n n 12n n n n n n n C C C C C C C (n ≧2)证明:算右边,假设有2n 个球,现要在2n 个球中任取出(n -1个,取法有 -n 12n C 种,算左边,把2n 个球分成两堆,每堆个n 个,现要 在2n 个球在中取出(n -1)个,取法是,在第一堆取0个,第二堆取(n -1)个,或第一堆取1个,第二堆 取(n -2)个,或…或第一堆取(n -1)个,第二堆 取0.再根据加法原理总的取法有 ---++...+0n 11n 2n 10n n n n n n C C C C C C)又因为---++...+0n 11n 2n 10n n n n n n C C C C C C =-++...+0112n 1nn n n n n n C C C C C C所以,左右两边都是在2n 个球中取出(n -1)个球,因此有,--++...+=0112n 1n n 12n n n n n n n C C C C C C C (n ≧2)技巧:用组合分析法证明组合恒等式的步骤是:选指出式子的一边是某个问题的解,然后应用加法原理和乘法原理等去证明式子的另一边也是该组合问题的解.用此方法也可以证明例6,证明过程非常简洁.8概率法证排列组合基本理论是古典概型计算的基石.能否用古典概型来解决某些排列组合问题我们来看下面的例子 例9证明组合数加法题推公式:.21111C C C C k n k n k n k n ----+++=分析:把特征等式经过适当变形,使之右端变为1,而左端为若干项之和,根据左端和式中各项的特点,构造以概率模型,并找到样本空间的一个特殊分化,使之相应概率等于左端和式的各项,从而得证. 证明:我们将公示变形为.11211111=+++--+--+CC CC CC kn k n k n k n k n k n、下面利用超几何分布概率公式构建摸球模型来证明:设袋中有1+n 只球,其中有1只黑球,1只白球,现随机地抽取k 只球()11+≤≤n k .设事件A :“抽取的k 只球中含有黑球”,B :“抽取的k 只球中含有白球”,则()CC C kn knA P 101+= 由全概率公式得()()()()()B A P B P B A P B P A P +==CC C CC C CC C CC C knk n k n k n k nk n k n k n 1111101121111111--+---+-•+• =CC CCkn k n k n k n 111121+--+--+ 由()()1=+A P A P ,立即得证该公式技巧:利用概率对立事件发生的概率和为1,或是在某种情况下必然事件的概率也为1.可以与实际相结合,容易理解.…9 几何法例10 证明nnn n n C C C 21=+++ 分析:主要是利用组合的几何意义来证明.无重组合Cn 1n +的几何意义表示平面坐标上的(0,0)点到整点(n,m )(这里n,m 都是整数) 的递增路径的总和.一条从点(0,0)到点(n,m )的递增路径是 指一个有长度为1的端点为整点的线段首尾连接所组成的折线, 并且每一条线段的后一个端点的坐标或者在x 上或者在y 上,比 前一个端点增加一的单位长,水平走一步为x,垂直走一步为y,图…1中的递增路径可表示为:x,y,x,x,y,y,x,x,y,y证明:由图2可知等式的左边,Cn0表示从(0,0)到(0,n )点的增路径,Cn1表示从(0,0)到(1,n-1)点的增路径数,┄,Cn n1-表示从(0,0)到(n-1,1)点的的增路径数,Cn n表示从(0,0)到(n,0)点的的增路径数1,而这所有的地 增路径之和就是从(0,0)点到斜边上的整点的递增路径. 另一方面,从(0,0)点到斜边上任何一整点的递增路径是 n 步步长,每一步是x 或者y ,有两种选择,由乘法法则,<n 步的不同方法的总数为2n,所以等式成立.10 用幂级数法我们知道,()1-1--n x 可展成如下幂级数: ()=---11n x k k kkn x C∑∞=+01<x 现在我们用次展开式证明下列等式 例11 证明C C C C n m n n m n n n n n 111+++++=+++证明:因为 ()()()111-1-+--x x n =()21---n x左边应为:()()()1111-+---x x n =∑∑∞=∞=+•0i i kk n k n x x C右边应为:()=---21n x k k n k n x C ∑∞=+++011%比较两边nx 的系数可知,原等式成立.技巧:对组合求和,当组合下标变动时,常用幂级数方法.11微积分法例11 求证:()∑∑==-=-nk kn nk k kkC 11111分析:利用微分与积分的相互转化是问题得以解决,求导后再积回去,不改变原等式的性质. 证明:令 ()()k k nnk k x kx f C∑=--=111则 ()00=f ,()()Ck nnk k kf ∑=--=1111()()1111-=-∑-='k nk kn k x x f C =()k n k k nk x x C ∑=--111=()x x n---11=()()x x n----1111 ;=()()()121111--++-+-+n x x x即()()∑-=-='11n j jx x f上式两边同时求积分得 ()()C x j x f n j j +-+-=∑-=+11111所以 ()C j f n j ++-==∑-=11100 ⇒ ∑∑-===+=101111n j nk kj C 从而 ()()∑∑=-=++-+-=n k n j j kx j x f 1111111()()∑∑==-==-nk knnk k kf kC 111111 12 递推公式法上述例12是否还可以用递推公式的方法解决,我们来看一下··证明:令()∑=--=nk k nk n Ckf 111 ( ,3,2,1=n )则 ,11=f 当2≥n 时,n f =()()C C k n k n nk k11111-k 1----=+∑=()()∑∑=-----=--+-nk k n k kn n k k CC kk1111111111=()∑=---n k k n k n C n f 1111=()⎥⎦⎤⎢⎣⎡---∑=-11101n k k n kn C n f=()1011---n f n =n f n 11+- 所以 n f f n n 11+=-=n n f n 1112+-+-=nf 131211++++==∑==++++n k kn 1113121113 生成函数法}首先介绍生成函数相关定义和定理.定义1 设{}n a 是一个数列,做形式幂级数() +++++=nn x a x a x a a x f 2210称()x f 为数列{}n a 的生成函数. 定义2 对任何实数r 和整数k 有=Ck r()()!111k k r r r +-- 000>=<k k k定理1 设数列{}{}n n b a ,的生成函数为()()x B x A ,,若∑==ni i n a b 0,则()()xx A x B -=1 定理2 设m 是一个有理数,R a ∈,有()∑∞==+01k k k k mmx a ax C例13 设n ∈N,有())3)(2(11123+++++n n n n Cn n;证明:设数列Ck kkn +2的生成函数A(x),即A(x)=xC k kk kn k +∞=∑02设∑==n i i n a b 1,先求A(x),由()x n --11-=xC kk kkn ∑∞=+1对上式两边求导得:()()xC k k kk n n k x n 11211-∞=+--∑=-+两边同乘x 得:()()x C kkk n k n k x n +∞=--∑=-+1211对上式两边求导得:()()()()()2311121-----++-++n n x n x x n n =x C k k k k n k 112-+∞=∑两边同乘x 得: ()()()()()x x n x x n n n n 22311121-----++-++=x C k k k k n k +∞=∑12=A(x) 由定理1。
组合恒等式证的几种方式

百度文邮-让每个人平零地捉升口我4(1引言组合恒等式是组合数学的一个重要部份•它在数学的各个分支中都有普遍应用,而且它的证明方式多种多样,具有很强的灵活性•下面通过几个实例具体讲 述一下,几种证法在组合恒等式中的运用.2代数法通常利用组合恒等式的一些性质进行讣算或化简,使得等式两边相等, 或利用二项式定理(x +y )ll = 'Yjc :t x r y n r 在展开式中令%和y 为某个特定的 r=0值,也可以先对二项式定理利用幕级数的微商或积分后再代值,得出所需要的 恒等式.例 1 C ;,+, + C ;-1 + 2C ; = n > m .分析:这个等式两边都很简单,咱们可以利用一些常常利用的组合恒等 式去求证.证明:W+CJ+2C : =C 鷲• “ ■ 111 +1 八“亠 j fl Ifl … •••左边=c (—- + —-— + 2) m +1 n+1 m二⑴("+加+ 2 * 加 ) m + 1 〃 +1 — m/ (it + m + 2)(/1 +1 一 m ) + m 2 + m 、(in + l )(n +1 - m )n 2 +3n + 2(〃?+ l )(n +1— 〃?)(〃 + 2)(〃 +1)(加+ 1)(" +1—〃7)右边二 = G + 2)! = s + 2)(n + l)川心(n + \—m) !(加 +1)! (m +1)(〃 +1-m)(n 一 m)!m! VC : m c :(百度文库•让每个人平等地捉升口我=J G + l)S + 2)"(〃 + 1—加)(〃? + 1)左侧二右边即证.例2 求证:3” + C:3”" + C; 3心+ …+ C;J 31 + C;; 3° = 22n .分析:看到上式,很容易想到二项式的展开式,尝试利用二项式定理去做.证明:山二项式定理成立恒等式,(3 + ”)" = 3” + C* 3”" x + C: 3,,_2 F + …+ C:;“ 3x n~l + x H令x = l,B|J 得4” =2?” = 3W + c* 3M_, + C; 3"~2 + • • • + C;-13 +1即证.例3 (1)设“是大于2的整数,则C,;-2C:+3C;+…+ (-1”心=0.(2) ”为正整数,则]+ 丄C: + 丄C;+ …+ 丄C:;=丄(2 ”_ 1).2 "3 ”n+1 ”n+\分析:观察上面两式的系数,很容易想到它们和微分积分有关,咱们可以尝试利用求积分或微分的方式去解决这道题目•证明:(1) (l + x)”=U+C:x + C穿+・・. + C>”等式两边对x求导,n(l + x)n~' = C\ + 2C;x + …+ nC^x n~l百度文库•让每个人平等地捉升口我6令 *0 得,o = C :-2C ;+3C ;+・・・ + (-l)"C ; 即证.(2)由二项式定理有,(1 + x)n = C : + C ;x + C^x 2 H 1- C"x n上式两边对X 积分,有J : (1 + 创 dx =]•■ (C ; + C\x + C 討 +... + c :g 占喀c :善即1+凯+抵+小岛I 占(27).此类方式证明组合恒等式的步骤是先对恒等式(a +卄士两边 r-<)对X 求一阶或二阶导数,或积分,然后对X 取特殊值代入,取得所需证明的等 式.咱们也可以利用组合恒等式的性质,证明一些恒等式,例如利用=2C ; + C ;,求证:1’ +2’ ------------ n 2 = -/7(/? + 1)(2/1 + 1)6证明:左侧= 2(C ; +C ; + …+ C :) + (C ; +C ; +…+ C :)=2(1+ C ;+C ;+••• + (?;-C ;) + (l + C ;+(+•.•+C ; - C ;) = 2C ;,C :2(/? + 1)! /?(/?-1)= ------------------ 1 ------------ (〃-2)!3!2 = -/?(/?+ 1)(2// +1)一样的道理利用= 6C>6C ;+C ;W ,可以证明F+23+...+宀一 2 _■1 n+T (27) = £C ; &•(> 1 r+T3组合分析法所谓组合分析法就是通过构造具体的组合汁数模型或模型实例,利用不同的方式解得的结果应该相同,从而取得恒等式相等.例5证明:C;+C;「・・・ + C:=C:::.证明:C::;是卄1元集4 = {%©,心}中厂+ 1元子集的个数,这些子集可以分为” + 1类.第0类:厂+ 1元子集中含有①,则共有C,:个.第1类:不含①,但含心的厂+ 1元子集共有C]个;• • •9第"类:不含如但含的尸+ 1元子集共有C;个.山加法原理得C(; + C;+・・・ + C; + C;『・・ + C,;=C,;:;・可是C; =0,当Rv/fl寸,所以有C;+C;+|+..・ + C;=C,;::・例 6 求证:C;g + C:…C:, + C;n C;+ …+ C:;:C: = C爲(n > m).证明:构造组合模型,假设一个班有加个男生,有”个女生,此刻要选加个人,组成一组,那么有多少种选法.选法一:不区分男女生时,共有加+〃个人,选出加人,共有选法Ci;选法二:选出的男生人数为R个,R =0,1,2,…,加,男生的选法共有V,女生的选法共有Cf,完成事件的选法共c:;p种,于是Cg = C爲,又因为c,;j = C;.所以C:C:H = C;;;+”, k=0,1,2,…,加.即 g + C;C: + C;C: + …+ C;;;C: = C寫(n >m).当n = m 时,即有(C: )2 + (C:尸 + …+ (C: )2 = C;….4比较系数法主如果利用二项式定理中两边多项式相等的充要条件为同次幕的系数相等加以证明.一般情况下,用比较系数法证明所需辅助函数利用幕的运算性质:(1 + x严"=(l + x)气1 +切",其中加,"为任意实数,然后利用二项式定理的展开取得两个多项式,再通过比较同次幕的系数取得所证的恒等式.上题也可以利用比较系数法证明:(1 + •¥)"' (1 + X)" = (C: + C:X 4 --------------------------- 卜C:x"r )(C:+ c\x 4 ---------------------------------------------------- 卜C:x")=g +(C:C:+ *)"••.+(曲+4铲+ …+C:C;X +…+ C;::C;;/‘n所以疋的系数为+C© +…+ C;;:C;, 乂因为C:”=C;;:T .所以qc:+c:C「+ …+g = C:c:+c,;c:+c;c; + …+c::c:, 又因为,(1 + x)”‘ (1 + x)" = (1 += c;= + C爲X + …+ C;:+F + …+ C;;::;:严所以 g + + C;C: + …+ C:C: = C寫(n >m).即证.例7 求证(C:)2+(C:)2+・.. + (C;)2=c;;.证明:(l + x)”(l + x)”展开式中疋的系数为:%;:+c;cr= cM+g+c:c:+・..+c;;c:= (C*)2+(C;)2+... + (C;;)2乂 (1 + x)n (l + x)n =(1 + x)2n ; (1 + x)2n 展开式中 x” 的系数为 C ;;,所以即有 C )2+(C :)2+... + (C ;)2=C ;;.5数学归纳法咱们都知道数学归纳法,在证明数列的题LI 中,咱们就体会了数学归纳法 的益处,只要依照数学归纳法的两个步骤进行就可以够了.组合恒等式是与自然 数有关的命题,因此,数学归纳法也就成为证明组合恒等式的常常利用方式之一.例 8 求证:C ;:+C ;;+\+…+ C ::+p=C ;L ,"为自然数•分析:这里有一个变量/儿可以利用数学归纳法.证明:(1)当” =1时,C ;:+C ;;+i=g 显然成立.(2)假设〃 =k 时成立,即当P=21时,即上式两边同时加上C ;;+CL +・・・+CH=厂卄1 1即当p=k + l 时也成立.由(1) (2)知命题对任意自然数〃皆成立.例 9 证明:(-l )oc :+(-l),C ;+... + (-l)〃Cr=(-l)〃C 爲 证明:当加=0时,上式显然成立,当加=1时,有左侧=(-l)°C ;+(-l),C*=1 - C : = -C*_!=右边所以原式成立.C ;+/••• + %假设当m = k时成立,即'P l m = k+l时,左侧二(-1 )°C; + (-1 )*C;+ …+ (-1 )k C; + (-1 )i+,C;+, =(-1/ ―⑺一川+ (_l)z ------------- - ----------(”_l)!k! _1)!伙 + 1)!=($ (〃一1)!(1—旦)(〃- —1)!&! k + \=M (〃-1)! (-1)(心-1)_ _ (〃一£一1)久! m =(—1 严=(-i)y即当川= k + \时,命题也成立.由(1),⑵知,命题对任意自然数皆成立.结论关于组合恒等式证明的方式还有很多,例如,微积分法,二项式反演公式法,儿何法等.本文介绍的主如果儿种常见的方式,以上的方式是以高中知识为基础,也可以说是组合恒等式证明的初等方式.通过学习,咱们学会用具体问题具体分析和解决问题多样化的思想•以上例题的解法大多不是唯一的,本文也有提及.但各类方式之间也存在必然的联系.有时一道题可以同时利用儿种方式,思路很活!参考文献[1]孙淑玲,许胤龙•组合数学引论M.合肥,中国科学技术大学出版社,1999.[2]吴顺唐.离散数学[M].上海,华东师范大学出版社出版发行,1997: 79-138.[3]孙世新,张先迪.组合原理及其运用[M].北京,国防工业出版社,2006.[4]陈镇邃,注谈证明组合恒等式的几种方式[J].数学教学通信,1986, 02: 15-16.[5]张红兵,注谈组合恒等式的证明方式[J].髙等函授学报,2005,19 (13): 37-42.[6]柳丽红,证明组合恒等式的方式与技能[J].内蒙古电大学刊,2006, 86: 86-87.[7]李士荣,组合恒等式的几种证法及应用[J].重庆工学院学报(自然科学版),2007, 21 (5):72-74.本论文是在沈邦玉老师的悉心指导下完成的。
浅谈组合恒等式证明的常用方法

(错位相减求和).
左边 x k
项的系
数为
C
k k
+
2C
k k
+
1+
3C
k k
+
2
+
…+
nC
k k
+
n-
1, 右边 x k
项的系数为
nC
k k
+ +
1 n
-
C = k+ 2 k+ n
nC
k k
+ +
1 n
-
nk+
1 2
C
k k
+ +
1 n
=
(k+ 1) n+ k+ 2
1C
k k
+ +
1 n
,
左边= 右边, 命题得证.
b= - 1 而得到. 这种通过给含有 Cmn 的一个
基础恒等式中所含字母赋值而导出要证明的
过变形、化简, 显现出所证恒等式的内在规 律, 从而使原恒等式得证.
组合恒等式的证明方法叫赋值法.
例 3 求证: 1-
3C
2 2n
+
32C
4 2n
-
33C
6 2n
…+
例
1 求证:
C
0 n
+
1 2
C
1 n
+
1 3
2C
2 n
+
…+
Cm0
C
k n
=
Cmk + n.
证明 (1+ x ) m (1+ x ) n = (Cm0 + Cm1 x +
常见组合恒等式推导过程

常见组合恒等式推导过程
嗨,亲爱的小伙伴们!今天咱们来聊聊常见组合恒等式的推导过程,准备好和我一起探索这个有趣的数学世界啦!
咱们先来说说那个“\(C_n^m = C_n^{n m}\)”这个恒等式哈。
想象一下,从\(n\)个东西里选\(m\)个,这和从\(n\)个里不选那\(m\)个,剩下的选法是不是一样多呀?比如说有 5 个苹果,选 2 个和不
选那 2 个,剩下的选法数量是相同的哟!
再看看“\(C_{n + 1}^m = C_n^m + C_n^{m 1}\)”这个。
咱们
可以这样想,从\(n + 1\)个里选\(m\)个,就好像先从前面\(n\)个里选\(m\)个,或者是从前面\(n\)个里选\(m 1\)个,然后再加上那一个。
是不是一下子就清楚啦?
还有那个“\(\sum_{k = 0}^n C_n^k = 2^n\)”。
想象一下,每
一个东西都有选和不选两种可能,\(n\)个东西就有\(2^n\)种可能
啦。
而从\(n\)个里选\(k\)个的组合数加起来,不就是所有的可能情
况嘛!
哎呀,推导这些组合恒等式就像是在玩解谜游戏,一步步找到答
案的感觉超棒的!有时候多想想,多画画图,就能突然明白过来。
小伙伴们,数学的世界是不是很神奇呀?其实只要咱们用心去琢磨,这些看似复杂的恒等式也能变得简单易懂呢!加油哦,相信你们
也能玩转这些组合恒等式!
好啦,今天就先聊到这儿,咱们下次继续探索更多有趣的数学知识!。
浅谈证明组合恒等式的几种方法

、 2+ ( 叮舀
(C 孟 )
2
+
, 二 C煞 公
,
一
+
,
`c ,’ ` 一
.
撬 喂
· ·
万
,
例马
、
求证
.
:
十 ZC 鑫 + 3C 盒 + C石 =
炸
,
.
+ c t
,
.
. ,
一+
·
”
·
C井
护刁
+ 3C 君 + 蕊
·
( l + 劝 心 + 习 展 开 式中 护 项 的系 数是
+ C` C: C器
·
·
浅谈证 明 组 合恒 等式 的 几 种 方 法
( 福 建 连 江 四 中 ) 陈镇 邃
组合值等 式 证明是
这 一 章的 重 要 内容
.
.
排列
、
组 合 和二项式定理
.
”
令
.
二“
·
1
。 _
即得
:
:
它 可 以 联系 多方面 的 基础 知 识 然而
, , ,
也 是 二项式 定理应用 的 一 个重要 方面
由于其
(一 l )
·
’
一
`
·
(
2” +
·
l)
C二 = 0
令
。
。
。
.
即得
护 。
,
’
证
.
:
左边 一
.
叭
`
”
,
了
10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理化学习 ( 高中版 ) 1+ m an, n 整 理 即 an = n a = m + n + 1 n- 1 模式进行求导自然流畅 . 八、 概率法 0 2 1 2 例 8 求证 (C n ) + (C n ) + C 2n. 证明 : 设一个袋子中有 n 个白球和 n 个黑 球, 从中任取 n个 , 求 P ( A ) = P ( 至少有一个白 n 0 C nC n 球 ), 一方面, 不取白球的概率为 n , 有 P ( A ) C 2n Cn Cn (C n ) = 1- n = 1; 另一方面, 取到 k个白 n C 2n C 2n Cn Cn 球的概 率 为 P ( A ) = n C 2n + n Cn
数理化学习 ( 高中版 ) 是第一项. 因为 ( 1 + 2x ) 中不符合系数最大项是第 一项或最后一项的特点, 所以用 C7 C7
r r 7
对于 ( 1 + m x ) (m > 0 ) 它的二项展开式项的 系数的 增 减 性 一 定 是 先 增 后 减, 所 以 如 果 nm - 1 nm + m 和 是连续两个整 数, 那么其中 1+ m 1+ m 那个 偶 数 就 是 我 们 要 求 的 r, 若 nm - 1 和 1+ m nm + m 不是整数, 如果介于它们之间的整数是 1+ m 偶数 , 那就是我们要求的 r, 如果是奇数 , 那么只 要将 r + 1项左右两项系数进行比较就可以了. 例 2 ( 1 ) 求 ( 1 - 3x ) 展开式子系数最大 9 项 ; ( 2 ) 求 ( 1 - 2x ) 展开式子系数最大项 nm - 1 20 3 - 1 59 = = , 1+ m 1+ 3 4 nm + m 20 3 + 3 63 59 63 = = , r , r = 1+ m 1+ 3 4 4 4 14 14 16 16 15 , 所以只需要比较 C 20 ( - 3 ) 和 C 20 (- 3 ) 的 解: ( 1) 大小即可. 大的那个就是我们所要求的最大系 数, 结论从略. ( 2 ) nm - 1 = 2 9 - 1 - 17, nm + m = 1+ m 1+ 2 3 1+ m 2 9 + 2 20 17 = , 1+ 2 3 3 r 20 , r= 6 , 所以系数最 3
2 2 2 1 1
选法为 Cm + n 种, 命题成立 . 点评 : 对等式两端所代表的组合含义进行 分析 , 说明等式两端恰好是对同一组合模型进 行计数, 或是对已经建立一一对应关系的两个 组合模型进行计数即得 . 五、 比较系数法 例 5 = Cm + n. 证明 : 由于 ( 1 + x ) ( 1 + x ) = (Cm + C m x +
n n n- 1
求证 : Cm C n + C m C n
0
k
1
k- 1
+
+ CmCn
n
k- n
求证: 3Байду номын сангаас+ C n
2n n
n
1
3
n- 1
+ Cn
n
2
3
1
n- 2
+
+ Cm x ) (C n + C n x +
0 k 1 m+n k 0 1
m m
0
1
+ Cm x ), 其中含有 Cn +
k m+ n k n k- 1
k m n 0 1 k
+ Cn =
1
2 + n = n( n + 1) , ( 2) 由 C 2 + 2 2
+ C n+ 1 = C n+ 2 得 1 2 3 + + n (n n( n + 1 ) ( n + 2 ) + 1) = 等, 可见本题的结论 3 具有示范作用. 二、 二项式定理法 例 2 + Cn
n- 1
n
, 故 C C + Cn Cn +
+ Cm
故 3 + Cn - 1 .
3
+ Cn
+
3= 2
2n
= Cm + n.
k
点评: 对二项式定理自身作乘法、 赋值和求 积等运算获得一些恒等式, 根据二项展开式的 特性, 赋予 x 以不同的值 , 常能 使问题迎刃而 解. 三、 倒序求和法 例 3
n
点评 : 由多项式恒等对应项系数相等获求. 在本题中 , 对 m, n, k 取特殊 关系有 ( 1)m = n 时, Cm Cm + Cm Cm
2 2 3 3 1 2 n k n- k n 0 0 2 n
n( n - 1) an- 2 = = ( n + m + 1 ) (m + n) n( n - 1) 2 1 a1, 而 ( n + m + 1 ) (m + n) (m + 4 ) (m + 3) a1 = 1 , 故有 (m + 2) (m + 1 ) an = 1 . n (m + n + 1 )Cm + n
1 n- 1 0 n
= C . 点评: 运用基本组合数公式进行转换, 如 :
n- k n k k- 1 k m k k- 1 = C = C n- 1 - C n- 1, C n C k = n n- 1
C = C
m k- m
k n
+
n
Cm C n 种 , 又由组合数定义知所求
n
n- n
C n C n- m 等是 处理组合 恒等式的 常用方法 . 同 时 , 在上述恒等式中 , 取 n = 1 , 2 , 可以推出 一系列新等式, 如 ( 1) 由 C 1 + C 2 + C n+ 1 得 1 + 2 + C3 +
n- 2 1
n
(C n ) n , 同乘 C 2n 移项即证. n C 2n 点评 : 概率法的关键是将组合模型建立在 概率的背景之下. 河南省民权高级中学 ( 476800 )
n n n n+ 1 n+ 1
+ C n+ k = C n+ k+ 1. 证明 : 由 C n+ k+ 1 + C n+ k + C n+ k , C n+ k = C n+ k- 1 + C n+ k- 1,
n+ 1 n n+ 1 n+ 1 n n+ 1 n+ 1 n
n
n+ 1
, C n+ 3 = C n+ 2 + C n+ 2, C n+ 2 = C n+ 1 +
7 n
. ( 2)
对于 ( 1 - 2x ) 二项展开式 , 我们知道奇数项的 系数为正 , 但经过观察我们只要比较第五项系 4 4 6 6 数 C 7 ( - 2) 和第七项系数 C 7 ( - 2 ) 大小 , 结论从略. 但是不是只能用这种观察的方法呢 , 有没有一般的方法呢 ? n 如果对于一般情况, ( 1 - m x ) (m > 0 ), 从 Cn m
n
n
3 = 2 - 1.
0 n- 1
x 项的系数为 C m C n + Cm b+
n
+ Cm C n . + Cm + n x
m+ n m+n m
n
k- n
证明: 因为 ( a + b) = C n a + C n a
n n
而 ( 1+ x )
n
= Cm + n + Cm + n x +
m+ n 0 m 1
1 n
1 )C n = ( 3n + 2 ) 2 . 证明: 令 S = 1 + 4C n + 7C n + 1 )C = ( 3n + 1 )C +
1 2 n n n n 2 n
求证 : +
+ 7C + 4C + 1 , 故 2S + Cn ) = 2 , S =
n n n n
+
1 0 1 1 1 2 Cn Cn + Cn m+ 1 m+ 2 m+ 3 n 1 n ( 1) C = m+ n+ 1 n
20
n
2 2
r r
C7 C7
r- 1 r+ 1
2 2
r- 1 r+ 1
解答没有问题 . 这样我们
nm + m nm - 1 = 1 , 1+ m 1+ m 我们 同 时 可 以 得 出 一 个 结 论: 形 如 ( 1 + 解决了问题 ; 又因为 m x ) (m > 0 ) 二项展开式系数最大项最多只有 两项, 这样也解决了问题 ; 对于问题 , 这里 我们碰到一个问题 , 以前特别是在碰到函数问 题时, 其实我们求最大值并不是这样求的 , 所以 这里必须说明, 如果最大值是另外一个值 , 那么 显然应该满足 ( * ) 式, 也可以从 ( * ) 式解出 来 , 但 ( * ) 式没有解出别的值, 所以 (* ) 式解 出的就是最大值 . 这样我们解决了问题