2016-2017年贵州省黔西南州望谟县乡镇联考八年级(上)期末数学试卷(解析版)

合集下载

学校16—17学年上学期八年级期末考试数学试题(扫描版)(附答案)

学校16—17学年上学期八年级期末考试数学试题(扫描版)(附答案)

2016-2017学年第一学期期末考试八年级数学试题参考答案一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)x;12. 6<x<12;13.4,0),(4,4),(0,4);14.-6;15.①11.②④三、解答题(本题共16分,每小题4分)16.(1))解:方程两边乘以,得------------------------1分解得.--------------------------2分检验:当时,.---------------------------------3分所以,原分式方程的解为.---------------------------4分(2))a2(x﹣y)+4b2(y﹣x)=a2(x﹣y)﹣4b2(x﹣y)------------------------1分=(x﹣y)(a2﹣4b2)---------------------------------------2分=(x﹣y)(a+2b)(a﹣2b).---------------------------------4分17. 解:原式=[﹣]×,=×,-----------------2分=×,-------------------------------------------3分=,--------------------------------------------4分2x+5>1,2x>﹣4,x>﹣2,-------------------------------------------5分∵x是不等式2x+5>1的负整数解,∴x=﹣1,--------------------------------------------6分把x=﹣1代入中得:=3.--------------------------------------------8分18. 解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);-----------------3分-- ------6分(2)S△ABC=6×6﹣×5×6﹣×6×3﹣×1×3,=36﹣15﹣9﹣1,=10.--------------------------------------10分19. (1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.--------------------------------2分又∵AE=BD,∴△AEC≌△BDA(SAS).--------------------------------2分∴AD=CE;--------------------------------5分(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,--------------------------------7分∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.--------------------------------10分20. 解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,…………1分由题意,得=2×+500,解得x=3,经检验x=3是方程的解. (3)分答:该种干果的第一次进价是每千克3元…………5分(2)30009000+-5006+500660%-3000+9000 331+20%⨯⨯⨯⨯()()()…………7分=(1000+2500﹣500)×6+1800﹣12000=3000×6+1800﹣12000=18000+1800﹣12000=7800(元).…………9分答:超市销售这种干果共盈利7800元.…………10分21. 1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,------------1分由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-------------------------------3分∴∠ABC=∠ACB,∴AB=AC;------------------------------4分(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,--------------------------5分由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-----------6分∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;--------------------------9分(3)解:不一定成立,-------------------------10分当∠A 的平分线所在直线与边BC 的垂直平分线重合时AB=AC ,否则AB ≠AC .(如示例图)--------------------------12分22. 解:(1)第一个图形中阴影部分的面积是a 2﹣b 2,第二个图形的面积是(a+b )(a ﹣b ),则a 2﹣b 2=(a+b )(a ﹣b ).故答案是B ; ------------------3分(2)①∵x 2﹣9y 2=(x+3y )(x ﹣3y ),------------------------5分∴12=4(x ﹣3y )------------------------6分得:x ﹣3y=3;------------------------8分 ②111111111+11+-1+1-+1-2233999910010031421009810199=223399991001001101=2100101=200⨯⨯⨯⨯⨯⨯⨯()(﹣)()(1)......()()(1)()......9分............10分......11分......12分。

贵州黔西南州望谟县乡镇联考16-17学年八年级上期末考试--生物

贵州黔西南州望谟县乡镇联考16-17学年八年级上期末考试--生物

八年级生物一、选择题(每题2分,共40分)1.绦虫和蛔虫均为肠道寄生虫,蝗虫对禾本科作物危害大,青蛙称为田园卫士。

绦虫、蛔虫、蝗虫、青蛙它们分别属于()A 腔肠动物、扁形动物、环节动物、爬行动物B 扁形动物、线形动物、节肢动物、两栖动物C 线形动物、线形动物、环节动物、两栖动物D 扁形动物、环节动物、节肢动物、两栖动物2.下列哪一个是真正的鱼()A.鲸鱼B.甲鱼C.鲫鱼D.章鱼3.人往口中送食物时,上臂肌肉的状态是()A.肱二头肌收缩,肱三头肌舒张B.肱二头肌舒张,肱三头肌收缩B.肱二头肌和肱三头肌同时收缩C.肱二头肌和肱三头肌同时舒张4.下列说法与鸟适于飞行生活没有关系的是()A.有坚硬的角质喙B.身体呈流线型,体表被覆羽毛B.胸肌发达,有利于飞翔的翼C.有发达的气囊辅助呼吸5.寒冷的北极,北极熊能够在零下数十度的环境中维持恒定的体温正常的生活,下列关于北极熊维持恒温原因的表述中,错误的是()A.北极熊有厚厚的毛,具有保温作用B.北极熊有很厚的皮下脂肪,具有保温作用C.北极熊的运动器官和内脏能够产生大量的热D.北极熊适应环境的能力比较强6.各种动物都以各自独特的方式适应环境,下列选项中错误的是()A.蚯蚓--细长柔软,用肺呼吸,皮肤辅助呼吸B.蝗虫--有外骨骼防止水分蒸发B.鲫鱼--用鳃呼吸,鳍游泳C.家鸽--前肢特化为翼,骨中空,身体内有气囊7.下列各项属于动物学习行为的是()。

A. 黑猩猩通过堆叠箱子摘下悬挂在高处的香蕉B. 狼将捡到的婴儿哺育成“狼孩”C. 蜘蛛结网捕捉昆虫D. 鸟类的筑巢、孵卵和育雏8.日常生活中,人们常常利用冰箱的冷藏室对食物进行保鲜,这是因为()。

A. 低温能让微生物休眠B. 低温环境中无任何细菌C. 低温能杀死细菌D. 低温能抑制细菌繁殖9.农民常将玉米和大豆间作,这样做的好处是( )A. 大豆可固氮,有利于提高整体产量B. 利用大豆压制杂草的生长C. 充分利用土地,提高产量D. 缓解人均耕地过少的矛盾10.老鼠不仅咬坏庄稼而且传播疾病,人类对它们应该采取的正确做法是()。

2016—2017学年八年级上期末数学试题(含答案)

2016—2017学年八年级上期末数学试题(含答案)

2016-2017年秋期八年级上期末教学质量检测数学试卷出题人:曾琴一、选择题〔本大题共10个小题,每小题3分,共30分〕1.若分式有意义,则x满足的条件是A.x≠0B.x≠3C.x≠-3D.x≠±32.计算:(-x)3·(-2x)的结果是A.-2x4B.-2x3C.2x4D.2x33.在平面直角坐标系中,点A(7,-2)关于x轴对称的点A′的坐标是A.(7,2)B.(7,-2)C.(-7,2) D.(-7,-2)4.若△ABC≌△A′B′C′,且AB=AC=9,△ABC的周长为26cm,则B′C′的长为A.10cmB.9cmC.4cmD.8cm5.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P为:A.90°﹣α B. 90°+αC. C. 360°﹣α6.分式方程1226x x=+的解为第5题图A.x=-2B.x=2 C.x=-3D.x=37.计算:201423⎛⎫⎪⎝⎭×(-1.5)2015的结果是A.-32B.32C.-23D.238. 下列各图形都是轴对称图形,其中对称轴最多的是A.等腰直角三角形B.直线C.等边三角形D.正方形9.已知△ABC的两边长分别为AB=9、AC=2,第三边BC的长为奇数,则BC的长是A.5B.7C.9D.1110.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为A. 5B. 5或6C. 5或7D. 5或6或7二、填空题(本大题共6个小题,每小题3分,共18分)请将答案直接填在答题卷对应的横线上.11.分解因式:4x2-1=.12.若分式2212xx x-+-=0,则x=.A )BCD 84° (第13题)13.如图,在△ABC 中,点D 是BC 上一点,∠BAD =84°,AB =AD =DC ,则∠CAD =.14.如图,在△ABC 中,EF 是AB 边的垂直平分线,AC =18cm ,BC =16cm 则△BCE 的周长为cm .15.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值X 围是________.16.已知b a b a +=+111 ,则ba ab +的值。

20162017学年度上学期期末八年级数学试题含答案

20162017学年度上学期期末八年级数学试题含答案

2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。

2016年贵州省八年级上学期期末数学调研试卷【解析】

2016年贵州省八年级上学期期末数学调研试卷【解析】

2016年贵州省八年级上学期期末数学调研试卷一.选择题(共12小题,满分36分,每小题3分)1.下列长度的三条线段能组成三角形的是()A. 1,2,3 B. 4,5,9 C. 6,8,10 D. 5,15,82.下列分式是最简分式的是()A. B. C. D.3.如图,在下列条件中,不能证明△ABD≌△ACD的条件是()A.∠B=∠C,BD=DC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D. BD=DC,AB=AC4.下列轴对称图形中,可以用没有刻度的直尺画出对称轴的有()A. 1个 B. 2个 C. 3个 D. 4个5.一个多边形内角和是1080°,则这个多边形是()A.六边形 B.七边形 C.八边形 D.九边形6.若分式的值为零,则x的值是()A. 2或﹣2 B. 2 C.﹣2 D. 47.如图,直线l是一条河,A、B两地相距10km,A、B两地到l的距离分别为8km、14km,欲在l上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是()A. B.C. D.8.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A. 0根 B. 1根 C. 2根 D. 3根9.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A. 180° B. 220° C. 240° D. 300°10.若分式有意义,则a的取值范围是()A. a=0 B. a=1 C. a≠﹣1 D. a≠011.下列运算中,计算结果正确的是()A. a2•a3=a6 B.(a2)3=a5 C.(a2b)2=a2b2 D.(﹣a)6÷a=a512.如果=,那么的值是()A. B. C. D.二.填空题(共8小题,满分32分,每小题4分)13.分解因式:x3﹣4x2﹣12x= .14.若分式方程:有增根,则k= .15.已知x+y=6,xy=﹣2,则= .16.已知点P(2a+b,b)与P1(8,﹣2)关于y轴对称,则a+b= .17.当a=3,a﹣b=﹣1时,a2﹣ab的值是.18.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)19.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A= 度.20.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.三.解答题(共10小题,满分82分)21.先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.22.给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.23.解方程:=.24.如图,AB=DE,BE=CF,AB∥DE.求证:∠A=∠D.25.如图,在△ABC中,∠C=90°,DE垂直平分AB,分别交AB,BC于D,E.若∠CAE=∠B+30°,求∠AEB的度数.26.已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:A D和CE垂直.27.如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.28.解方程:①的解x= .②的解x= .③的解x= .④的解x= .…(1)根据你发现的规律直接写出⑤,⑥个方程及它们的解.(2)请你用一个含正整数n的式子表示上述规律,并求出它的解.29.海峡两岸实现“三通”后,某水果销售公司从台湾采购苹果的成本大幅下降.请你根据两位经理的对话,计算出该公司在实现“三通”前到台湾采购苹果的成本价格.30.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.下列长度的三条线段能组成三角形的是()A. 1,2,3 B. 4,5,9 C. 6,8,10 D. 5,15,8考点:三角形三边关系.分析:根据三角形任意两边之和都大于第三边逐个判断即可.解答:解:A、1+2=3,不符合三角形三边关系定理,故本选项错误;B、4+5=9,不符合三角形三边关系定理,故本选项错误;C、6+8>10,6+10>8,8+10>6,符合三角形三边关系定理,故本选项正确;D、5+8<15,不符合三角形三边关系定理,故本选项错误;故选C.点评:本题考查了三角形的三边关系定理的应用,主要考查学生对三角形的三边关系定理的理解能力,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.2.下列分式是最简分式的是()A. B. C. D.考点:最简分式.分析:要判断分式是否是最简分式,只需判断它能否化简,不能化简的即为最简分式.解答:解:A.不能约分,是最简分式,B.=,C.=,D.=﹣1,故选:A.点评:此题考查了最简分式,最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.3.如图,在下列条件中,不能证明△ABD≌△ACD的条件是()A.∠B=∠C,BD=DC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D. BD=DC,AB=AC考点:全等三角形的判定.分析:根据全等三角形的判定方法SSS、SAS、ASA、AAS分别进行分析即可.解答:解:A、∠B=∠C,BD=CD,再加公共边AD=AD不能判定△ABD≌△ACD,故此选项符合题意;B、∠ADB=∠ADC,BD=DC再加公共边AD=AD可利用SAS定理进行判定,故此选项不合题意;C、∠B=∠C,∠BAD=∠CAD再加公共边AD=AD可利用AAS定理进行判定,故此选项不合题意;D、BD=DC,AB=AC,再加公共边AD=AD可利用SSS定理进行判定,故此选项不合题意;故选A.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.下列轴对称图形中,可以用没有刻度的直尺画出对称轴的有()A. 1个 B. 2个 C. 3个 D. 4个考点:轴对称图形.分析:第一个、第二个、第四个均可以直接连接做对称轴.第四个要做出两条对角线取其中点作对称轴解答:解:如图所示:故选D.点评:本题考查了轴对称图形的知识,解答本题的关键是掌握对称轴的定义.5.一个多边形内角和是1080°,则这个多边形是()A.六边形 B.七边形 C.八边形 D.九边形考点:多边形内角与外角.分析:设这个多边形是n(n≥3)边形,则它的内角和是(n﹣2)180°,得到关于n的方程组,就可以求出边数n.解答:解:设这个多边形是n边形,由题意知,(n﹣2)×180°=1080°,∴n=8,所以该多边形的边数是八边形.故选C.点评:根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.6.若分式的值为零,则x的值是()A. 2或﹣2 B. 2 C.﹣2 D. 4考点:分式的值为零的条件.专题:计算题.分析:分式的值是0的条件是:分子为0,分母不为0.解答:解:由x2﹣4=0,得x=±2.当x=2时,x2﹣x﹣2=22﹣2﹣2=0,故x=2不合题意;当x=﹣2时,x2﹣x﹣2=(﹣2)2﹣(﹣2)﹣2=4≠0.所以x=﹣2时分式的值为0.故选C.点评:分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.7.如图,直线l是一条河,A、B两地相距10km,A、B两地到l的距离分别为8km、14km,欲在l上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是()A. B.C. D.考点:轴对称-最短路线问题.分析:作点A关于直线l的对称点,再把对称点与点B连接,根据轴对称确定最短路线问题,交点即为所求点M.解答:解:根据轴对称确定最短路线问题,B选项图形方案符合.故选B.点评:本题考查了轴对称确定最短路线问题,熟练掌握最短路线的确定方法是解题的关键.8.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A. 0根 B. 1根 C. 2根 D. 3根考点:三角形的稳定性.专题:存在型.分析:根据三角形的稳定性进行解答即可.解答:解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选:B.点评:本题考查的是三角形的稳定性在实际生活中的应用,比较简单.9.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A. 180° B. 220° C. 240° D. 300°考点:等边三角形的性质;多边形内角与外角.专题:探究型.分析:本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.解答:解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.点评:本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题10.若分式有意义,则a的取值范围是()A. a=0 B. a=1 C. a≠﹣1 D. a≠0[来源:]考点:分式有意义的条件.专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;11.下列运算中,计算结果正确的是()A. a2•a3=a6 B.(a2)3=a5 C.(a2b)2=a2b2 D.(﹣a)6÷a=a5考点:幂的乘方与积的乘方;同底数幂的乘法;同底数幂的除法.分析:根据幂的乘方和积的乘方以及同底数幂的除法法则求解.解答:解:A、a2•a3=a5,原式计算错误,故本选项错误;B、(a2)3=a6,原式计算错误,故本选项错误;C、(a2b)2=a4b2,原式计算错误,故本选项错误;D、(﹣a)6÷a=a5,原式计算正确,故本选项正确.故选D.点评:本题考查了幂的乘方和积的乘方以及同底数幂的除法运算,掌握运算法则是解答本题的关键.12.如果=,那么的值是()A. B. C. D.考点:比例的性质.分析:根据分比性质,可得答案.解答:解:=,由分比性质,得=,由反比性质,得=,故选:C.点评:本题考查了比例的性质,利用了分比性质,反比性质.二.填空题(共8小题,满分32分,每小题4分)13.分解因式:x3﹣4x2﹣12x= x(x+2)(x﹣6).考点:因式分解-十字相乘法等;因式分解-提公因式法.分析:首先提取公因式x,然后利用十字相乘法求解即可求得答案,注意分解要彻底.解答:解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).故答案为:x(x+2)(x﹣6).点评:此题考查了提公因式法、十字相乘法分解因式的知识.此题比较简单,注意因式分解的步骤:先提公因式,再利用其它方法分解,注意分解要彻底.14.若分式方程:有增根,则k= 1 .考点:分式方程的增根.专题:计算题.分析:把k当作已知数求出x=,根据分式方程有增根得出x﹣2=0,2﹣x=0,求出x=2,得出方程=2,求出k的值即可.解答:解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,∵分式方程有增根,∴x﹣2=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1.点评:本题考查了对分式方程的增根的理解和运用,把分式方程变成整式方程后,求出整式方程的解,若代入分式方程的分母恰好等于0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较好的题目.15.已知x+y=6,xy=﹣2,则= 10 .考点:分式的化简求值.分析:把分式整理成含x+y、xy的形式,再整体代入计算.解答:解:=,∵x+y=6,xy=﹣2,∴原式==.点评:此题的关键是根据题意把分式整理成含x+y、xy的形式.16.已知点P(2a+b,b)与P1(8,﹣2)关于y轴对称,则a+b= ﹣5 .考点:关于x轴、y轴对称的点的坐标.分析:首先根据关于y轴对称点的坐标特点可得2a+b=﹣8,b=﹣2,再解方程可得a、b的值,进而得到答案.解答:解:∵点P(2a+b,b)与P1(8,﹣2)关于y轴对称,∴2a+b=﹣8,b=﹣2,解得:a=﹣3,则a+b=﹣3﹣2=﹣5.故答案为:﹣5.点评:此题主要考查了关于y轴对称点的坐标特点,关键是掌握坐标的变化特点:横坐标互为相反数,纵坐标不变.17.当a=3,a﹣b=﹣1时,a2﹣ab的值是﹣3 .考点:因式分解-提公因式法.分析:直接提取公因式,进而将已知代入求出即可.解答:解:∵a=3,a﹣b=﹣1,∴a2﹣ab=a(a﹣b)=3×(﹣1)=﹣3.故答案为:﹣3.点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.18.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠A=∠F或AC∥EF或BC=DE(答案不唯一).(只需填一个即可)考点:全等三角形的判定.专题:开放型.分析:要判定△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故添加∠A=∠F,利用SAS可证全等.(也可添加其它条件).解答:解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).点评:本题考查了全等三角形的判定;判定方法有ASA、AAS、SAS、SSS等,在选择时要结合其它已知在图形上的位置进行选取.19.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A= 50 度.考点:三角形的外角性质;等腰三角形的性质.分析:根据等角对等边的性质可得∠A=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.点评:本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边对等角的性质,是基础题,熟记性质并准确识图是解题的关键.20.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为2m+4 .考点:平方差公式的几何背景.专题:压轴题.分析:根据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解答:解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.点评:本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.三.解答题(共10小题,满分82分)21.先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.考点:整式的加减—化简求值.分析:首先根据整式的加减运算法则将原式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解答:解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2,当a=,b=﹣时,原式=﹣8××=﹣.点评:熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值.22.给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.考点:因式分解的应用;整式的加减.专题:开放型.分析:本题考查整式的加法运算,找出同类项,然后只要合并同类项就可以了.解答:解:情况一:x2+2x﹣1+x2+4x+1=x2+6x=x(x+6).情况二:x2+2x﹣1+x2﹣2x=x2﹣1=(x+1)(x﹣1).情况三:x2+4x+1+x2﹣2x=x2+2x+1=(x+1)2.点评:本题考查了提公因式法,公式法分解因式,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.熟记公式结构是分解因式的关键.平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a±b)2.23.解方程:=.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x2+2x﹣x2+4=8,移项合并得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.24.如图,AB=DE,BE=CF,AB∥DE.求证:∠A=∠D.考点:全等三角形的判定与性质.专题:证明题.分析:首先证得BC=EF,根据平行线的性质证得∠B=∠DEF,根据SAS即可证得△ABC≌△DEF,根据全等三角形的对应边相等即可证得.解答:解:∵BE=CF,∴BE+EC=CF+DE,即BC=EF,∵AB∥DE,∴∠B=∠DEF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴∠A=∠D.点评:本题考查了全等三角形的判定与性质,证明两个角相等常用的方法是转化成三角形全等.25.如图,在△ABC中,∠C=90°,DE垂直平分AB,分别交AB,BC于D,E.若∠CAE=∠B+30°,求∠AEB的度数.考点:线段垂直平分线的性质.分析:根据线段垂直平分线求出AE=BE,推出∠B=∠EAB,根据已知和三角形内角和定理得出∠B+30°+∠B+∠B=90°,求出∠B,即可得出答案.解答:解:∵DE垂直平分AB,∴AE=BE,∴∠B=∠EAB,∵∠C=90°,∠CAE=∠B+30°,∴∠B+30°+∠B+∠B=90°,∴∠B=20°,∴∠AEB=180°﹣20°﹣20°=140°.点评:本题考查了线段垂直平分线,三角形内角和定理,等腰三角形的性质的应用,解此题的关键是得出关于∠B的方程,题目比较好,难度适中.26.已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.考点:等腰直角三角形;全等三角形的性质;全等三角形的判定.分析:(1)要证AD=CE,只需证明△ABD≌△CBE,由于△ABC和△DBE均为等腰直角三角形,所以易证得结论.(2)延长AD,根据(1)的结论,易证∠AFC=∠ABC=90°,所以AD⊥CE.解答:证明:(1)∵△ABC和△DBE均为等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=∠CBE,∴△ABD≌△CBE,∴AD=CE.(2)延长AD分别交BC和CE于G和F,∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF,∴∠AFC=∠ABC=90°,∴AD⊥CE.点评:利用等腰三角形的性质,可以证得线段和角相等,为证明全等和相似奠定基础,从而进行进一步的证明.27.如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.考点:全等三角形的判定与性质.专题:证明题.分析:求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.解答:证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.点评:本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.28.解方程:①的解x= 0 .②的解x= 1 .③的解x= 2 .④的解x= 3 .…(1)根据你发现的规律直接写出⑤,⑥个方程及它们的解.(2)请你用一个含正整数n的式子表示上述规律,并求出它的解.考点:解分式方程.专题:计算题;规律型.分析:(1)等号左边的分母都是x+1,第一个式子的分子是1,第二个式子的分子是2,那么第5个式子的分子是5,第6个式子的分子是6.等号右边被减数的分母是x+1,分子的等号左边的分子的2倍,减数是1,第一个式子的解是x=0,第二个式子的解是x=1,那么第5个式子的解是x=4,第6个式子的解是x=5.(2)由(1)得第n个式子的等号左边的分母是x+1,分子是n,等号右边的被减数的分母是x+1,分子是2n,减数是1,结果是x=n﹣1.解答:解:①x=0②x=1③x=2④x=3.(1)第⑤个方程:解为x=4.第⑥个方程:解为x=5.(2)第n个方程:解为x=n﹣1.方程两边都乘x+1,得n=2n﹣(x+1).解得x=n﹣1.点评:解决本题的关键是根据所给的条件,找到相同的部分,以及不同的部分与第n个式子的联系.29.海峡两岸实现“三通”后,某水果销售公司从台湾采购苹果的成本大幅下降.请你根据两位经理的对话,计算出该公司在实现“三通”前到台湾采购苹果的成本价格.考点:分式方程的应用.专题:阅读型.分析:本题用到的关系式为:总金额=单价×数量,等量关系为:三通前购买的苹果数量+20000=今年购买的苹果的数量.解答:解:设该公司今年到台湾采购苹果的成本价格为x元/公斤,则该公司在实现“三通”前到台湾采购苹果的成本价格为2x元/公斤,根据题意列方程得:.解得:x=2.5.经检验:x=2.5是原方程的根.当x=2.5时,2x=5.答:实现“三通”前该公司到台湾采购苹果的成本价格为5元/公斤.点评:列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.30.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?考点:分式方程的应用.专题:应用题.分析:(1)设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.解答:解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.点评:本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.。

贵州省黔西南布依族苗族自治州八年级上学期数学期末考试试卷

贵州省黔西南布依族苗族自治州八年级上学期数学期末考试试卷

贵州省黔西南布依族苗族自治州八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图,已知AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是()A . 63°B . 83°C . 73°D . 53°2. (2分)下列计算正确的是()A . 2a+3b=5abB . a2•a4=a8C . (2a)3=2a3D . (a2)3÷(﹣a2)2=a23. (2分) (2017八上·杭州期中) 下列图形中是轴对称图形的是()A .B .C .D .4. (2分)如图,△ABC中,E为边BC延长线上一点,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=46°,则∠D的度数为()A . 46°B . 92°C . 44°D . 23°5. (2分)下列计算正确的是()A . a2×a3=a6B . ﹣=C . 8﹣1=﹣8D . (a+b)2=a2+b26. (2分)(2017·佳木斯模拟) 如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E,F 分别是AB,BC边的中点,连接AF,CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE= :3;⑤S△EPM= S梯形ABCD ,正确的个数有()A . 5个B . 4个C . 3个D . 2个7. (2分) (2019七下·郑州开学考) 若长方形的长为(4a2−2a+1),宽为(2a+1),则这个长方形的面积是()A . 8a3−4a2+2a−1B . 8a3−1C . 8a3+4a2−2a−1D . 8a3+18. (2分) (2019七下·重庆期中) 下列说法中,正确的是()A . 直线外一点到这条直线的垂线段,叫做点到直线的距离;B . 已知线段,轴,若点的坐标为(-1,2),则点的坐标为(-1,-2)或(-1,6);C . 若与互为相反数,则;D . 已知关于的不等式的解集是,则的取值范围为 .9. (2分) (2016八上·大同期末) 小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A .B .C .D .10. (2分)如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,D为BC的中点,则线段AD的长为()A . 1.5B . 2C . 2.5D . 3二、填空题 (共10题;共10分)11. (1分) (2015七下·西安期中) 生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA分子的直径约为0.0000002cm.这个数量用科学记数法可表示为________ cm.12. (1分) (2017八下·嘉祥期末) 若代数式有意义,则x的取值范围是________13. (1分) (2019八上·浦东期中) 化简 ________.14. (1分)分解因式:a2﹣7a=________15. (1分)已知关于x的方程的解是正数,则m的取值范围为________16. (1分) (2017七下·个旧期中) 如图,EF∥AD,∠1=∠2,∠B=35°,将求∠BDG的过程填写完整.解:∵EF∥AD,∴∠2=________(________)又∵∠1=∠2∴∠1=________(等量代换)∴DG∥________(________)∴∠B+________=180°(________)∵∠B=35°∴∠BDG=________.17. (1分) (2017七下·泸县期末) 完成下列证明:如图,已知DE⊥AC于点E,BC⊥AC于点C,FG⊥AB于点G,∠1=∠2,求证:CD⊥AB.证明:∵DE⊥AC,BC⊥AC(已知),∴DE∥________(________),∴∠2=________(两直线平行,内错角相等),∵∠1=∠2,(已知),∴∠1=________(________),∴GF∥CD(________),∵FG⊥AB(已知),∴CD⊥AB.18. (1分) (2015八下·江东期中) 已知一个无理数与 +1的积为有理数,这个无理数为________.19. (1分)如图,D、E、F分别是△ABC三边延长线上的点,则∠D+∠E+∠F+∠1+∠2+∠3=________度.20. (1分) (2017八下·庆云期末) 如图,在每个小正方形的边长为I的网格中,点A,B,C,D均在格点上,点E在线段BC上,F是线段DB的中点,且BE=DF,则AF的长等于________,AE的长等于________.三、解答题 (共7题;共41分)21. (5分)(2017·莱芜) 先化简,再求值:(a+ )÷(a+ ),其中a= ﹣3.22. (10分) (2019九上·兴化月考) 如图,在平面直角坐标系中,△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4)(1)将△ABC绕点A顺时针旋转90°后得到△AB1C1,在图①中画出△AB1C1,并求出在旋转过程中△ABC扫过的面积;(2)在图②中以点O为位似中心,将△ABC缩小为原来的,并写出点C的对应点的坐标.23. (10分) (2019七下·新田期中) 在求代数式的值时,当单个字母不能或不用求出时,可把已条件作为一个整体,通过整体代入,实现降次、消元、归零、约分等,快速求得其结果.如:已知,,求代数式的值.可以这样思考:因为,所以即所以举一反三:(1)已知,,求的值.(2)已知,则的值.(3)已知,求的值.24. (2分) (2019八下·太原期中) 已知,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=40°,试探究线段BD与CE的数量关系与直线BD与CE相交构成的锐角的度数.(1)如图①,当点D,E分别在△ABC的边AB,AC上时,BD与CE的数量关系是________,直线BD与CE相交构成的锐角的度数是________.(2)将图①中△DAE绕点A逆时针旋转一个角度到图②的位置,则(1)中的两个结论是否仍然成立?说明理由.(3)将图②中△DAE继续绕点A按逆时针方向继续旋转到点D落在CA的延长线时,请画出图形,并直接写出(1)中的两个结论是否仍然成立.25. (10分) (2017八上·孝南期末) 济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?26. (2分) (2019八下·顺德月考) 在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD 的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图1,点D在线段BC的延长线上移动,若∠BAC=30°,则∠DCE=________.(2)设∠BAC=α,∠DCE=β:①如图1,当点D在线段BC的延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B、C重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.27. (2分) (2019八上·威海期末) 如图1,将矩形纸片ABCD沿AC剪开,得到△ABC和△ACD.(1)将图1中的△ABC绕点A顺时针旋转∠α,使∠α=∠BAC,得到图2所示的△ABC′,过点C′作C′E∥AC,交DC的延长线于点E,试判断四边形ACEC′的形状,并说明理由.(2)若将图1中的△ABC绕点A顺时针旋转,使B,A,D在同一条直线上,得到图3所示的△ABC′,连接CC′,过点A作AF⊥CC′于点F,延长AF至点G,使FG=AF,连接CG,C′G,试判断四边形ACGC′的形状,并说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共41分) 21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、27-1、27-2、。

2016-2017学年八年级上期末教学质量数学试卷含答案6

(第 题图)① ②(第 题图)八 年 级 教 学 质 量 监 测数 学注意:本试卷分选择题和非选择题两部分,共 分,考试时间 分钟.一、选择题(每小题 分,共计 分,把答案填在答题卷上)、下列各数中最小的是✌. .  .-3.-⇨ 、关于实数2,下列说法错误的是✌.可以化成小数 .是无理数 .是 的平方根 .它的值在 到 之间 、在函数xxy -=2中,自变量⌧的取值范围是 ✌.⌧  .⌧♎且⌧♊ .⌧  .⌧ 且⌧♊、数据 , , , , 的中位数是✌. . ..、如图,阴影部分是一个长方形,它的面积是1cmBA 5cm20cm10cm✌. 2cm . 2cm . 2cm . 2cm、在以下四种沿✌折叠的方法中,不一定能判定纸带两条边线♋、♌互相平行的是✌.如图♊,展开后测得  .如图♋,展开后测得  且   .如图♌,测得  .如图♍,展开后再沿 折叠,两条折痕的交点为 ,测得 ✌,  、某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是✌ 中位数  平均数  加权平均数  众数、在 ✌中, ✌= ,  - ,则 的度数为 ✌.  .  .  . 、下列叙述错误的是✌ 所有的命题都有条件和结论  所有的命题都是定理  所有的定理都是命题  所有的公理都是真命题 、关于一次函数b x y +-=2(♌为常数),下列说法正确的是✌ ⍓随⌧的增大而增大  当♌ 时,直线与坐标轴围成的面积是 图象一定过第一、三象限  与直线⍓ ⌧相交于第四象限内一点、如图,雷达探测器测得六个目标✌, , , ,☜,☞出现按照规定的目标表示方法,目标☜,☞的位置表示为☜☎, ✆,☞☎, ✆,按照此方法在表示目标✌, , ,☜的位置时,其中表示不正确的是 ✌.✌☎, ✆ . ☎,✆ . ☎, ✆ . ☎, ✆(第 题图)(第 题图)(第 题图)、如图,长方体的长为  ♍❍,宽为 ♍❍,高为  ♍❍.若一只蚂蚁沿着长方体的表面从点✌爬到点 ,需要爬行的最短路径是✌.55+20 .  .5+510 .215二、填空题(每小题 分,共计 分,把答案填在答题卷上)、实数- 的立方根是  、如果用( , )表示七年级八班,那么八年级七班可表示成  、计算()()3535-+ ♉♉♉♉♉♉♉♉;717÷;9± 、不透明的布袋中装着三个小球,小球上标有- 三个数,这三个球除了标的数不同外,其余均相同 从布袋中任意摸出一个球,记下小球上所标之数后放回,⑤⑤,这样一共摸了 次 若记下的 个数之和等于- ,平方和等于 ,则在这 次摸球中,摸到球上所标之数是 的次数是 三、解答题(本大题有 题,其中 题 分, 题 分, 题 分, 题 分, 题 分, 题 分, 题 分,共 分,把答案填在答题卷上)OCBA、( 分)解下列方程:( )⎩⎨⎧-=-=-102304y x y x( )⎪⎩⎪⎨⎧=-=-243143y x yx、( 分)九年级甲、乙两名同学期末考试的成绩(单位:分)如下:根据表格中的数据,回答下列问题:()甲的总分为 分,则甲的平均成绩是 分,乙的总分为 分, 的成绩好一些()经计算知2S 甲 ,2S 乙 .你认为不偏科;(填❽甲❾或者❽乙❾)( )中招录取时,历史和体育科目的权重是 ,请问谁的成绩更好一些?、( 分)小明和小华做游戏,游戏规则如下:( )每人每次抽取四张卡片,如果抽到白色卡片,那么加上..卡片上的数或算式;如果抽到底板带点的卡片,那么减去..卡片上的数或算式 ( )比较两人所抽的 张卡片的计算结果,结果大者为胜者。

贵州黔西南州望谟县乡镇联考16-17学年八年级上期末考试--数学 - 副本

绝密★启用前望谟县2016年秋季学期乡镇中学联考八年级数学测试卷考试范围:八年级上册知识;考试时间:120分钟;总分:150分学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。

第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。

第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。

答案写在试卷上均无效,不予记分。

一、选择题(本大题共10小题,共40分)1.下列各组数不可能是一个三角形的边长的是()A.5,12,13B.5,7,12C.5,7,7D.4,6,92.一个正多边形的内角和是1080°,则它是()边形.A.六B.七C.八D.九3.如图1,已知△ABC≌△DEF,则∠C的对应角为()A.∠FB.∠AGEC.∠AEFD.∠D图14.下列四幅图案中,不是轴对称图形的是()A. B. C. D.5.若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°6.下列运算中,正确的是()A.a8÷a2=a4B.(-m)2•(-m3)=-m5C.x3+x3=x6D.(a3)3=a67.若a-b=3,则a2-2ab+b2-6的值是()A.12B.6C.3D.08.下列各式从左边到右边的变形是因式分解的为()A.(a+1)(a-1)=a2-1B.-18x4y3=-6x2y2•3x2yC.x2+2x+1=x(x+2x)+1D.a2-6a+9=(a-3)29.使代数式有意义的x的取值范围是()A.x>3B.x=3C.x<3D.x≠310.一艘轮船在静水中的最大航速是30km/h,它以最大航速沿江顺流航行90km所用时间,与它以最大航速逆流航行60km所用时间相等.如果设江水的流速为xkm/h,所列方程正确的是()A. B. C. D.二、填空题(本大题共10小题,共30分)11.盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉上一根木条,这是利用了三角形具有 ______ 的原理.12.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 ______ .13. 82016×0.1252015= ______.14.已知x+y=10,xy=16,则x2y+xy2的值为 ______15.当x= ______ 时,分式的值为0.16.如图2,在△ABC中,∠A=75°,∠B=30°,则∠ACD= ______ .17.如图3,△ABC的周长为19cm,AC的垂直平分线DE交AC于点E,E为垂足,AE=3cm,则△ABD 的周长为 ______ .18.如图4,在△ABC和△ABD中,∠C=∠D=90°,若利用“HL”证明△ABC≌△ABD,则需要加条件 ______ 或 ______ .19. 如图5,要测量河两岸相对的两点A、B的距离,在AB的垂线BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,则∠ABC=∠CDE=90°,BC=DC,∠1=______,△ABC ≌_________,若测得DE的长为25 米,则河宽AB长为_________.图2 图3 图4 图520.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3-xy2,取x=10,y=10时,用上述方法产生的密码是: ______ (写出一个即可).三、解答题(本大题共7小题,共80分)21.本题共2小题,共10分,每题5分。

贵州黔西南州望谟县乡镇联考16-17学年八年级上期末考试--政治

望谟县乡镇中学联考2016年秋季学期八年级道德与法治期末测试卷学校:班级:考号:姓名:(考试时间:90分钟;总分100分)一、单项选择题(每小题3分,共60分。

每小题的四个备选答案只有一个符号题目要求。

)1. 张飞初中三年各方面变化很大,下列哪一种表现不属于青春期心理变化的特点()A.随着对异性了解的加深,与异性交往的愿望加强B.开始厌烦父母和老师的唠叨,总觉得有代沟C.觉得自己长大了,似乎成熟了;可情绪不稳定,遇点小事就冲动D.个子猛长,脖子出现了喉结,脸上还长了不少令人讨厌的小痘痘2. 进入青春期后,初中生往往渴望独立又难以摆脱依赖,富有理想又容易脱离现实,勇于探索又缺乏自信。

这说明()A.自立自强需要一个漫长过程 B.初中生青春期心理充满着矛盾C.初中生难以真正自立自强 D.青春期心理矛盾阻碍自身发展3. 你认为下列属于男女同学恰当交往的是()A.小丽和小华互相欣赏,两人经常避开集体活动单独交往B.杨芳是个活泼好动的女孩,经常与男生称兄道弟,打打闹闹C.小伟和李阳都是班干部,他们经常一起组织班级活动D.小美是个品学兼优、全面发展的学生,她很少与男生交往,她认为男女生就应该规规矩距彼此不相往来,否则就不正经4. 小倩和同桌李林互相关心,互相帮助,关系很好,且经常一同进出教室。

于是班上开始有人悄悄议论他俩“好”上了,并反映到了老师那里。

小倩知道后,心里非常苦恼和困惑。

对此,你认为()①异性交往,要讲究交往的艺术②男女生之间要少说话,保持一定的距离③早恋有坏处,也有好处,所以不应提倡也不必反对④异性同学纯真的友谊,有利于我们健康成长A.①②B.①④C.①②④D.①②③④5. “两个黄鹂鸣翠柳,一行白鹭上青天”“乱花渐欲迷人眼,浅草才能没马蹄。

”从诗词中,我们能够体会到( )A.地球上的生命是可爱的 B.地球上的生命是来之不易的C.地球上的每个生命都一样 D.地球上的生命是可贵的6. 关于生命,下列说法不正确的是( )A.每个人的生命只属于我们自己,每个人都要珍爱自己的生命B.人的生命权是一个人所拥有的一切权利的源泉C.既然生命是一种权利,那么珍爱生命就是一种义务D.关爱他人的生命也意味着更好地关爱我们自己的生命7. 某学校举行紧急疏散演练,八年级(1)班的小勇认为:“又不是真的要发生地震,用得着这样瞎折腾吗?”下列选项中你认为最能说服小勇的是( )A.人的生命是独特的,每个人都有自己独特的风格和特点B.人的生命是顽强的,也是脆弱的,珍爱生命应当从平时做起C.生命需要互相尊重,彼此依存D.通过逃生演练、紧急疏散活动实现人生价值8. “活着不应该追求生命的长度,而应该着力追求生命的质量”,“生命的质量”指的是()A.生命的长短B.生命的好坏C.生存环境与空间的质量D.生命价值的延伸9. 八年级的李梅,将自己在春节期间获得的200元压岁钱,捐给一个贫困同学。

2016-2017学年初二人教版数学上册期末考试试题及答案word版

D CAB2016-2017学年初二人教版数学上册期末考试试题总分:150 时间:120分钟一、选择题(每小题有且只有一个答案正确,每小题4分,共40分) 1、如图,两直线a ∥b ,与∠1相等的角的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个 2、不等式组x>3x<4⎧⎨⎩的解集是( ) A 、3<x<4 B 、x<4 C 、x>3 D 、无解 3、如果a>b ,那么下列各式中正确的是( ) A 、a 3<b 3-- B 、a b<33C 、a>b --D 、2a<2b -- 4、如图所示,由∠D=∠C,∠BAD=∠ABC 推得△ABD ≌△BAC ,所用的的判定定理的简称是( ) A 、AAS B 、ASA C 、SAS D 、SSS5、将五边形纸片ABCDE 按如图所示方式折叠,折痕为AF ,点E 、D 分别落在E ′,D ′,已知∠AFC=76°, 则∠CFD ′等于( )A .31°B .28°C .24°D .22° 6、下列说法错误的是( )A 、长方体、正方体都是棱柱;B 、三棱住的侧面是三角形;C 、六棱住有六个侧面、侧面为长方形;D 、球体的三种视图均为同样大小的图形;7、下列各组中的两个根式是同类二次根式的是( )A.和B.和C.和D.和8、如果不等式组⎩⎨⎧><mx x 5有解,那么m 的取值范围是 ( ).A . m >5B . m ≥5C . m<5D . m ≤8C9、的整数部分为,的整数部分为,则的值是( )A. 1B. 2C. 4D. 91abABDFABO CD 10、一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100B .306030100-=+x xC .x x +=-306030100D .306030100+=-x x二、填空题(每小题4分,共32分)11、不等式2x-1>3的解集是__________________; 12、已知,则.13、在实数范围内因式分解 . 14、计算22142a a a -=-- .15、如图,已知∠B=∠DEF ,AB=DE ,请添加一个条件使△ABC ≌△DEF ,则需添加的条件是__________; 16、如图,AD 和BC 相交于点O ,OA=OD ,OB=OC ,若∠B=40°,∠AOB=110°,则∠D=________度;17、若不等式组121x m x m <+⎧⎨>-⎩无解,则m 的取值范围是_______.第15题图 第16题图18、如果记 221x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2211211=+;f(12)表示当x=12时y 的值,即f(12)=221()12151()2=+;……那么f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(1n)= (结果用含n 的代数式表示).三、解答题(共78分)19、(8分)解不等式x+1(x 1)12--≤,并把解集在数轴上表示出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年贵州省黔西南州望谟县乡镇联考八年级(上)期末数学试卷一、选择题(本大题共10小题,共40分)1.(4分)下列各组数不可能是一个三角形的边长的是()A.5,12,13B.5,7,12C.5,7,7D.4,6,9 2.(4分)一个正多边形的内角和是1080°,则它是()边形.A.六B.七C.八D.九3.(4分)如图,已知△ABC≌△DEF,则∠C的对应角为()A.∠F B.∠AGE C.∠AEF D.∠D4.(4分)下列四副图案中,不是轴对称图形的是()A.B.C.D.5.(4分)若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°6.(4分)下列运算中,正确的是()A.a8÷a2=a4B.(﹣m)2•(﹣m3)=﹣m5C.x3+x3=x6D.(a3)3=a67.(4分)若a﹣b=3,则a2﹣2ab+b2﹣6的值是()A.12B.6C.3D.08.(4分)下列各式从左边到右边的变形是因式分解的为()A.(a+1)(a﹣1)=a2﹣1B.﹣18x4y3=﹣6x2y2•3x2yC.x2+2x+1=x(x+2x)+1D.a2﹣6a+9=(a﹣3)29.(4分)使代数式有意义的x的取值范围是()A.x>3B.x=3C.x<3D.x≠310.(4分)一艘轮船在静水中的最大航速是30km/h,它以最大航速沿江顺流航行90km所用时间,与它以最大航速逆流航行60km所用时间相等.如果设江水的流速为x km/h,所列方程正确的是()A.B.C.D.二、填空题(本大题共10小题,共30分)11.(3分)盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉上一根木条,这是利用了三角形具有的原理.12.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.13.(3分)82016×0.1252015=.14.(3分)已知x+y=10,xy=16,则x2y+xy2的值为.15.(3分)当x=时,分式的值为0.16.(3分)如图,在△ABC中,∠A=75°,∠B=30°,则∠ACD=.17.(3分)如图,△ABC的周长为19cm,AC的垂直平分线DE交AC于点E,E 为垂足,AE=3cm,则△ABD的周长为.18.(3分)如图,在△ABC和△ABD中,∠C=∠D=90°,若利用“HL”证明△ABC ≌△ABD,则需要加条件或.19.(3分)如图所示,要测量河两岸相对的两点A、B的距离,在AB的垂线BF 上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,则∠ABC=∠CDE=90°,BC=DC,∠1=,△ABC≌,若测得DE的长为25米,则河宽AB长为.20.(3分)在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x ﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是:(写出一个即可).三、解答题(本大题共7小题,共80分)21.(10分)(1)计算:1122﹣113×111.(2)解方程:=.22.(10分)先化简,再求值:(2x+y)(2x﹣y)﹣3(2x﹣y)2,其中x=1,y=﹣2.23.(10分)如图,在△ABC中,∠B=42°,∠C=78°,AD平分∠BAC.(1)求∠ADC的度数;(2)在图中画出BC边上的高AE,并求∠DAE的度数.24.(10分)如图,已知AD⊥AB,BC⊥AB,AC与BD交于点O,AD=BC.求证:(1)△ABC≌△BAD.(2)OA=OB.25.(12分)在正方形网格中,△ABC各顶点都在格点上,点A、C的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于x轴对称的△A2B2C2;(3)点C1的坐标是;点C2的坐标是.26.(14分)计算并观察下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格.(x﹣1)()=x6﹣1;(3)利用你发现的规律计算:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(4)利用该规律计算1+4+42+43+…+42013=.27.(14分)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?2016-2017学年贵州省黔西南州望谟县乡镇联考八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,共40分)1.(4分)下列各组数不可能是一个三角形的边长的是()A.5,12,13B.5,7,12C.5,7,7D.4,6,9【解答】解:A、5+12>13,能构成三角形;B、5+7=12,不能构成三角形;C、5+7>7,能构成三角形;D、4+6>9,能构成三角形.故选:B.2.(4分)一个正多边形的内角和是1080°,则它是()边形.A.六B.七C.八D.九【解答】解:(1080°+360°)÷180°=8,∴该正多边形为正八边形.故选:C.3.(4分)如图,已知△ABC≌△DEF,则∠C的对应角为()A.∠F B.∠AGE C.∠AEF D.∠D【解答】解:∵△ABC≌△DEF,∴∠C的对应角为∠F,故选:A.4.(4分)下列四副图案中,不是轴对称图形的是()A.B.C.D.【解答】解:轴对称图形的是B,C,D;不是轴对称图形的是A.故选:A.5.(4分)若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°【解答】解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:D.6.(4分)下列运算中,正确的是()A.a8÷a2=a4B.(﹣m)2•(﹣m3)=﹣m5 C.x3+x3=x6D.(a3)3=a6【解答】解:∵a8÷a2=a6,故选项A错误;∵(﹣m)2•(﹣m3)=﹣m5,故选项B正确;∵x3+x3=2x3,故选项C错误;∵(a3)3=a9,故选项D错误;故选:B.7.(4分)若a﹣b=3,则a2﹣2ab+b2﹣6的值是()A.12B.6C.3D.0【解答】解:∵a﹣b=3,∴a2﹣2ab+b2﹣6=(a﹣b)2﹣6=32﹣6=3.故选:C.8.(4分)下列各式从左边到右边的变形是因式分解的为()A.(a+1)(a﹣1)=a2﹣1B.﹣18x4y3=﹣6x2y2•3x2yC.x2+2x+1=x(x+2x)+1D.a2﹣6a+9=(a﹣3)2【解答】解:A、是多项式乘法,不是因式分解,错误;B、左边是单项式,不是因式分解,错误;C、右边不是积的形式,错误;D、是因式分解,正确.故选:D.9.(4分)使代数式有意义的x的取值范围是()A.x>3B.x=3C.x<3D.x≠3【解答】解:根据题意得:x﹣3≠0,解得:x≠3.故选:D.10.(4分)一艘轮船在静水中的最大航速是30km/h,它以最大航速沿江顺流航行90km所用时间,与它以最大航速逆流航行60km所用时间相等.如果设江水的流速为x km/h,所列方程正确的是()A.B.C.D.【解答】解:设江水的流速为x km/h,则逆流的速度为(30﹣x)km/h,顺流的速度为(30+x)km/h,由题意得,=.故选:C.二、填空题(本大题共10小题,共30分)11.(3分)盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉上一根木条,这是利用了三角形具有稳定性的原理.【解答】解:盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样就构成了三角形,故这样做的数学道理是三角形的稳定性.故答案为:稳定性.12.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.13.(3分)82016×0.1252015=8.【解答】解:原式=(8×0.125)2015×8=8.故答案为:8.14.(3分)已知x+y=10,xy=16,则x2y+xy2的值为160.【解答】解:∵x+y=10,xy=16,∴x2y+xy2=xy(x+y)=10×16=160.故答案为:160.15.(3分)当x=﹣1时,分式的值为0.【解答】解:由题意可得x+1=0且x﹣1≠0,解得x=﹣1.故答案为﹣1.16.(3分)如图,在△ABC中,∠A=75°,∠B=30°,则∠ACD=105°.【解答】解:由三角形的外角性质得,∠ACD=∠A+∠B=75°+30°=105°.故答案为:105°.17.(3分)如图,△ABC的周长为19cm,AC的垂直平分线DE交AC于点E,E 为垂足,AE=3cm,则△ABD的周长为13cm.【解答】解:∵AC的垂直平分线DE交BC于D,E为垂足∴AD=DC,AC=2AE=6cm,∵△ABC的周长为19cm,∴AB+BC=13cm∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC=13cm.故答案为:13cm.18.(3分)如图,在△ABC和△ABD中,∠C=∠D=90°,若利用“HL”证明△ABC ≌△ABD,则需要加条件BC=BD或AC=AD.【解答】解:添加∠CAB=∠DAB或∠CBA=∠DBA,BD=BC或AD=AC.∵∠C=∠D,∠CAB=∠DAB(∠CBA=∠DBA),AB=AB∴△ABC≌△ABD(AAS);∵∠C=∠D=90°,AB=AB(AD=AC),BD=BC∴△ABC≌△ABD(HL).故答案为BC=BD或AC=AD.19.(3分)如图所示,要测量河两岸相对的两点A、B的距离,在AB的垂线BF 上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,则∠ABC=∠CDE=90°,BC=DC,∠1=∠2,△ABC≌△EDC,若测得DE 的长为25米,则河宽AB长为25米.【解答】解:∵CD=BC,∠1=∠2,∠ABC=∠CDE=90°,∴Rt△ABC≌Rt△EDC,∴AB=DE,∴AB=25米故填∠2,△EDC,25米.20.(3分)在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x ﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是:101030或103010或301010(写出一个即可).【解答】解:4x3﹣xy2=x(4x2﹣y2)=x(2x+y)(2x﹣y),当x=10,y=10时,x=10;2x+y=30;2x﹣y=10,用上述方法产生的密码是:101030或103010或301010.故答案为:101030或103010或301010.三、解答题(本大题共7小题,共80分)21.(10分)(1)计算:1122﹣113×111.(2)解方程:=.【解答】解:(1)原式=1122﹣(112+1)×(112﹣1)=1122﹣(1122﹣1)=1122﹣1122+1=1.(2)分式方程两边乘以(x+2)(x﹣2)得,3(x+2)=x﹣2,x=﹣4.检验,当x=﹣4时,(x+2)(x﹣2)≠0所以原分式方程的解是x=﹣4.22.(10分)先化简,再求值:(2x+y)(2x﹣y)﹣3(2x﹣y)2,其中x=1,y=﹣2.【解答】解:原式=4x2﹣y2﹣3(4x2﹣4xy+y2)=4x2﹣y2﹣12x2+12xy﹣3y2=﹣8x2+12xy ﹣4y2,当x=1,y=﹣2时,原式=﹣8﹣24﹣16=﹣48.23.(10分)如图,在△ABC中,∠B=42°,∠C=78°,AD平分∠BAC.(1)求∠ADC的度数;(2)在图中画出BC边上的高AE,并求∠DAE的度数.【解答】(1)∵∠B=42°,∠C=78°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=42°+30°=72°;(2)如图所示,过A作AE⊥BC于E,∴∠AEB=90°,∴∠DAE=180°﹣∠AED﹣∠ADE=180°﹣90°﹣72°=18°.24.(10分)如图,已知AD⊥AB,BC⊥AB,AC与BD交于点O,AD=BC.求证:(1)△ABC≌△BAD.(2)OA=OB.【解答】证明:(1)∵AD⊥AB,BC⊥AB,∴∠DAB=∠ABC=90°,∵AD=BC,AB=BA,∴△ABC≌△BAD(SAS);(2)∵△ABC≌△BAD,∴∠OAB=∠OBA,∴OA=OB.25.(12分)在正方形网格中,△ABC各顶点都在格点上,点A、C的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于x轴对称的△A2B2C2;(3)点C1的坐标是(1,4);点C2的坐标是(﹣1,﹣4).【解答】解:(1)画出△ABC关于y轴对称的△A1B1C1,如图1所示.(2)画出△ABC关于x轴对称的△A2B2C2,如图2所示.(3)∵点C的坐标为(﹣1,4),∴点C1的坐标是(1,4);点C2的坐标是(﹣1,﹣4).故答案为:(1,4);(﹣1,﹣4).26.(14分)计算并观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格.(x﹣1)(x5+x4+x3+x2+x+1)=x6﹣1;(3)利用你发现的规律计算:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(4)利用该规律计算1+4+42+43+…+42013=(42014﹣1).【解答】解:(1)(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(2)(x﹣1)(x5+x4+x3+x2+x+1)=x6﹣1;(3)利用你发现的规律计算:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(4)1+4+42+43+…+42013=×(4﹣1)×(1+4+42+43+…+42013)=(42014﹣1).故答案为:(1)x2﹣1;x3﹣1;x4﹣1;(2)x5+x4+x3+x2+x+1;(3)x7﹣1;(4)(42014﹣1).27.(14分)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?【解答】解:(1)设第一批购进书包的单价是x元.则:×3=.解得:x=80.经检验:x=80是原方程的根.答:第一批购进书包的单价是80元.(2)×(120﹣80)+×(120﹣84)=3700(元).答:商店共盈利3700元.。

相关文档
最新文档