Comparison of MRIcompatible mechatronic systems with hydrodynamic and pneumatic actuation-核磁兼容
影响磁共振成像 (magnetic resonance imaging,MRI)图像质量的因素

影响磁共振成像(magnetic resonance imaging,MRI)图像质量的因素有:信噪比(SNR)、空间分辨率、对比度/噪声比(CNR)及伪影。
在MRI检查中只有掌握各种成像参数与MR图像质量的各种指标的相关性,并合理地加以控制,才能获得可靠的、高质量的MR图像。
1、SNR 它是组织信号与随机背景噪声的比值,信噪比与图像质量成正比。
影响信噪比的因素有:①FOV:信噪比与FOV的平方成正比;②层间距:层间距越小,层间的交叉干扰越大;③平均次数:当平均次数增加时,导致扫描时间增加,而信噪比的增加只与平均次数的平方根成正比;④重复时间。
当重复时间延长时,导致组织的纵向磁化倾向最大限度增加。
与此同时,信号强度也增加,使信噪比增加,但增加是有限的;⑤回波时间:当回波时间延长时,由于T2衰减导致回波信号减弱,引起信噪比相应减低;⑥反转时间;⑦射频线圈:它不但采集人体内的信号,而且它也接受人体内的噪声。
控制噪声的方法为选择与扫描部位合适的射频接受线圈。
2、CNR 应该看到,在评价图像质量时,SNR是一项比较重要的技术指标,但是不能把它看作是一项绝对的标准。
临床应用表明,即使SNR很高也不能保证两个相邻结构能有效地被区分开来,因此有价值的诊断图像必须在特性组织和周围正常组织间表现出足够的对比度。
图像的对比度反映了两组织间的相对信号差。
它取决于组织本身的特性。
当病灶与周围组织的图像对比度较小时,在MRI中使用顺磁性造影剂。
SNR则与设备性能有关。
对比度和SNR共同决定了图像的质量,为此定义CNR来评价两者对图像的共同作用。
其定义是:图像中相邻组织结构间SNR之差,即:CNR=SNR(A)-SNR(B)式中SNR(A)与SNR(B)分别为组织A、B的SNR。
上式表明,只有SNR不同的相邻组织,才能够表现出良好的对比度。
在实际的信号检测中,如果组织间对比度较大,但噪声也很大,则较大的对比度会被较高的噪声所淹没。
波谱分析——核磁(本校)

核磁共振波谱中化合物的结构信息
(1)峰的数目:标志分子中磁不等性质子的种类,多少种 (2)峰的强度(面积):每类质子的相对数目,多少个 (3)峰的化学位移(δ ):每类质子所处的化学环境,化合物中
位置
(4)峰的裂分数和耦合常数(J) :相邻碳原子上质子数
§4.3 化学位移(chemical shift) 一、化学位移的产生
由于屏蔽作用的存在: 1)如果外磁场强度不变,氢核的共振频率降低; 2)如果保持共振频率不变,需要更大的外磁场强度 (相对于裸露的氢核)。 在有机化合物中,氢核受核外电子的屏蔽作用, 使其共振频率发生变化,即引起共振吸收峰的位移, 这种现象称为化学位移(δ)。 不同的氢核,所处的化学环境不同,化学位移的值 也不相同。
英国科学家彼得曼斯菲尔德和美国科学家保罗劳特布尔因在核磁共振成像技术领域的突破性成就而一同分享2003年诺贝尔生理学或医迄今已经有六位科学家因在核磁共振研究领域的突出贡献而分别获得诺贝尔物理学化学生理学或医英国科学家彼得曼斯菲尔德核磁共振成像技术nuclearmagneticresonanceimaging简称nmri是获取样品平面断面上的分布信息称作核磁共振计算机断层成象也就是切片扫描方式
二、 核磁共振现象
自旋量子数 I=1/2的原子 核(氢核),可当作电荷 均匀分布的球体,绕自旋 轴转动时,产生磁场,类 似一个小磁铁。
按照量子力学理论,自旋核在外加磁场中的自旋取向数 不是任意的,当置于外加磁场H0中时,相对于外磁场,可以 有(2I+1)种取向。 如:氢核 (I=1/2),两种取 向(两个能级): (1)与外磁场平行, 能量低,磁量子数 m=+1/2; (2)与外磁场相反, 能量高,磁量子数 m=-1/2;
1924年,泡利(Pauli)预见原子核具有自旋和核磁矩; 1946年,斯坦福大学布洛赫(Bloch)和 哈佛大学珀塞 尔(Purcell)分别同时独立地观察到核磁共振现象; 1952年,分享1952年诺贝尔物理奖; 1953年,第一台商品化核磁共振波谱仪问世; 1965年,恩斯特(Ernst)发展出傅里叶变换核磁共振和 二维核磁共振;1991年,被授予诺贝尔化学奖; 2002年,NMR领域再一次获诺贝尔化学奖; 2003年,英国科学家彼得·曼斯菲尔德和美国科学家保 罗·劳特布尔因在核磁共振成像技术领域的突破性成就 而一同分享2003年诺贝尔生理学或医学奖。
核磁共振波谱仪NuclearMagnetic药物分析PPT教案

Prize) 2002年 (生物大分子的核磁分析)
第2页/共75页
Nobel Prizes
1952年诺贝尔物理学奖授予美国加利福尼亚州斯 坦福大学的布洛赫(Felix Bloch,1905—1983)和 美国马萨诸塞州坎伯利基哈佛大学的珀塞尔 (Edward Purcell,1912—1997),以表彰他们发 展了核磁精密测量的新方法及由此所作的发现。
扫场法: 固定射频磁场频率,让Bz连续变化。 扫频法: 磁场Bz固定,让射频场频率连续变化。
第42页/共75页
(一) 连续波核磁共振波谱仪
1.永久磁铁:提供外磁 场,要求稳定性好,均匀 ,不均匀性小于六千万分 之一。扫场线圈。
2 .射频振荡器:线圈垂 直于外磁场,发射一定频 率的电磁辐射信号。 60MHz或100MHz。
。
第39页/共75页
较复杂图谱的简化
(i) 增加磁场 (ii) 同位素取代 (iii)自旋去耦 (iv)化学位移试剂
第40页/共75页
4.化学交换的影响
(1)质子交换 (2)构象改变 (3)受阻旋转
第41页/共75页
8.2 核磁共振波谱仪
按工作方式,可将高分辨核磁共振波谱仪分为两 大类:连续波核磁共振波谱仪及脉冲博里叶变换 核磁共波振谱仪。
C
C
Ha Hb
Ha C C Hb
Ha C C Hb
Jab=0-3.5Hz 偶合常数的特点:
Jab=5-14Hz
Jab=12-18Hz
① J与H0无关。不同H0作用下或不同场强的仪器测得的J值相同。 ② 两组相互干扰的核J值相同。
两种不同磁共振成像设备与不同实验材料运用于语言认知的fMRI对比研究

[ 关键词] 功 能性磁共振成像 ;语 言认知 ;普通 话汉语词 组 ;对比 [ 中图分类号] R 3 .1 3 2 8 [ 文献标 识码 ] A [ 文章编号] 1 0 — 18 2 0 )5 0 l- 4 0 0 2 3 (0 6 0 - 4 10
App1i cati of on fMRI by Sie menS Sym phony a GE SI nd GNA i l n angu age Cogni tiv res rC e ea h:
a o tr t t dy LI a ce F c n as s u Ji n— , FNG hi e Z S —w n, EAO Ha q ng, et 1.* pa me o Rad l y, h n- i a Pe rt nt f io og t e Fi t  ̄ ̄i i ed to pit 1 e hou rS A l at t s a W nz Me c l o e S a C ll ge. e zh 3 0 W n ou 25 00
著
[ 摘
要] 目的 : 对两种机器运用于大脑语言认知 能力实验进行对比研 充, 同时对词 组作 为大脑语言认知 能
力 实验 材 料 的可 行 性 进 行探 讨 。 方 法 : 取 7 不 同被 试者 ,运 用 15 im n y p o y与 1 5 G I 选 名 .T S e e sS m h n .T E S —
c g t v e e r h a t i s u h e si i t o h h as t e x mi a i n m t r a n b ai o ni i e r s a c nd o d s c s t e f a b 1i y f r t e p r e as h e a n t o a e i ls i r n l ng a e o ni v es a c a u g c g ti e r e r h. M t o s: ve 7 v l n e r re e h d Se n o u t e s we ch en n d d f e e t o r hi es o ds os a i f r n f u C n e w r we e s a h a g T S e ns S m h n d 1. E S G A r u ed s t e l n u g o n t v s i l iv a ei l i h 1. i me y p o y a 5 T G I N n a n t c eo a c m g e i r s n n e m c i e i r n f n t o a S a .Re u t T r n a t v t h w d u h or s on a h n s n b ai u c i n l C n s l s: he b ai c i i y s o e m c c re p - d n e et e h w c i e i l g a e c g i i e e e rc e c b we n t e t o m h n s n a u g o a n n t v r s a h.T e di f r n es b t e n t e er d e o h f e e c e w e h m w e u t
磁共振原理和临床应用(一)

MRI新进展
• 快速成像 • 磁共振血管造影MR Angiography • 磁共振水成像 • 弥散成像 • 灌注成像 • 磁共振频谱分析 • 磁共振造影剂
MRI新进展--快速成像
• 减少MRI成像时间的方法包括:减少相位编 码线,半傅立叶转换,矩形扫描野,减少 TR时间,减少取样和采用快速序列
• TR时间:既射频脉冲重复时间,为两
个 90度激励脉冲之间的时间
• TE时间:即回波时间,为RF脉冲和接
受回波之间的时间间隔
• T1加权和T2加权:加权指某种突出
成分平均,T1加权指T1时间为图象的 主要影响因素的平均,组织的对比度 差异主要为组织间的T1差异,而T2加 权为组织间的T2值的差异
MRI原理--名词解释
• TOF法采用流入增强效应,3DTOF为最常用的方 法,主要用于较大动脉血管,2DTOF法用于显 示静脉血管
• PC法是使用梯度脉冲对流动和静止质子产生不 同的相位位移,能显示血流方向和测量流速, 背景抑制好
• 磁化传递对比MTS和倾斜优化非饱和激励TONE 技术、多薄块扫描技术
Байду номын сангаас 三
血维
TOF
管
造 影
Ext. Cap.
Thalamus
Splenium
Optic Radiations
Images courtesy of UIC
弥散张力图 & 脑功能成像融合
•弥散张力图显示白质束并与语 言表达功能中枢图像融合
• 脑功能成像 实时梯度回波EPI 26 cm FOV, 128x128 TE/TR=50/4000ms, 90o 65 phases
磁共振成像技术中英文名词对照

Fliud attenuatedinversion recovery,FLAIR
体液衰减反转恢复序列
Fastlow angleshot,FLASH
快速小角度激发
Fieldofview,FOV
视野
Fastspinecho,FSE
快速自旋回波
Generalized autocalibratingpartiallyparallel acquisition,GRAPPA
快速自旋回波
Volume interpolated bodyexamination, VIBE
容积内查体部检查
Staticmagnetic field
静磁场
Signal noise ratio,SNR
信噪比
Homogeneity
磁场均匀性
Permanentmagnet
永磁型磁体
Conventional magnet
匀场
Passive shimming
被动匀场
Activeshimming
主动匀场
Shimmingcoils
匀场线圈
Gauss meter
高斯计
Halleffect
霍尔效应
Diameterofspherical volume ,DSV
球形空间直径
Build-in body coil
内置体线圈
Gradientsystem ,orgradients
磁共振血管成像
Magnetic resonancecholangiopancreatography,MRCP
磁共振胆胰管成像
Magnetic resonanceimaging,MRI
磁共振成像
对比集合序列与常规序列头部MR图像质量
中 国 医 学 影 像 技 术 2019 年 第 35 卷 第 2 期 ChinJ MedImagingTechnol,2019,Vol35,No2
������影像技术学
Comparisonofimagequalityofbrainbetweenconventional MRsequenceandcompilationsequence
扫描技术[1],一次扫 描 可 以 得 到 多 种 对 比 图 像 且 扫 描 时间短.根据传统 MRI理论,扫描时间缩短意味着图 像质量降低,syMRI能否 在 提 高 扫 描 速 度 的 同 时 保 证 图像质量目前 尚 未 明 确. 本 研 究 将 基 于 syMRI技 术
[第 一 作 者 ]刘 辉 明 (1985— ),男 ,广 东 梅 州 人 ,学 士 ,主 管 技 师 . 研 究 方 向 :影 像 技 术 .EGmail:liuhuim@sysucc.org.cn [通 信 作 者 ]谢 传 淼 ,中 山 大 学 肿 瘤 防 治 中 心 影 像 科 ,510060.EGmail:xiechm@sysucc.org.cn [收 稿 日 期 ]2018G05G16 [修 回 日 期 ]2018G09G04
对比集合序列与常规序列头部 MR 图像质量
பைடு நூலகம்
刘 辉 明1,尹 国 平2,别 非2,权 光 南2,谢 传 淼1∗
(1.中山大学肿瘤防治中心影像科,广东 广州 510060; 2.通 用 电 气 医 疗 集 团 ,北 京 100176)
[摘 要] 目的 对比 分 析 MRI集 合 (MAGiC)序 列 与 常 规 序 列 头 部 图 像 质 量. 方 法 对 96 人 进 行 头 部 常 规 序 列 及 MAGiC 序列 MR 扫描,比较常规序列 T1FSE、T2FSE、T1Flair、T2Flair图 像 与 MAGiC 序 列 重 建 MAGiC T1、MAGiC T2、MAGiCT1Flair、MAGiCT2Flair图像的质量和SNR.结果 常规序列与 MAGiC 序列图像的整体质量评分、伪影评 分、病灶检出评分差异均无统计学意义(P 均>0������05).MAGiCT1、MAGiCT2、MAGiCT1Flair、MAGiCT2Flair图像的 SNR 均高于相应常规序列图像(P 均 <0������01). 结 论 MAGiC 序 列 与 常 规 序 列 扫 描 所 获 头 部 图 像 质 量 相 当,且 MAGiC 序列图像的 SNR 更高. [关 键 词 ] 磁 共 振 成 像 ;磁 共 振 成 像 集 合 序 列 ;脑 [中 图 分 类 号 ] R445������2;R742 [文 献 标 识 码 ] A [文 章 编 号 ] 1003G3289(2019)02G0268G04
深部脑磁刺激对帕金森病模型大鼠运动症状治疗的安全性评价
深部脑磁刺激对帕金森病模型大鼠运动症状治疗的安全性评价刘俊华;王勇;王颜颜;王晓民【摘要】Objective To explore the security via DMS to treat motor symptoms in hemi-parkinsonian rats.Methods Rats were injected with 6-hydroxydopamine (6-OHDA) into right striatum to establish unilateral parkinsonian model.Sham group received the same volume of normal saline by the same procedure.After screened via apomorphine,the successful parkinsonian rats were randomly grouped into model,δ rhythm DMS treatment (DMS-δ) and γ rhythm DMS treatment (DMS-γ).Among each DMS treatment group,40 minutes trains of DMS were administered daily for 4 weeks.Cylinder tests were conducted to detect motor outcomes.Body weight determination,peripheral blood lymphocytes classification & counting,HE staining were executed to evaluate the security of DMS.Results ①The lesioned side forelimb usage ratio in Sham and DMS-γ groups were significantly higher than that in Modelgroup.②There was no significant difference of body weight between each group,indicating that DMS had no significant effects on bodyweight.③There was no significant difference of the number and percentage of total lymphocytes & T cells between each group,while the natural killer (NK) cells number and percentage in DMS-δ group were significantly higher than that in Model gr oup.④Results of HE staining for major organs showed no significant histopathological change.Conclusion DMS-γ treatment alleviated bilateral limb asymmetry in PDrats.Meanwhile,DMS treatment showed no significant sideeffects,indicating that DMS showed satisfactory security in the treatmentof motor symptoms in PD rats.%目的评估深部脑磁刺激(deep-brain magnetic stimulation,DMS)对单侧帕金森病(Parkinson`s disease,PD)模型大鼠运动障碍的治疗作用及DMS治疗的安全性.方法立体定位注射六羟基多巴胺(6-hydroxydopamine,6-OHDA)于大鼠右侧纹状体制备单侧帕金森病模型,假手术对照组(Sham组)依据同样方法注射0.9%(质量分数)氯化钠注射液.利用阿扑吗啡筛选模型后,造模成功的动物采用均衡随机化分组的方式分为模型对照组(Model组)、δ节律DMS治疗组(DMS-δ组)、γ节律DMS治疗组(DMS-γ组),其中两种DMS 治疗组行每天40 min、持续4周的DMS治疗.通过碰壁实验检测大鼠运动行为,通过大鼠体质量的测定、外周血淋巴细胞的分类及计数、主要组织器官的苏木精-伊红(Hematoxylin-Eosin staining,HE)染色评价DMS治疗的安全性.结果①检测大鼠运动行为显示,DMS-γ治疗组损伤侧的肢体利用率显著高于Model组,差异具有统计学意义(P<0.05),而DMS-δ组相较于Model组差异无统计学意义(P>0.05).②Sham组、Model组、DMS-δ组、DMS-γ组大鼠体质量差异均无统计学意义(P>0.05).③Sham组、Model组、DMS-δ组、DMS-γ组大鼠外周血总淋巴细胞与T细胞的数量和比例差异均无统计学意义(P>0.05).DMS-δ组大鼠的自然杀伤(natural killer,NK)细胞数量和比例相较于Model组有显著改善.④HE染色显示,DMS对大鼠主要器官包括心、肝、脾、肺、肾、胃、小肠、睾丸均未造成明显的组织病理变化.结论 DMS-γ治疗可改善PD大鼠双侧肢体不对称性运动障碍,且DMS对PD大鼠运动行为的治疗中无明显不良反应,表明DMS在对PD大鼠运动症状的治疗中具有很好的安全性.【期刊名称】《首都医科大学学报》【年(卷),期】2017(038)002【总页数】8页(P260-267)【关键词】帕金森病;深部脑磁刺激;运动行为学;不良反应;安全性【作者】刘俊华;王勇;王颜颜;王晓民【作者单位】首都医科大学基础医学院神经生物学系,北京 100069;教育部神经变性病重点实验室,北京 100069;北京脑重大疾病研究院,北京 100069;教育部神经变性病重点实验室,北京 100069;北京脑重大疾病研究院,北京 100069;首都医科大学基础医学院生理学与病理生理学系,北京 100069;首都医科大学基础医学院神经生物学系,北京 100069;教育部神经变性病重点实验室,北京 100069;北京脑重大疾病研究院,北京 100069;首都医科大学基础医学院神经生物学系,北京 100069;教育部神经变性病重点实验室,北京 100069;北京脑重大疾病研究院,北京 100069【正文语种】中文【中图分类】R742.5帕金森病(Parkinson’s disease, PD)是多发生于中老年期的中枢神经系统退行性疾病。
基于平均表观传播子磁共振成像鉴别WHO_CNS4R_较低级别胶质瘤中的CNS5_胶质母细胞瘤
[基金项目]福建省卫生健康中青年骨干人才培养项目(2022GGA013)。
▲通讯作者基于平均表观传播子磁共振成像鉴别WHO CNS4R较低级别胶质瘤中的CNS5胶质母细胞瘤肖慧楠1 郑莞怡2 吴振兴2 施宇婷2 徐 雪2 蒋日烽2▲1.福建医科大学附属协和医院放疗科,福建福州 350001;2.福建医科大学附属协和医院放射科,福建福州 350001[摘要]目的 探讨平均表观传播子磁共振成像(MAP-MRI)从2016年WHO CNS4R 分类下较低级别胶质瘤中鉴别2021年WHO CNS5分类的胶质母细胞瘤(GBM)的价值及意义。
方法 选取2019年1月至2022年12月于福建医科大学附属协和医院诊疗的28例WHO CNS4R 分类为WHO Ⅱ或Ⅲ级脑弥漫性胶质瘤成人患者为研究对象。
所有患者术前均行结构磁共振成像和扩散磁共振成像,其中扩散磁共振成像分别行MAP-MRI 和扩散张量成像(DTI)分析,并提取肿瘤实体区的均方位移(MSD)、q 空间逆方差(QIV)、回归轴概率(RTAP)、回归原点概率(RTOP)、回归平面概率(RTPP)及平均扩散率(MD)均值。
术后行病理和基因检测,再根据WHO CNS5分类重新分为GBM 组(n =6)和非GBM 组(n =22)。
使用Mann-Whitney U 检验比较两组MSD、QIV、RTAP、RTOP、RTPP 及MD 值的差异,并进一步绘制受试者工作特征曲线(ROC)评价其对GBM 的诊断效能。
结果 两组肿瘤实体区的QIV、RTAP 和MD 值比较,差异有统计学意义(P < 0.05),其中QIV 和RTAP 的差异最为显著,受试者工作特征曲线(ROC)的曲线下面积(AUC )均为0.78,特异度均为54.50%,敏感度均为100.00%。
结论 MAP-MRI 在一定程度上具备从WHO CNS4R 较低级别胶质瘤中鉴别CNS5胶质母细胞瘤的能力,其中QIV 和RTAP 的诊断效能最佳。
核磁共振方法解析蛋白质结构
• 逆磁屏蔽
核磁共振方法解析蛋白质结构
• 微磁环境
核磁共振方法解析蛋白质结构
• Beff=B0-Bloc--- Beff =B0(1-σ)
核磁共振方法解析蛋白质结构
• 化学位移的表示方法
核磁共振方法解析蛋白质结构
CH3 H3C Si CH3
CH3
water
Aromatic
Imines Amides
NUC1
1H
P1
10.00 usec
PL1
-4.00 dB
SFO1 900.0236581 MHz
F2 - Processing parameters
SI
65536
SF
900.0200000 MHz
WDW
GM
SSB
0
LB
-0.30 Hz
GB
0.3
PC
4.00
核磁共振方法解析蛋白质结构
核磁共振方法解析蛋白质结构
核磁共振方法解析蛋白质结构
核磁共振方法解析蛋白质结构
核磁共振是解析蛋白质结构的一种重要方法
• 优点:不需结晶;可研究动力学。 • 缺点:受分子量限制,需要标记。
核磁共振方法解析蛋白质结构
Malate synthase G (82kDa)
核磁共振方法解析蛋白质结构
Richard Robert Ernst
• 15N谱
天然丰度低;灵敏度低;化学位移拓展宽、分辨率好
核磁共振方法解析蛋白质结构
• 核磁共振的频率
ΔE=γh Bo / 2π
ΔE=h υ
υ=γ Bo / 2π
在常用磁体( 2.35 - 18.6 T )下, 1H 的共振频率在100800MHz范围,13C为它的1/4,15N为它的1/10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Comparison of MRI-Compatible Mechatronic Systems With Hydrodynamicand Pneumatic ActuationNingbo Yu,Christoph Hollnagel,Armin Blickenstorfer,Spyros S.Kollias,and Robert Riener,Member,IEEEAbstract—The strong magneticfields and limited space make it challenging to design the actuation for mechatronic systems in-tended to work in MRI environments.Hydraulic and pneumatic actuators can be made MRI-compatible and are promising solu-tions to drive robotic devices inside MRI environments.In this paper,two comparable haptic interface devices,one with hydrody-namic and another with pneumatic actuation,were developed to control one-degree-of-freedom translational movements of a user performing functional MRI(fMRI)tasks.The cylinders were made of MRI-compatible materials.Pressure sensors and control valves were placed far away from the end-effector in the scanner,con-nected via long transmission lines.It has been demonstrated that both manipulandum systems were MRI-compatible and yielded no artifacts to fMRI images in a3-T scanner.Position and impedance controllers achieved passive as well as active subject movements. With the hydrodynamic system we have achieved smoother move-ments,higher position control accuracy,and improved robustness against force disturbances than with the pneumatic system.In con-trast,the pneumatic system was back-drivable,showed faster dy-namics with relatively low pressure,and allowed force control. Furthermore,it is easier to maintain and does not cause hygienic problems after leakages.In general,pneumatic actuation is more favorable for fast or force-controlled MRI-compatible applications, whereas hydrodynamic actuation is recommended for applications that require higher position accuracy,or slow and smooth move-ments.Index Terms—Actuation,control,functional MRI(fMRI), haptic interaction,hydrodynamic,MRI,neuroscience,pneumatics, rehabilitation.I.I NTRODUCTIONM ECHATRONIC systems and devices that are compati-ble with MRI technologyfind wide range of applica-tions in academic and industrialfields[1],[2].MRI is an es-Manuscript received November22,2007;revised February25,2008. Recommended by Guest Editor A.Khanicheh.This work was supported in part by the Swiss National Science Foundation NCCR on Neural Plasticity and Repair under Project P8Rehabilitation Technology Matrix and in part by Eidgen¨o ssische Technische Hochschule(ETH)Research Grant TH-3406-3 MR-robotics.N.Yu and C.Hollnagel are with the Sensory-Motor Systems Labora-tory,Department of Mechanical and Process Engineering,Eidgen¨o ssische Technische Hochschule(ETH)Zurich,8092Zurich,Switzerland(e-mail: yu@mavt.ethz.ch;hollnagel@mavt.ethz.ch).A.Blickenstorfer and S.Kollias are with the Institute of Neurora-diology,University Hospital Zurich,8091Zurich,Switzerland(e-mail: armin.blickenstorfer@usz.ch;spyros.kollias@usz.ch).R.Riener is with the Sensory-Motor Systems Laboratory,Department of Mechanical and Process Engineering,Eidgen¨o ssische Technische Hochschule (ETH)Zurich,8092Zurich,Switzerland,and also with the Spinal Cord Injury Center,University Hospital Balgrist,8008Zurich,Switzerland(e-mail: riener@mavt.ethz.ch).Digital Object Identifier10.1109/TMECH.2008.924041Fig.1.fMRI-compatible robot and fMRI images.tablished clinical diagnostic method.MRI-compatible mecha-tronic devices can be applied to assist in image-guided surgery[3]–[9],to diagnose diseases[10],etc.Functional MRI(fMRI)is an advanced research and clinical tool in neuroscience.AnMRI-compatible robot could perform well-controlled and re-producible sensorimotor tasks,while the subject’s motor in-teractions with the robot are recorded during the fMRI pro-cedures and translated into brain images(Fig.1).Therefore,MRI-compatible robots can be applied with fMRI to map brainfunctions[11],[12],investigate human motor control[13],[14],monitor rehabilitation induced cortical reorganization in neuro-logical patients[15],etc.Such kind of fMRI robotic systemscould provide insights into the cortical reorganization mech-anism after damage to the central or peripheral nervous sys-tem,offer a better understanding of therapy-induced recov-ery,and eventually,help to derive more efficient rehabilitationstrategies.To construct MRI-compatible devices is rather challenging.First,the device must not disturb the scanner magneticfield andensure image quality.Second,proper functionality of the devicemust be guaranteed when it is placed inside the MRI environ-ment.During fMRI,the scanning sequences are more sensitiveto magneticfield inhomogeneities than during anatomical MRIsequences,because fMRI measures the magneticfield inhomo-geneities that are caused by changes of magnetic susceptibilityof oxygenated and deoxygenated bloodflow in the brain.Third,the device must be small and compact tofit into the limitedspace inside the MRI scanner bore.The bore diameter of mostclosed MRI scanners varies between only55and70cm[1],[3].The strong magneticfield limits the choice of materials,sen-sors,and actuators to be used in the MRI environment.Tradi-tional ferromagnetic materials are not allowed to be placed intothe MRI environment as they can be attracted by the strong 1083-4435/$25.00©2008IEEEmagneticfield,thus endangering patient,personnel,or the scanner system.Nonferromagnetic conductive metals can also be problematic when they move in the magneticfield or when the strength of the magneticfield changes,because eddy cur-rents and local magneticfields can be induced that interfere with the spatial encoding magneticfield of the scanner.Thus, for moving parts,the electrical conductivity of the material must be strictly limited.Stiff polymer materials are a good alternative for applications in the MRI environment.Sensors and actuators based on electrical recording or actuation principles should also be avoided because,first,the electrical information can be dis-turbed by the magneticfields,and second,the electricalfields generated by the device mayfluctuate and cause magnetic induc-tions disturbing the image quality.Electrical components may be brought into the MRI environment if their electrical signals are of low frequency and low amplitude,and if the components are placed at a certain distance from the scanner and/or they are shielded[13],[14],[16].Sensors with optical recording princi-ples have been widely employed to measure position[14],[17], force,and torque[14],[18],[19].Typical MRI-compatible actuation technologies are based on hydraulic or pneumatic principles,special electromagnetic prin-ciples,shape memory alloys,contractile polymers,piezoelectric actuation,materials with magnetostriction properties,or bow-den cables[1],[2],[20].A recent actuation principle has been realized by electrorheologicalfluids(ERFs)[14].Among these working principles,fluidic actuations are promising solutions for MRI-compatible robots that are intended to perform defined functional movement tasks because of the following.1)Thefluids are magnetically inert in nature and the movingend-effector can be made MRI-compatible.2)The power can be generated distantly from the end-effector and sent to the end-effector inside the MRI scan-ner via transmission hoses.3)The actuators can provide large movement ranges andlarge forces.4)The force-to-mass ratio is high.5)The transmission can be madeflexible so that they can beplaced adaptively to the work environment[2],[20].In the literature,many efforts have been made for the appli-cation of pneumatic actuation technologies to MRI-compatible robotic systems[21]and devices[12],[22],[23].Hydrostatic actuation was applied in master–slave setups in order to in-teract with human motion[17]or to position a forceps for surgery[8].Reported problems were leakages that resulted in pollution of the laboratory,performance degeneration,and en-trance of air bubbles.Furthermore,image deterioration occurred due to the high magnetic susceptibility of materials used for the systems[8],[24].For each degree of freedom,the hydrostatic system in a master–slave configuration needs a second cylinder and a motor to drive.A possible problem is that leakages be-tween the chambers and to the external environment will change the system property after long time.In contrast,a hydrodynamic system driven by a pump has the advantages of long-time sta-bility,and easier setup and maintenance.Traditional hydrodynamic or pneumatic actuation techniques cannot be directly transferred to MRI-compatible applications.Thefluid power generators,i.e.,hydraulic pumps or pneumatic compressors,consist of ferromagnetic materials.They must be placed outside of the scanner room for safety reason.Control valves are normally actuated by magnetically driven solenoids. Furthermore,valves and pressure sensors also contain ferromag-netic materials.Thus,they must be positioned far away from the scanner and the end-effector to avoid electromagnetic interfer-ences causing malfunction and/or image artifacts.Therefore, long hoses have to be used to transmit thefluid power from the compressor to the control valves and then to the end-effector. This arrangement results in several challenges for both con-struction and control.First,the end-effector must be made of MRI-compatible materials so that it can work close to or inside the MRI scanner bore.This can result in friction and stiffness problems at thefluidic cylinder,which is required to transfer fluidic pressure into force and motion.Second,valves and pres-sure sensors are distant from the end-effector,causing delay and measurement inaccuracies.Third,long hoses result in high inertia and compliance.Fourth,the system will interact with the user,so that the working pressure must be limited to ensure safety.Reduced pressure may also increase the compliance of the system.Finally,position and force sensors used inside the MRI scanner must be made MRI-compatible,which may reduce their signal quality.The mechatronic setup including sensor,ac-tuator,and controller must be able to cope with these challenges and work in an accurate,stable,and robust way.In this paper,two comparable haptic interface devices,one with hydrodynamic and another with pneumatic actuation,were developed and implemented to control a translational one-degree-of-freedom movement for fMRI studies.The interface devices are equipped with MRI-compatible position and force sensors.Position and impedance/admittance controllers were realized to achieve active as well as passive subject movements, which are both required to investigate different fMRI-relevant motion tasks.The two systems were evaluated and compared with respect to control performance.Furthermore,both manipu-landum systems were examined for MRI-compatibility in a3-T MRI scanner.II.T ECHNICAL C ONCEPT AND I MPLEMENTATIONOF THE MRI-C OMPATIBLE M ECHATRONIC S YSTEMSA.Requirements and ConceptThe required manipulandum has to be MRI-compatible.To be applicable for functional MRI tasks,it should cover a maxi-mum movement range of20cm,maximum velocity of10cm/s, and a maximum force of100N.Furthermore,it should allow subject passive movements(guide the user’s hand to follow a designed position)as well as subject active movements(simu-late a virtual spring so that the subject can push or pull against the system).The linear movement range of20cm enables full range of wrist extension/flexion and about40◦of elbow exten-sion/flexion,assuming a lower arm length of30cm.The low velocity as well as smooth movement is required to avoid head motion,and thus,artifacts to brain images.Control performance will be compared with regard to the two modes“position con-trol”and“impedance/admittance control.”Fig.2.Scheme of the MRI-compatible manipulandum.This device has one translational degree of freedom and is driven by a hydraulic or pneumatic cylinder to interact with the user’s hand(Fig.2).Position,force,and pressure sensors send the respective information to the control computer.The fluidic power of the pressurized air or oil is generated out of the MRI scanner room,regulated by computer-controlled valves, and then sent to the cylinder via long transmission hoses.B.Construction MaterialsAll the materials put inside or close to the MRI scanner must have low magnetic susceptibility and low electric conductivity. Therefore,polyethylene terephthalate(PET)and polyvinyl chlo-ride(PVC)plastic were taken as the main construction material for frames and mechanical adapters.Nevertheless,metals have to be used for some parts required to be stiff,such as the cylin-ders that will work under high pressure and force.Both cylinders were specially designed and manufactured,with aluminum be-ing the housing material.The moving piston of the pneumatic cylinder is made of PET,while that of the hydraulic cylinder is made of bronze to sustain the higher forces due to the signif-icantly higher pressures.Both aluminum and bronze have low magnetic susceptibilities(20.7×10−6and−0.879×10−6), which are comparable with that of oxygenated and deoxy-genated blood(about−9.0×10−6and−7.9×10−6[25]). Bronze was chosen for piston because its electrical conductivity(7.5×106Ω−1m−1)is small.C.Force and Position Sensors,Signal TransmissionBoth manipulandum systems comprise a force and a position sensor.The force sensor consists of a processing circuit and three optical glassfibers,one with emitting laser light and two with receiving laser light(Fig.3).The processing circuit,which is located outside the scanner room,generates the laser signal I0.This laser signal is sent to the hand bar by the emittingfiber, and picked up by the receivingfibers.Then,laser signals I1 and I2are sent out of the MRI room via the receivingfibers, measured by the processing circuit,and read into the control computer.When a pulling or pushing force is applied to the hand bar,the emittingfiber is slightly displaced,thus changing the light intensities in the two receivingfibers.As a result,the force is detected by the change of the ratio of light intensities I1 and I2.An optical encoder,LIDA279by Heidenhain,works together with a resistive potentiometer,MTP-L22by Resenso,tomea-Fig.3.Custom-made MRI-compatible force sensor based on an optical mea-surementprinciple.Fig.4.Overview of the hydrodynamic system.sure the hand bar position.The voltage on the potentiometer is 10V dc and the resulting current is about0.13mA.A shielded cable connects the sensors with the processing circuit.Both the optical encoder and the resistive potentiometer(which works with low dc current only)are MRI-compatible[26].D.Hydrodynamic and Pneumatic Actuation,Power TransmissionThe oil used in hydrodynamic actuation is Orcon Hyd32, which is accepted as a lubricant with incidental food contact. Hence,it is appropriate for biomedical applications.The supply oil pressure from the compressor is15or25 bar.A directional valve regulates oilflow,and thus,controls the movement of the actuation cylinder(Fig.4).Two pressure sensors were mounted on the valve manifold.The bulk modulus of oil is rather large(Table I),so it is nearly incompressible.The actuation system is not back-drivable,in the sense that the piston cannot be easily moved when the directional valve is powered off since it is closed.TABLE IH YDRODYNAMIC AND P NEUMATIC S YSTEM CONFIGURATIONFor pneumatic actuation,the supply air pressure is 5bar,as in conventional applications.Both flow control and pressure control can be implemented.Flow control is appropriate for position regulation such as point-to-point movements,and it can be achieved by a directional flow valve in a similar struc-ture as the hydrodynamic system (Fig.4).Pressure control is considered superior to flow control to overcome limitations of compressibility,friction,and external disturbances [20].In our application,the manipulandum interacts with human subjects and the interaction force varies within a large range,so that we preferred pressure control.For each cylinder chamber,one valve regulates the pressure with the feedback from a pressure sensor (Fig.5).The hydraulic and pneumatic transmission hoses between the control valves and the cylinders are 6and 5m long,respec-tively.The valves were located at the corner of the scanner room,far from the scanner isocenter.The scanner magnetic field decreases rather quickly with increasing distance from the scanner bore and comes to be only 0.2mT at the valve loca-tion [27].(For comparison,the magnetic field of the earth is about 0.03–0.06mT.)Cables for electronic signal transmission (position sensors,pressure sensors,and control valves),tubes for fluidic power transmission,as well as glass fibers for laser transmission,en-tered the scanner room through two tunnels in the wall.In the tunnel,the shielding layers of cables were connected to the shielding layer of the MRI room.Thus,noise in the control room is prevented from going to the imagingsystem.Fig.5.Overview of the pneumatic system.E.Control Software and Data AcquisitionThe controllers were designed in MATLAB Simulink,and then,compiled to the control computer that runs an xPC target and communicates with the system by a data acquisition card (AD622,Humusoft).The sampling frequency was 1kHz.F .MRI-Compatibility ExaminationThe MRI-compatibility of the two mechatronic systems must be examined by fMRI scanning.The fMRI experiments were conducted in each of the following experimental conditions:1)no device;2)silent device:the haptic interface was in the scanner bore and not in operation;and 3)functioning device:the manipulandum was in the scanner bore and in operation.In conditions 2)and 3),valves and sensors were put far away from the scanner isocenter.Two methods were taken to evaluate whether artifacts have been introduced into the fMRI images.The SNR quantita-tively estimates whether additional noise has been introduced into fMRI procedures.Image noise comes from fluctuations in electrical currents.These currents generate fluctuating mag-netic fields,which induce noise signals in the MRI recording coils.The SNR values were calculated according to the signal-background method [28]SNR =0.66×mean signalaverage of noise region standard deviations.For an acquired image,signal is given by the mean pixel value from a region of interest (ROI)within the phantom,while the noise is computed by the average standard deviation in four selected regions out of the phantom.The ROI covers about 75%of the phantom area.A second method is image subtraction.This is a qualitative method to check whether image shifts or deformations did occur.III.C LOSED -L OOP C ONTROL S TRATEGIESA.Hydrodynamic Controller DesignHydraulic oil compressibility is characterized by the bulk modulus K .Changes of pressures P 1and P 2in the cylinderFig.6.Position controller for the hydrodynamic system. chambers can be written as˙P 1=KV1(−˙V1+q1)˙P 2=KV2(−˙V2+q2).(1)Here,V1=V10+xA1and V2=V20+(L−x)A2are the totalfluid volumes on two sides of the cylinder,L is the stroke of the cylinder,x is the position of the piston,V10and V20are the dead volumes,A1and A2are the cross sections of cylinder chambers,and q1and q2are oilflows that are dependent on the chamber oil pressure,supply oil pressure,or reservoir oil pressure,and also on the control signal u[29].According to(1),the velocity of the piston is˙x=1A1q1−x˙P1K−V10A1˙P1K−1A1˙V10=−12q2+(L−x)˙P2+V202˙P2+12˙V20.(2)First,we consider the steady situation.Pressure changes and dead volume variations are ignored.In this case,˙P1,˙P2and˙V10,˙V20all are equal to zero.Thus,the velocity of the piston is fully determined by the oilflows q1and q2˙x=1A1q1=−1A2q2.(3)When the piston moves at a constant speed,the pressures P1and P2are constants too.Thus,the oilflows q1and q2only depend on the proportional valve.As a result,the control voltage of the proportional valve regulates the velocity of the piston, which can be modeled by a lookup table(Figs.6and7).A velocity control scheme was designed to deal with model errors,external disturbances,cylinder pressure variations,and compliance from the hydrodynamic system.This scheme con-sists of a compliance compensation component and a propor-tional velocity controller(Figs.6and7).In the hydraulic system,compliance comes from pressure variations˙P1,˙P2,long hose volumes V10,V20,and their vari-ations˙V10,˙V20.It can significantly affect the system perfor-mance.The dead volumes are the transmission hose volumes V10=V20=L t A t.When the hydraulic system works at15bar supply pressure,the velocity range is[−11,19]cm/s(TableI).Fig.7.Admittance controller for the hydrodynamic system.The virtual spring can be achieved by setting the virtual admittance to be˙x d=F h/Kυ−K x/Kυ(x−x0).˙P1can rise up to124bar/s,which results in−x˙P1K=0.24cm/s,x=L−V10A1˙P1K=−L t A tA1˙P1K=0.74cm/s.These terms are relatively large in the working velocity range and cannot be neglected.It can also be seen that the long hoses are the main source of high compliance.Additionally,we have observed by visual inspection that the hose volumes also change as the inside pressures change,but cannot detect that quantita-tively.We design the compliance compensation component as˙x c=−12−x˙P1K−V10A1˙P1K+(L−x)˙P2K+V20A2˙P2K.(4)Besides compliance,cylinder pressure variations,model er-rors,external disturbances as well as uncompensated compli-ance components−(1/A1)˙V10,(1/A2)˙V20,also deteriorate the control performance.The proportional controller handles these problems and makes the whole system robust.The coefficient was experimentally adjusted to be0.12V/(cm/s).The user force F h affects pressures P1and P2,and causes a shift in the voltage–velocity lookup table.This shift can be corrected by the velocity controller.A proportional-derivative(PD)position controller was designed to work in cascade with the velocity controller to guide the user’s hand and track the given position trajectory(Fig.6).It is not possible to realize impedance control on the hydro-dynamic system because it is not naturally back-drivable due to the incompressibility of oil.However,the virtual spring for user active movements can be simulated by the following admittance control law(Fig.7):˙x=1Kυ[F h−K x(x−x0)].(5) Since the manipulandum moves in a low-speed range,we can set Kυto be a small value such that the viscous term Kυ˙x is relatively insignificant in the admittance relationship.Then,F h−K x(x−x0)=Kυ˙x≈0(6)Fig.8.Position controller for the pneumaticsystem.Fig.9.Impedance controller for the pneumatic system.The virtual spring can be achieved by setting the virtual impedance to be F d =−K x (x −x 0).and the hydrodynamic system behaves like a virtual spring with stiffness K x .Here,K v was experimentally defined to be 1N/(cm/s),and K x can vary from 1to 10N/cm.If K x was set to be very small to simulate a soft spring,the term K x (x −x 0)goes close to K υ˙x,and the viscous effect becomes obvious.B.Pneumatic Controller DesignSince the pressure sensor measures the cylinder pressure rela-tive to the environmental pressure,we also use relative pressure.The force exerted by the pneumatic cylinder isF c =P 1A 1−P 2A 2.(7)Here,we regulate the pressures P 1and P 2in two cylinder chambers by two independent valves (Fig.5),and thus,regulate the force produced by the cylinder.Given the desired force F d ,the desired pressures P 1d and P 2d are calculated.If F d ≥0,thenP 1d=1A 1(F d +P 20A 2)P 2d =P 20(8)and if F d <0,thenP 1d=P 10P 2d=−12(F d −P 10A 1)(9)where we set P 10=P 20=1bar .A first-order controller was designed for pressure controlu 1,2=2(1/2π×25)s +1(P 1,2d −P 1,2).(10)The pressure control loop is the innermost loop of the pneu-matic system for both position and impedance control.We close the force-control loop for force and impedance control,and then close the position loop for position control (Fig.9).A position controller with friction compensation worked in cascade with the force–pressure regulator to obtain user pas-sive movement.Due to manufacture and material properties,the friction depends not only on velocity,but also on position.The friction was modeled by a 2-D lookup table of the reference position signal,and then compensated by a force–pressure con-trol.The user force was measured by the optical force sensor and got corrected afterwards.The position controller is also of PD form.Both admittance control and impedance control can be im-plemented on the pneumatic system [30],[31]for virtual spring simulation.Admittance control requires a good posi-tion/velocity controller that is robust against force disturbances,like the velocity controller in our hydrodynamic system.Here the position controller depends on the nested force–pressure regulator and suffers from the long distance between the valves,pressure sensors,and the cylinder.Thus,the admittance con-trol is not the optimal option.On the other hand,pneumatic systems are natural impedances due to the compressibility of air,and impedance control can be realized directly by pressure regulation.The impedance control law is quite straightforwardF d =−K x (x −x 0).(11)It calculates the desired force from the measured position and the specified stiffness,and then,feed this signal to force–pressure regulation to achieve the desired force (Fig.9).IV .R ESULTS AND D ISCUSSIONA.Hydrodynamic System Control PerformanceTo analyze the influence of working pressure on the dynamic performance,we tested the hydrodynamic system at two supply pressures of 15and 25bar,respectively.Here,15bar is the mini-mal working pressure for the hydrodynamic system to fulfill the defined velocity requirement,while 25bar is the limit pressure for the hydrodynamic system to work safely.The position control performance was first examined for step responses (Fig.10).The reference step curve jumped twice from 5to 15cm and back,and then jumped twice from 5to 10cm and back.When the hydrodynamic system worked at 15bar,the steady position error was smaller than 0.06cm,overshoot was smaller than 0.02cm,and rise time was about 3.14s.When the system worked at 25bar,the steady position error was still smaller than 0.06cm,but the overshoot went up to 0.27cm and the rise time decreased to 0.86s.We then checked the position-controlled hydrodynamic sys-tem for dynamic tracking performance.A so-called chirp signal from MATLAB Simulink was taken as the reference trajectory.The signal was of sinusoidal shape,fixed amplitude of 10cm,and offset of 12cm.The frequency of this signal linearly in-creased from 0to 1Hz as time went from 0to 100s.The actual position curve was recorded and compared with the reference “chirp”signal for bandwidth information (Fig.11).The position bandwidth for the given signal was 0.48Hz when the hydrody-namic system worked at 15bar,and went up dramatically to 0.65Hz for the working pressure of 25bar.Fig.10.Step responses of two hydrodynamic systems and the pneumatic system under positioncontrol.Fig.11.Position control bandwidth of the hydrodynamic system (at 15and 25bar)and the pneumatic system (5bar).User active movements were achieved by the simulated vir-tual spring.Fig.12shows an example spring of stiffness 5N/cm when the hydrodynamic system worked at 15and 25bar of supply pressure.The actual force F is the user force measured by the optical force sensor.This force drives the hand bar from the equilibrium position x 0to a certain position x .For an ideal spring,there will be a reaction force K x (x −x 0),which was de-noted as the virtual force in the plot.If the hydrodynamic system simulates the virtual spring,there should be F =K x (x −x 0),and two curves coincide.It can be seen from the plot that the virtual force curve coincided quite well with the actual force curve at 25bar working pressure,and was slightly postponed at 15bar working pressure.When the spring constant is small to simulate a soft spring or the device moves fast,the neglected viscous term becomes significant and blurs the spring feeling.This resulted from the admittance control law we used.B.Pneumatic System Control PerformanceWe used exactly the same procedures to analyze the controlled performance of the pneumatic system as we did with the hydro-dynamic system.According to the step responses (Fig.10),Fig.12.Results of the hydrodynamic admittance controller at 25bar (left)and at 15bar (right)to simulate a virtualspring.Fig.13.Results of the pneumatic impedance controller to simulate a virtual spring of supply pressure 4bar.the steady position error was smaller than 0.25cm,overshoot smaller than 0.01cm,and the rise time was about 0.86s.The po-sition bandwidth for the given “chirp”signal was around 0.9Hz higher than the bandwidth of the hydrodynamic system working at 15bar or 25bar.An example of the simulated spring was shown in Fig.13.The spring constant was also 5N/cm.The hand bar was driven away from the equilibrium position x 0to a certain position x by the user.Similarly as in the previous section,an ideal spring reaction force is −K x (x −x 0),which was again denoted as the virtual force in the plot.The cylinder tried to produce this force and actually generated the force F .It can be seen that the actual force closely followed the desired virtual.C.MRI-Compatibility EvaluationBoth mechatronic systems were tested for MRI compatibility in a 3.0-T MRI system (Philips Medical Systems,Eindhoven,The Netherlands)equipped with an eight-channel sensitivity encoding (SENSE)(tm)head coil.For the functional acqui-sitions,a T2∗-weighted,single-shot,field echo,echo-planar imaging (EPI)sequence of the whole brain (repetition time。