2020-2021年八年级下册数学期中考试卷及答案

合集下载

2020-2021年八年级下册期中数学试卷(含答案解析)

2020-2021年八年级下册期中数学试卷(含答案解析)

八年级(下)期中数学试卷姓名:得分:日期:一、填空题(本大题共 12 小题,共 24 分)1、(2分) 调查神舟九号宇宙飞船各部件功能是否符合要求,这种调查适合用______(填“普查”或“抽样调查”).2、(2分) 某市有16000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,样本容量是______.3、(2分) 平行四边形ABCD中,∠A=40°,则∠D=______度.4、(2分) “a是实数,|a|≥0”这一事件是______ 事件.5、(2分) 样本的50个数据分别落在4个组内,第1、2、4组数据的个数分别是6、12、22,则落在第3组的频数是______.6、(2分) 菱形的两条对角线长分别为6和8,则这个菱形的周长为______.7、(2分) 如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小是______度.8、(2分) 如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为______度.9、(2分) 在某次数学竞赛中,某校表现突出,成绩均不低于60分.为了更好地了解某校的成绩分布情况,随机抽取利了其中50名学生的成绩(成绩x取整数,总分100分)作为样本进行了整理,结果如表:按规定,成绩在80分以上(包括80分)的选手进入决赛.根据所给信息,请估计该校参赛选手入选决赛的概率为______.90≤x≤1000.110、(2分) 在矩形ABCD中,AB=3,BC=4,对角线AC、BD相交于点O,则△AOB的周长是______.11、(2分) 如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E,F分别在BC和CD上,下列结论:①CE=CF;②BD=1+√3;③BE+DF=EF;④∠AEB=75°.其中正确的序号是______.12、(2分) 如图,△ABC中,点E、F是AC边上的三等分点,且AC=m,动点P从点E移动到点F,且PM∥BC,PN∥AB,G为MN的中点,则点G运动的路径长度为______(用含m的代数式表示)二、选择题(本大题共 6 小题,共 18 分)13、(3分) 下列汉字或字母中既是中心对称图形又是轴对称图形的是()A. B. C. D.14、(3分) 在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个 B.15个 C.13个 D.12个15、(3分) 下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有()A.1个B.2个C.3个D.4个16、(3分) 如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于( )A.245B.125C.5D.417、(3分) 如图,矩形ABCD中,AB=14,AD=8,点E是CD的中点,DG平分∠ADC交AB于点G,过点A作AF⊥DG于点F,连接EF,则EF的长为()A.3B.4C.5D.618、(3分) 如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G为对角线BD(不含B 点)上任意一点,将△ABG绕点B逆时针旋转60°得到△EBF,当AG+BG+CG取最小值时EF的长()A.3√32B.2√33C.3√33D.4√33三、解答题(本大题共 8 小题,共 45 分)19、(2分) “共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九(1)班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图(A:摩拜单车;B:ofo单车;C:HelloBike).请根据图中提供的信息,解答下列问题:(1)求出本次参与调查的市民人数;(2)将上面的条形图补充完整;(3)若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩托单车出行?20、(8分) 如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,BE=DF.(1)求证:∠1=∠2;(2)求证:AF∥CE.21、(8分) 如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.22、(4分) 如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF(1)求证:四边形AEDF为菱形;(2)试探究:当AB:BC=______,菱形AEDF为正方形?请说明理由.23、(5分) 如图,点O是△ABC内一点,连接OB、OC,线段AB、OB、OC、AC的中点分别为D、E、F、G.(1)判断四边形DEFG的形状,并说明理由;(2)若M为EF的中点,OM=2,∠OBC和∠OCB互余,求线段BC的长.24、(8分) 如图,直线l1:y=-0.5x+b分别与x轴、y轴交于A.B两点,与直线l2:y=kx-6交于点C(4,2).(1)点A坐标为(______,______),B为(______,______);(2)在线段BC上有一点E,过点E作y轴的平行线交直线l2于点F,设点E的横坐标为m,当m为何值时,四边形OBEF是平行四边形.25、(6分) 如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CFED.设FC与AB交于点H,且A(0,4),C(8,0).(1)当α=60°时,△CB D的形状是______;(2)设AH=m①连接HD,当△CHD的面积等于10时,求m的值;②当0°<α<90°旋转过程中,连接OH,当△OHC为等腰三角形时,请直接写出m的值.26、(4分) 如图:正方形OABC置于坐标系中,B的坐标是(-4,4),点D是边OA上一动点,以OD为边在第一象限内作正方形ODEF.(1)CD与AF有怎样的位置关系,猜想并证明;(2)当OD=______时,直线CD平分线段AF;(3)在OD=2时,将正方形ODEF绕点O逆时针旋转α°(0°<α°<180°),求当C、D、E共线时D的坐标.2018-2019学年江苏省镇江市八年级(下)期中数学试卷【第 1 题】【答案】普查【解析】解:调查神舟九号宇宙飞船各部件功能是否符合要求,这种调查适合用普查,故答案为:普查.对于精确度要求高的调查,事关重大的调查往往选用普查.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【第 2 题】【答案】1000【解析】解:某市有16000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,样本容量是1000,故答案为:1000样本容量:一个样本包括的个体数量叫做样本容量进行分析即可.此题主要考查了总体、个体、样本、样本容量,关键是掌握各个量的定义.【第 3 题】【答案】140【解析】解:∵四边形ABCD是平行四边形,∴∠D=180°-∠A=140°.故答案为:140由平行四边形的性质解答即可.本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的邻角互补.【 第 4 题 】【 答 案 】必然【 解析 】解:“a 是实数,|a|≥0”这一事件是必然事件.故答案是:必然.根据必然事件、随机事件以及不可能事件的定义即可作出判断.本题考查了必然事件、随机事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【 第 5 题 】【 答 案 】10【 解析 】解:第4组数据的频数:50-6-12-22=10,故答案为:10.根据频数是指每个对象出现的次数可得第3组数据的频数为50减去第1、2、4组的频数. 此题主要考查了频数,关键是掌握频数的定义.【 第 6 题 】【 答 案 】20【 解析 】解:如图所示,根据题意得AO=12×8=4,BO=12×6=3,∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,AC⊥BD ,∴△AOB 是直角三角形,∴AB=√AO 2+BO 2=√16+9=5,∴此菱形的周长为:5×4=20.故答案为:20.根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.【 第 7 题 】【 答 案 】80【 解析 】解:由旋转的性质可知:∠B=∠AB 1C 1,AB=AB 1,∠BAB 1=100°.∵AB=AB 1,∠BAB 1=100°,∴∠B=∠BB 1A=40°.∴∠AB 1C 1=40°.∴∠BB 1C 1=∠BB 1A+∠AB 1C 1=40°+40°=80°.故答案为:80.由旋转的性质可知∠B=∠AB 1C 1,AB=AB 1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB 1A=∠AB 1C 1=40°,从而可求得∠BB 1C 1=80°.本题主要考查的是旋转的性质,由旋转的性质得到△ABB 1为等腰三角形是解题的关键.【 第 8 题 】【 答 案 】15【 解析 】解:∵△DCF 是△BCE 旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE .又∵∠ECF=90°,∴∠EFC=∠FEC=12(180°-∠ECF )=12(180°-90°)=45°,故∠EFD=∠DFC -∠EFC=60°-45°=15°.故答案为:15°此题只需根据旋转的性质发现等腰直角三角形CEF,进行求解.本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度.难度不大,但易错.【第 9 题】【答案】0.3【解析】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,∴估计该校参赛选手入选决赛的概率为0.2+0.1=0.3.故答案为:0.3;概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.【第 10 题】【答案】8【解析】解:∵矩形ABCD中,AB=3,BC=4,∴AC=BD=√AB2+BC2=√32+42=5,∴OA=OB=2.5,∴△AOB的周长=3+2.5+2.5=8,故答案为:8.由题意根据勾股定理求出AC=BD=5,即可得到OA=OB=2.5,即可得出结果.本题考查了矩形的性质、勾股定理等知识,熟练掌握矩形的性质是关键.【第 11 题】【答案】①②④【解析】解:∵四边形ABCD 是正方形,∴AB=AD ,∵△AEF 是等边三角形,∴AE=AF , 在Rt△ABE 和Rt△ADF 中,{AB =AD AE =AF , ∴Rt△ABE≌Rt△ADF (HL ),∴BE=DF ,∵BC=DC ,∴BC -BE=CD-DF ,∴CE=CF ,故①正确;∵CE=CF ,∴△ECF 是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,故④正确;如图,连接AC ,交EF 于G 点,∴AC⊥EF ,且AC 平分EF ,∵∠CAF≠∠DAF ,∴DF≠FG ,∴BE+DF≠EF ,故③错误;∵△AEF 是边长为2的等边三角形,∠ACB=∠ACD ,∴AC⊥EF ,EG=FG , ∴AG=AE•sin60°=2×√32=√3,CG=12EF=1, ∴AC=AG+CG=√3+1;故②正确.故答案为:①②④.根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断④的正误;根据线段垂直平分线的知识可以判断③的正误,根据三线合一的性质,可判定AC⊥EF ,然后分别求得AG 与CG 的长,继而求得答案.此题属于四边形的综合题.考查了正方形的性质、等边三角形的性质、等腰直角三角形的性质以及直角三角形的性质.注意准确作出辅助线是解此题的关键.【 第 12 题 】【 答 案 】1m解:连接BP ,∵PM∥BC ,PN∥AB ,∴四边形BMPN 为平行四边形,∴MN 与BP 互相平分,∵G 为MN 的中点,∴G 为BP 的中点,连接BE 、BF ,设BE 、BF 的中点分别为D 、H ,则G 运动的路径长度为:DH=12EF=12×13m =16m .故答案为:16m .连接BP ,先证明点G 是BP 的中点,连接BE 、BF ,设BE 、BF 的中点分别为D 、H ,则G 运动的路径长度为DH 的长度,由三角形的中位线定理便可求得其长度.本题是平行四边形与三角形结合的一个综合题,主要考查了平行四边形的判定与性质,三角形的中位线定理,关键是找出G 点运动的路径是△BEF 的中位线.【 第 13 题 】【 答 案 】C【 解析 】解:A 、是轴对称图形,不是中心对称图形.故错误;B 、是轴对称图形,不是中心对称图形.故错误;C 、是轴对称图形,也是中心对称图形.故正确;D 、不是轴对称图形,是中心对称图形.故错误.故选:C .根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.【 第 14 题 】D【解析】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴4 4+x =1 4,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个.故选:D.由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.【第 15 题】【答案】B【解析】解:①一组对边平行,且一组对角相等,则可以判定另外一组对边也平行,所以该四边形是平行四边形,故该命题正确;②对角线互相垂直且相等的四边形不一定是正方形,也可以是普通的四边形(例如对角线垂直的等腰梯形),故该命题错误;③因为矩形的对角线相等,所以连接矩形的中点后都是对角线的中位线,所以四边相等,所以是菱形,故该命题正确;④正五边形只是轴对称图形不是中心对称图形,故该命题错误;所以正确的命题个数为2个,故选:B.根据平行四边形的各种判定方法、正方形的各种判定方法、菱形的各种判定方法以及正多边形的轴对称性逐项分析即可.本题考查菱形的判定,平行四边形的判定以及正方形的判定定理以及真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.【第 16 题】【答案】A【解析】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S 菱形ABCD =12×AC ×BD =AB ×DH 是解此题的关键.根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB ,再根据菱形的面积公式求出即可.【解答】解:如图,∵四边形ABCD 是菱形,∴AO=OC ,BO=OD ,AC⊥BD ,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB=√32+42=5,∵S 菱形ABCD =12×AC ×BD =AB ×DH ,∴12×8×6=5×DH ,∴DH=245.故选A .【 第 17 题 】【 答 案 】C【 解析 】解:连接CG ,∵四边形ABCD 是矩形,∴AB∥CD ,∠B=90°,AD=BC=8,∴∠AGD=∠GDC ,∵DG 平分∠ADC ,∴∠ADG=∠GDC ,∴∠AGD=∠ADG ,∴AG=AD=8,∵AF⊥DG 于点F ,∴FG=FD ,∵点E 是CD 的中点,∴EF 是△DGC 的中位线, ∴EF=12CG ,∵AB=14,∴GB=6,∴CG =√BC 2+BG 2=10, ∴EF=12×10=5,故选:C .连接CG ,由矩形的性质好已知条件可证明EF 是△DGC 的中位线,在直角三角形GBC 中利用勾股定理可求出CG 的长,进而可求出EF 的长本题考查了矩形的性质、等腰三角形的判断和性质、中位线定理的运用以及勾股定理的运用,证明EF 是△DGC 的中位线是解题的关键.【 第 18 题 】【 答 案 】D【 解析 】解:如图,∵将△ABG 绕点B 逆时针旋转60°得到△EBF ,∴BE=AB=BC ,BF=BG ,EF=AG ,∴△BFG 是等边三角形.∴BF=BG=FG ,.∴AM+BM+CM=EN+MN+CM .根据“两点之间线段最短”,∴当G 点位于BD 与CE 的交点处时,AG+BG+CG 的值最小,即等于EC 的长,过E 点作EF⊥BC 交CB 的延长线于F ,∴∠EBF=180°-120°=60°,∵BC=4,∴BF=2,EF=2√3,在Rt△EFC 中,∵EF 2+FC 2=EC 2,∴EC=4√3.∵∠CBE=120°,∴∠BEF=30°,∵∠EBF=∠ABG=30°,∴EF=BF=FG ,∴EF=13CE=4√33, 故选:D .根据“两点之间线段最短”,当G 点位于BD 与CE 的交点处时,AG+BG+CG 的值最小,即等于EC 的长.本题考查了旋转的性质,菱形的性质,等边三角形的性质,轴对称最短路线问题,正确的作出辅助线是解题的关键.【 第 19 题 】【 答 案 】解:(1)本次参与调查的市民人数80÷40%=200(人);(2)A 品牌人数为200×30%=60(人),D 品牌人数为200×15%=30(人),补全图形如下:(3)10000×30%=3000(人),答:估计该区有3000名市民选择骑摩拜单车出行.【 解析 】(1)根据B 品牌人数及其所占百分比可得总人数;(2)总人数分别乘以A 、D 所占百分比求出其人数即可补全图形;(3)总人数乘以样本中A 的百分比即可得.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.【 第 20 题 】【 答 案 】证明:(1)连接AC,交BD于点O,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵BE=DF,∴EO=FO,∴四边形AECF是平行四边形,∴AE∥FC,∴∠1=∠2;(2)∵四边形AECF是平行四边形,∴AF∥CE.【解析】(1)利用平行四边形的性质得出AO=CO,BO=DO,进而得出EO=FO,即可得出四边形AECF 是平行四边形,得出答案即可;(2)利用(1)中所求,结合平行四边形的性质得出即可.此题主要考查了平行四边形的判定与性质,得出四边形AECF是平行四边形是解题关键.【第 21 题】【答案】解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2,即为所求;(3)由图形可知:交点坐标为(-1,-4).【解析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据旋转角度,旋转方向,分别找到A、B、C的对应点,顺次连接可得△A2B2C2;(3)由图形可知交点坐标;此题主要考查了平移变换以及旋转变换,得出对应点位置是解题关键.【第 22 题】【答案】(1)证明:∵AF∥ED,AE∥DF,∴四边形AEDF为平行四边形,∵四边形ABCD为矩形,∴AB=CD,∠B=∠C=90°,∵点E是边BC的中点,∴BE=CE,在△ABE和△DCE中{AB=DC ∠B=∠C BE=CE,∴△ABE≌△DCE,∴EA=ED,∴四边形AEDF为菱形;(2)1:2。

2020-2021学年八年级下学期期中考试数学试卷及答案

2020-2021学年八年级下学期期中考试数学试卷及答案

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下列属于最简二次根式的是()A.√8B.√5C.√4D.√1 3【解答】解:A.√8=2√2,不符合题意;B.√5是最简二次根式;C.√4=2,不符合题意;D.√13=√33,不符合题意;故选:B.2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.√3C.2D.√5【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB=√AC2−BC2=√22−12=√3,故选:B.3.下列各式中,化简后能与√2合并的是()A.√12B.√8C.√23D.√0.2【解答】解:A、√12=2√3,不能与√2合并;B、√8=2√2,能与√2合并;C、√23=√63,不能与√2合并;D、√0.2=√55,不能与√2合并;故选:B.4.下列计算正确的是()A.2√3+3√2=5B.√8÷√2=2C.5√3×5√2=5√6D.√412=2√12【解答】解:A、2√3与3√2不能合并,所以A选项错误;B、原式=√8÷2=2,所以B选项正确;C、原式=25√3×2=25√6,所以C选项错误;D、原式=√92=3√22,所以D选项错误.故选:B.5.下列命题是真命题的是()A.如果a2=b2,那么a=bB.0的平方根是0C.如果∠A与∠B是内错角,那么∠A=∠BD.三角形的一个外角等于它的两个内角之和【解答】解:A、如果a2=b2,那么a=b或a=﹣b,故原题说法错误;B、0的平方根是0,故原题说法正确;C、如果∠A与∠B是内错角,∠A不一定等于∠B,故原题说法错误;D、三角形的一个外角等于与它不相邻的两个内角之和,故原题说法错误;故选:B.6.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.18【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.7.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4B.4,5,6C.5,12,13D.5,6,7【解答】解:A、22+32≠42,故不能构成直角三角形;B、42+52≠62,故不能构成直角三角形;C 、52+122=132,故能构成直角三角形;D 、52+62≠72,故不能构成直角三角形.故选:C .8.如图,下面不能判断四边形ABCD 是平行四边形的是( )A .AB =CD ,AB ∥CDB .∠A =∠C ,∠B =∠DC .AB =CD ,AD ∥BC D .AB =CD ,AD =BC 【解答】解:A 、∵AB =CD ,AB ∥CD ,∴四边形ABCD 是平行四边形,正确;B 、∵∠A =∠C ,∠B =∠D ,∴四边形ABCD 是平行四边形,正确;C 、∵AB =CD ,AD ∥BC ,不能得出四边形ABCD 是平行四边形,错误;D 、∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形,正确;故选:C .9.如图,▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,则阴影部分的面积为( )A .3B .6C .12D .24【解答】解:∵▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,∴S ▱ABCD =3×2=6,AD ∥BC ,∴OA =OC ,∠OAE =∠OCF ,在△AOE 和△COF 中,{∠OAE =∠OCF OA =OC ∠AOE =∠COF,∴△AOE ≌△COF (ASA ),∴S △AOE =S △COF ,同理:S △EOG =S △FOH ,S △DOG =S △BOH ,∴S阴影=S△ABD=12S▱ABCD=12×6=3.故选:A.10.如图,▱ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°;②BD=√7;③S平行四边形ABCD=AB•AC;④OE=14AD;⑤S△APO=√310中,正确的个数是()A.2B.3C.4D.5【解答】解:①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=12AB=12,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=√12−(12)2=√32,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=12+(32)2=√72,∴BD=2OD=√7,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=12AB,∵AB=12BC,∴OE=14BC=14AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=√3 2,∴S△AOE=S△EOC=12OE•OC=12×12×√32=√38,∵OE∥AB,∴EPAP =OEAB=12,∴S△POES△AOP =12,∴S△AOP=23S△AOE=23×√38=√312;故⑤错误;本题正确的有:①②③④,4个,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.计算√3x⋅√13xy(x>0)结果为x√y.【解答】解:原式=√3x⋅13xy=√x2y=x√y.故答案为:x√y.12.若√x−3在实数范围内有意义,则x的取值范围是x≥3.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.13.如图,在平行四边形ABCD中,AB=2,BC=5.∠BCD的平分线交AD于点F,交BA 的延长线于点E,则AE的长为3.【解答】解:在平行四边形ABCD中,AB=2,BC=5,∴CD=AB=2,AD=BC=5,AD∥BC,∴∠DFC=∠FCB,∵CE平分∠DCB,∴∠DCF=∠BCF,∴∠DFC=∠DCF,∴DC=DF=2,∴AF=3,∵AB∥CD,∴∠E=∠DCF,又∵∠EF A=∠DFC,∠DFC=∠DCF,∴∠AEF=∠EF A,∴AE=AF=3,故答案为:3.14.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为 2.2m.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).故答案为:2.2.15.如图,在等边△ABC 中,BC =5cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1cm /s的速度运动,点F 从点B 出发沿射线BC 以2cm /s 的速度运动.如果点E 、F 同时出发,设运动时间为t (s ),当t = 53或5 时,以A 、C 、E 、F 为顶点四边形是平行四边形.【解答】解:①当点F 在C 的左侧时,根据题意得:AE =tcm ,BF =2tcm ,则CF =BC ﹣BF =5﹣2t (cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AECF 是平行四边形,即t =5﹣2t ,解得:t =53;②当点F 在C 的右侧时,根据题意得:AE =tcm ,BF =2tcm ,则CF =BF ﹣BC =2t ﹣5(cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AEFC 是平行四边形,即t =2t ﹣5,解得:t =5;综上可得:当t =53s 或5s 时,以A 、C 、E 、F 为顶点四边形是平行四边形.故答案为:53或5. 三.解答题(共8小题,满分75分)16.(8分)计算下列各题(1)(√2+1)(√2−1)+(√3−2)2(2)−12√1024×5.【解答】解:(1)原式=2﹣1+5﹣4√3=6﹣4√3;(2)原式=−12×2×4√5=−4√5.17.(9分)计算题:(1)2√12÷12√50×12√34−35√2;(2)先化简,再求值.(6x √y x +3y √xy 3)﹣(4x √x y +√36xy ),其中x =32,y =27. 【解答】解:(1)原式=2×2×12√12÷50×34−35√2=2×310√2−35√2=35√2−35√2 =0;(2)原式=6x √y x +3y √xy 3−4x √x y −√36xy=6√xy +3√xy −4x y √xy −6√xy =(3−4x y )√xy =3y−4x y √xy , 当x =32,y =27时,原式=81−627√812=252√2.18.(9分)如图,在▱ABCD 中,E 为BC 边上一点,且AB =AE .(1)求证:△ABC ≌△EAD ;(2)若∠B =65°,∠EAC =25°,求∠AED 的度数.【解答】(1)证明:∵在平行四边形ABCD 中,AD ∥BC ,BC =AD ,∴∠EAD =∠AEB ,又∵AB =AE ,∴∠B =∠AEB ,∴∠B =∠EAD ,在△ABC 和△EAD 中,{AB =AE ∠ABC =∠EAD BC =AD,∴△ABC ≌△EAD (SAS ).(2)解:∵AB =AE ,∴∠B=∠AEB,∴∠BAE=50°,∴∠BAC=∠BAE+∠EAC=50°+25°=75°,∵△ABC≌△EAD,∴∠AED=∠BAC=75°.19.(9分)观察下列各式:√1+112+122=1+11−12=112√1+122+132=1+12−13=116√1+132+142=1+13−14=1112请你根据上面三个等式提供的信息,猜想:(1)√1+142+152=1120(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:√1+1n2+1(n+1)2=1+1n(n+1);(3)利用上述规律计算:√5049+164(仿照上式写出过程)【解答】解:(1)√1+142+152=1+14−15=1120;故答案为:1120;(2)√1+1n2+1(n+1)2=1+1n−1n+1=1+1n(n+1);故答案为:√1+1n2+1(n+1)2=1+1n(n+1);(3)√5049+164=√1+172+182=1156.20.(9分)如图,方格中的点A、B、C、D、E称为格点(格线的交点),以这5个格点中的3点为顶点画三角形,一共可以画多少个?其中,哪些是直角三角形、钝角三角形、锐角三角形?哪些是等腰三角形?【解答】解:如图,一共可以画9个三角形,其中,△ABE,△BCE,△CDE是直角三角形、△ACD,△BCD,ABD是钝角三角形、△ADE,△AEC,△BDE是锐角三角形,△AEC,△CDE是等腰三角形.21.(10分)如图所示,已知O为坐标原点,矩形ABCD(点A与坐标原点重合)的顶点D、B分别在x轴、y轴上,且点C的坐标为(﹣4,8),连接BD,将△ABD沿直线BD翻折至△A′BD,交CD于点E.(1)求点A′坐标.(2)试在x轴上找点P,使A'P+PB的长度最短,请求出这个最短距离.【解答】解:(1)∵点C的坐标为(﹣4,8),∴OD=BC=4,CD=OB=8,连接AA′,与BD交于点G,过A′作A′F⊥OB于点F,由折叠知,A′B=OA=8,OG=A′G,OA′⊥BD,∴S△OBD=12BD⋅OG=12OD⋅OB,∴OG=OD⋅OBBD=√4+8=8√55,∴OA′=2OG=16√5 5,设OF =x ,则BF =8﹣x ,∵OA ′2﹣OF 2=A ′F 2=A ′B 2﹣BF 2,即(16√55)2−x 2=82−(8−x)2, 解得,x =165,即OF =165, ∴A′F =2−OF 2=325,∴A ′(−325,165);(2)作A ′点关于x 轴的对称点A ″,连接BA ″,与x 轴交于点P ,则A 'P +PB =A ″P +PB =A ″B 的值最小,∴A ″(−325,−165),∵B (0,8),∴A″B =√(325)2+(8+165)2=8√655故A 'P +PB 的长度的最短距离为8√655.22.(10分)在平行四边形ABCD 中,以AB 为边作等边△ABE ,点E 在CD 上,以BC 为边作等边△BCF ,点F 在AE 上,点G 在BA 延长线上且FG =FB .(1)若CD =6,AF =3,求△ABF 的面积;(2)求证:BE =AG +CE .【解答】(1)解:∵△ABE是等边三角形,∴∠BAF=60°,AB=AE,∵四边形ABCD是平行四边形,∴AB=CD=6,∴AE=AB=6,∵AF=3,∴AF=EF,∴S△ABF=12S△ABE=12•√34•62=9√32.(2)作FH⊥AB于H,CJ⊥AE交AE的延长线于J.∵△ABE,△FBC都是等边三角形,∴BA=BE,BF=BC,∠ABE=∠FBC=60°,∴∠ABF=∠EBC,∴△ABF≌△EBC(SAS),∴AF=EC,∵AB∥CD,∴∠CEJ=∠F AH,∵∠FHA=∠J=90°,∴△FHA≌△CJE(AAS),∴FH=CJ,AH=EJ,∵FB=FG=FC,FH=CJ,∴Rt△FGH≌Rt△CJF(HL),∴GH=FJ,∵AH=EJ,∴EF=AG,∵BE=AE=AF+EF,∴BE=EC+AG.23.(11分)如图,已知∠A=90°,BD=BE,BC是边DE的中线,BC=15.(1)若AB=7,求AC的长度;(2)若DE=16,求△BED的周长.【解答】解:(1)在Rt△ABC中,∵∠A=90°,BC=15,AB=7,∴AC=√BC2−AB2=√152−72=4√11.(2)∵BD=BE,CD=CE=8,∴BC⊥DE,∴∠BCD=∠BCE=90°,∴BD=BE=√BC2+CD2=√152+82=17,∴△BDE的周长=17+17+16=50.。

2020-2021学年八年级下学期期中考试数学试卷及答案解析

2020-2021学年八年级下学期期中考试数学试卷及答案解析

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.能使√x−1有意义的x的取值范围是()A.x>0B.x≥0C.x>1D.x≥1【解答】解:∵√x−1有意义,∴x﹣1≥0,解得x≥1.故选:D.2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、6【解答】解:A、∵12+22≠32,∴不能组成直角三角形,故A选项错误;B、∵22+32≠42,∴不能组成直角三角形,故B选项错误;C、∵32+42=52,∴组成直角三角形,故C选项正确;D、∵42+52≠62,∴不能组成直角三角形,故D选项错误.故选:C.3.下列计算正确的是()A.2√3+3√2=5B.√8÷√2=2C.5√3×5√2=5√6D.√412=2√12【解答】解:A、2√3与3√2不能合并,所以A选项错误;B、原式=√8÷2=2,所以B选项正确;C、原式=25√3×2=25√6,所以C选项错误;D、原式=√92=3√22,所以D选项错误.故选:B.4.下列各式与√2是同类二次根式的是()A.√8B.√24C.√27D.√125【解答】解:(A)原式=2√2,故A与√2是同类二次根式;(B)原式=2√6,故B与√2不是同类二次根式;(C)原式=3√3,故C与√2不是同类二次根式;(D)原式=5√5,故D与√2不是同类二次根式;故选:A.5.已知a<b,则化简二次根式√−a3b的正确结果是()A.−a√−ab B.−a√ab C.a√ab D.a√−ab 【解答】解:∵√−a3b有意义,∴﹣a3b≥0,∴a3b≤0,又∵a<b,∴a<0,b≥0,∴√−a3b=−a√−ab.故选:A.6.下列各式属于最简二次根式的是()A.√8B.2+1C.√y2D.√1 2【解答】解:A、√8含有能开方的因数,不是最简二次根式,故本选项错误;B、√x2+1符合最简二次根式的定义,故本选项正确;C、√y2含有能开方的因式,不是最简二次根式,故本选项错误;D、√12被开方数含分母,故本选项错误;故选:B.7.使代数式√2x+6有意义的x的取值范围是()A.x≥﹣3B.x≤﹣3C.x>﹣3D.﹣3<x≤0【解答】解:∵代数式√2x+6有意义,∴2x+6>0,∴x>﹣3,故选:C.8.已知x−1x=2,则x2+1x2的值为()A.2B.4C.6D.8【解答】解:原式=(x−1x)2+2=22+2=6,故选:C.9.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.10.如图,桌面上的正方体的棱长为2,B为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B点,则它运动的最短路程为()A.√10B.4C.√17D.5【解答】解:如图,它运动的最短路程AB=√(2+2)2+(22)2=√17,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.若√12x是一个整数,则x可取的最小正整数是3.√(判断对错)【解答】解:∵√12x=2√3x,∴若√12x是一个整数,则x可取的最小正整数是3,故答案为:√.12.已知最简二次根式√7−2a与2√3可以合并,则a的值是2.【解答】解:由最简二次根式√7−2a与2√3可以合并,得7﹣2a=3.解得a=2,故答案为:2.13.已知直角三角形的两边x,y的长满足|x﹣4|+√y−3=0,则第三边的长为5或√7.【解答】解:∵|x−4|≥0,√y−3≥0,∴||=0,√y−3=0,即x=4,y=3,在直角三角形中,(1)边长为4的边是斜边,则第三边的长为√42−32=√7;(2)边长为4的边是直角边,则第三边即斜边的长为√32+42=5,故答案为5或√7.14.观察下列等式:32+42=52;52+122=132;72+242=252;92+402=412;112+602=612…按照这样的规律,第六个等式是132+842=852.【解答】解:∵第一个等式是:32+42=52;第二个等式是52+122=132;第三个等式是72+242=252;第四个等式是92+402=412;第五个等式是112+602=612…按照这样的规律,第六个等式是:132+842=852,故答案为:132+842=852.15.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4√5.【解答】解:(i)如图1所示:当B′D=B′C时,过B′点作GH∥AD,则∠B′GE =90°.当B′C=B′D时,AG=DH=12DC=8.由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G=√B′E2−EG2=√132−52=12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′=√B′H2+DH2=√42+82=4√5(ii)如图2所示:当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B 重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4√5.故答案为:16或4√5.三.解答题(共8小题)16.计算:(1)(√6−2√15)×√3−6√1 2(2)(√2+1)2√32×√50√8.【解答】解:(1)原式=√6×3−2√15×3−3√2=3√2−6√5−3√2=﹣6√5;(2)原式=2+2√2+1−√32×508=3+2√2−10√2=3﹣8√2.17.先化简,再求值(1−4x+3)÷x2−2x+12x+6,其中x=√2+1.【解答】解:(1−4x+3)÷x2−2x+12x+6=x+3−4x+3⋅2(x+3) (x−1)2=x−11⋅2(x−1)2=2x−1,当x=√2+1时,原式=2+1−1=√2.18.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P 岛,两岛相距34海里,你知道乙船沿那个方向航行吗?【解答】解:BM=8×2=16海里,BP=15×2=30海里,在△BMP中,BM2+BP2=256+900=1156,PM2=1156,BM2+BP2=PM2,∴∠MBP=90°,180°﹣90°﹣60°=30°,故乙船沿南偏东30°方向航行.19.(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l,b.h的长方体纸箱装满了一层高为h的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?【解答】解:(1)由题意,⊙O 是△ABC 内接圆,D 为切点,如图1,连结OD ,OC .设⊙O 半径为r ,纸盒长度为h ',则CD =√3r ,BC =2√3r 则圆柱型唇膏和纸盒的体积之比为:πr 2ℎ′√34(23r)2ℎ′#/DEL/#=√39π#/DEL/#(若设△ABC 的边长为a 112πa 2ℎ′34a =√39π) (2)易拉罐总体积和纸箱容积的比:l 2r ⋅b 2r ⋅πr 2ℎlbℎ=π4;(3)∵√39ππ4=4√39=√4881<1 ∴第二种包装的空间利用率大.20.四边形ABCD 是长方形,将长方形ABCD 折叠,如图①所示,点B 落在AD 边上的点E 处,折痕为FG ,将图②折叠,点C 与点E 重合,折痕为PH .(1)在图②中,证明:EH =EP ;(2)若EF =6,EH =8,FH =10,求长方形ABCD 的面积.【解答】(1)证明:如图2,由折叠得:∠CHP=∠EHP,∵EG∥BC,∴∠EPH=∠CHP,∴∠EHP=∠EPH,∴EP=EH;(2)解:∵EF=6,EH=8,FH=10,∴∠FEH=90°,∴S△EFH=12EF×EH=24,由折叠得:BF=EF=6,CH=EH=8,∴BC=BF+FH+HC=6+10+8=24,过E作EM⊥BC于M,∴S△EFH=12FH×EM=24,∴FH×EM=48,∵FH=10,∴EM=4.8,∴S矩形ABCD=BC×EM=115.2.21.阅读下列材料,并解决相应问题:√5−√3=√5+√3)(√5−√3)(√5+√3)=2(√5+√3)2=√5+√3用上述类似的方法解答问题:若a是√5的小数部分,求√5a的值.【解答】解:∵2<√5<3,a 是√5的小数部分,∴a =√5−2,∴√5a =√5√5−2=√5(√5+2)(√5−2)(√5+2)=5+2√5. 22.已知:如图,在矩形ABCD 中,AC 是对角线.点P 为矩形外一点且满足AP =PC ,AP⊥PC .PC 交AD 于点N ,连接DP ,过点P 作PM ⊥PD 交AD 于M . (1)若AP =√5,AB =13BC ,求矩形ABCD 的面积;(2)若CD =PM ,求证:AC =AP +PN .【解答】(1)解:∵AP ⊥CP 且AP =CP ,∴△APC 为等腰直角三角形, ∵AP =√5, ∴AC =√10,∵AB =13BC ,∴设AB =x ,BC =3x ,∴在Rt △ABC 中,x 2+(3x )2=10,10x 2=10,x =1,∴S ABCD =AB •BC =1×3=3;(2)解:延长AP,CD交于Q,∵∠1+∠CND=∠2+∠PNA=90°,且∠CND=∠ANP,∴∠1=∠2,又∠3+∠5=∠4+∠5=90°,∴∠3=∠4,在△APM和△CPD中∵{∠1=∠2 AP=CP ∠3=∠4,∴△APM≌△CPD(ASA),∴DP=PM,又∵CD=PM,∴CD=PD,∴∠1=∠4=∠3,∵∠1+∠Q=∠3+∠6=90°∴∠Q=∠6∴DQ=DP=CD∴D为CQ中点,又∵AD⊥CQ∴AC=AQ=AP+PQ,在△APN和△CPQ中∵{∠1=∠2AP=CP∠APC=∠CPQ,∴△APN≌△CPQ(ASA),∴PQ=PN∴AC=AP+PQ=AP+PN.23.如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是 3.8或2.6厘米/秒.(直接写出答案)【解答】解:(1)①△BMN≌△CDM.理由如下:…(1分)∵V N=V M=3厘米/秒,且t=2秒,∴CM=2×3=6(cm)BN=2×3=6(cm)BM=BC﹣CM=10﹣6=4(cm)∴BN=CM…(1分)∵CD=4(cm)∴BM=CD…(1分)∵∠B=∠C=60°,∴△BMN≌△CDM.(SAS)…(1分)②设运动时间为t秒,△BMN是直角三角形有两种情况:Ⅰ.当∠NMB=90°时,∵∠B=60°,∴∠BNM=90°﹣∠B=90°﹣60°=30°.∴BN=2BM,…(1分)∴3t=2×(10﹣3t)∴t=209(秒);…(1分)Ⅱ.当∠BNM=90°时,∵∠B=60°,∴∠BMN=90°﹣∠B=90°﹣60°=30°.∴BM=2BN,…(1分).∴10﹣3t=2×3t∴t=109(秒).…(1分)∴当t=209秒或t=109秒时,△BMN是直角三角形;(2)分两种情况讨论:I.若点M运动速度快,则3×25﹣10=25V N,解得V N=2.6;Ⅱ.若点N运动速度快,则25V N﹣20=3×25,解得V N=3.8.故答案是3.8或2.6.…(2分)。

2020-2021学年度八年级数学下册期中考试试卷(含答案)

2020-2021学年度八年级数学下册期中考试试卷(含答案)

八年级数学下册期中考试试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第三章《图形的平移和旋转》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。

在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.如图,在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m),则空白部分表示的草地面积是()A. 70m2B. 60m2C. 48m2D. 18m22.不等式x+2≥3的解集在数轴上表示正确的是()A. B.C. D.3.以下列线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A. a=9,b=40,c=41B. a=b=5,c=5√2C. a:b:c=3:4:5D. a=11,b=12,c=154.如图,在△ABC中,AB=AC,AD是△ABC的角平分线.若AB=13,AD=12,则BC的长为()A. 5B. 10C. 20D. 245.如图,DA⊥AC,DE⊥BC.若AD=5cm,DE=5cm,∠ACD=30°,则∠DCE=()A. 30°B. 40°C. 50°D. 60°6.不等式组{x−1>0,5−x≥1的整数解共有()A. 1个B. 2个C. 3个D. 4个7.下列说法不一定成立的是()A. 若a>b,则a+c>b+cB. 若a+c>b+c,则a>bC. 若a>b,则ac2>bc2D. 若ac2>bc2,则a>b8.下列图形既是轴对称图形又是中心对称图形的是()A. 等腰三角形B. 等边三角形C. 平行四边形D. 圆9.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A. 55°B. 60°C. 65°D. 70°10.在如图所示的4组图形中,左边图形与右边图形成中心对称的有()A. 1组B. 2组C. 3组D. 4组11.已知关于x的不等式组{2x−a<1,x−2b>3的解集为−1<x<1,则(a+1)(b−1)的值为()A. 6B. −6C. 3D. −312.如图所示的仪器中,OD=OE,CD=CE.小州把这个仪器往直线l上一放,使点D,E落在直线l上,作直线OC,则OC⊥l,他这样判断的理由是()A. 到一个角两边距离相等的点在这个角的平分线上B. 角平分线上的点到这个角两边的距离相等C. 到线段两端点距离相等的点在这条线段的垂直平分线上D. 线段垂直平分线上的点到线段两端点的距离相等13.如图,在平面直角坐标系中,△OAB为等边三角形,AB⊥x轴,AB=4√3,点C的坐标为(2,0).P为OB边上的一个动点,则PA+PC的最小值为()A. √13B. 2√13C. 4√13D. 1214.在市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,你认为正确的结论是()①这次比赛的全程是500米②乙队先到达终点③比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快④乙与甲相遇时乙的速度是375米/分钟⑤在1.8分钟时,乙队追上了甲队A. ①③④B. ①②⑤C. ①②④D. ①②③④⑤15. 如图,在正方形ABCD 中,AB =3,点M 在CD 的边上,且DM =1,△AEM 与△ADM 关于AM 所在的直线对称,将△ADM 按顺时针方向绕点A 旋转90°得到△ABF ,连接EF ,则线段EF 的长为( )A. 3B. 2√3C. √13D. √15 卷Ⅱ 二、填空题(本大题共5小题,共25.0分)16. 根据平移的知识可得图中的封闭图形的周长(图中所有的角都是直角)为______.17. 已知x −y =3,若y <1,则x 的取值范围是 .18. 如图,这是某超市自动扶梯的示意图,大厅两层之间的距离ℎ=6.5米,自动扶梯的倾角为30°.若自动扶梯运行速度v =0.5米/秒,则顾客乘自动扶梯上一层楼的时间为 秒.19. 当k 时,代数式23(k −1)的值不小于代数式1−5k−16的值.20. 如图,线段AB 和CD 关于点O 中心对称.若∠B =40°,则∠D 的度数为 .三、解答题(本大题共7小题,共80.0分)21. (8分)(1)解不等式0.2x 0.3−6−7x 3≤1(2) 解不等式组{12x >13x x+43>3x−72−122. (8分)如图,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,连接BE .(1)求证:AD=BE;(2)若∠CAE=15°,AD=5,求AB的长.23.(10分)如图,在△ABC中,AF⊥BC于点F.将△ABC绕点A按顺时针旋转一定角度得到△ADE,点B的对应点D恰好落在BC边上.(1)若∠B=50°,求∠DAF的度数;(2)若∠E=∠CAD,求证:AD=CD.24.(12分)如图,在正方形网格中,△ABC的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图①中,作△ABC关于点O对称的△A′B′C′;(2)在图②中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.25.(12分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?26.(14分)如图,在△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.27.(16分)已知∠AOB=30°,H为射线OA上一定点,OH=√3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)求证:∠OMP=∠OPN;(2)当OP=2时,点M关于点H的对称点为Q,连接QP.①用量角器和直尺以图1中OP的长为2,画出一个尽可能准确的图形。

2020-2021学年八年级下学期期中数学试题及答案

2020-2021学年八年级下学期期中数学试题及答案

2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分40分,每小题4分)1.等腰三角形一腰上的高与腰之比1:2,则等腰三角形顶角的度数为()A.30°B.60°或120°C.30°或150°D.150°2.下列各组数据为三角形的三边,能构成直角三角形的是()A.4,8,7B.2,2,2C.2,2,4D.13,12,5 3.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6B.7C.8D.104.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且P A平分∠BAC,则△APD与△APE全等的理由是()A.SAS B.AAS C.SSS D.ASA5.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.186.顺次连接矩形四边中点得到的四边形一定是()A.正方形B.矩形C.菱形D.平行四边形7.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.8.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m9.下列说法中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.四条边相等的四边形是菱形D.对角线互相垂直平分的四边形是正方形10.如图,在正方形ABCD所在平面内求一点P,使点P与正方形ABCD的任意两个顶点构成△P AB,△PBC,△P AD,△PCD均是等腰三角形,则满足上述条件的所有点P的个数为()A.8个B.9个C.10个D.11个二.填空题(共8小题,满分32分,每小题4分)11.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.12.如图,在△ABC中,∠ACB=90°,∠ABC=60°,CD⊥AB,垂足为D,若BD=1,则AD的长为.13.如图所示,△ABC和△DCB有公共边BC,且AB=DC,作AE⊥BC,DF⊥BC,垂足分别为E、F,AE=DF,那么求证AC=BD时,需要证明三角形全等的三角形是.14.如图,第1个图形有1个三角形,第2个图形中有5个三角形,第3个图形中有9个三角形,……,则第2019个图形中有个三角形.15.顺次连接四边形ABCD各边的中点得到的四边形一定是.16.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH 的长为.17.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为.18.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)三.解答题(共8小题,满分78分)19.(8分)如图,在▱ABCD中,AE=CF,求证:四边形DEBF是平行四边形.20.(8分)已知:如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,∠ABC=90°,求四边形ABCD的面积.21.(8分)有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?22.(10分)如图,▱ABCD的两条对角线相交于O点,过O点作OE⊥AB,垂足为E,已知∠DBA=∠DBC,AB=5.(1)求证:四边形ABCD为菱形;(2)若sin∠ADB=45,求线段OE的长.23.(10分)如图,在▱ABCD 中,点E 是BC 上的一点,连接DE ,在DE 上取一点F 使得∠AFE =∠ADC .若DE =AD ,求证:DF =CE .24.(10分)如图所示,有一个直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上且与AE 重合,你能求出CD 的长吗?25.(12分)如图,在矩形ABCD 中,AB =2,AD =4.点E ,F 分别在AD ,BC 上,点A与点C 关于EF 所在的直线对称,P 是边DC 上的一动点.(1)连接AF ,CE ,求证:四边形AFCE 是菱形;(2)当△PEF 的周长最小时,求DP CP 的值.26.(12分)如图,正方形ABCD 的边长为4,点E ,F 分别在边AB ,AD 上,且∠ECF =45°,CF 的延长线交BA 的延长线于点G ,CE 的延长线交DA 的延长线于点H ,连接AC ,EF ,GH .(1)填空:∠AHC ∠ACG ;(填“>”或“<”或“=”)(2)线段AC ,AG ,AH 什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.2020-2021学年八年级下期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.等腰三角形一腰上的高与腰之比1:2,则等腰三角形顶角的度数为()A.30°B.60°或120°C.30°或150°D.150°【解答】解:当该三角形为锐角三角形时,如图1,∵sin∠A=BDAB=12,∴∠A=30°,即△ABC的顶角为30°;当该三角形为钝角三角形时,如图2,在Rt△ABD中,∵sin∠BAD=BDAB=12,∴∠BAD=30°,∴∠BAC=150°,即△ABC的顶角为150°;综上可知该三角形的顶角为30°或150°,故选:C.2.下列各组数据为三角形的三边,能构成直角三角形的是()A.4,8,7B.2,2,2C.2,2,4D.13,12,5【解答】解:A、42+72≠82,故不为直角三角形;B、22+22≠22,故不为直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、52+122=132,故能构成直角三角形;故选:D.3.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6B.7C.8D.10【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.4.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且P A平分∠BAC,则△APD与△APE全等的理由是()A.SAS B.AAS C.SSS D.ASA【解答】解:由已知得,AP=AP,∠DAP=∠EAP,∠ADP=∠AEP所以符合AAS判定.故选:B.5.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.18【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.6.顺次连接矩形四边中点得到的四边形一定是()A.正方形B.矩形C.菱形D.平行四边形【解答】解:如图,连接AC、BD.在△ABD中,∵AH=HD,AE=EB,∴EH=12BD,同理FG=12BD,HG=12AC,EF=12AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:C.7.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,也是轴对称图形,不符合题意;B、不是中心对称图形,是轴对称图形,不符合题意;C、是中心对称图形,不是轴对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选:C.8.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m【解答】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB=√62+82=10米.所以大树的高度是10+6=16米.故选:C.9.下列说法中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.四条边相等的四边形是菱形D.对角线互相垂直平分的四边形是正方形【解答】解:A、只有两组对边平行的四边形是平行四边形,故此选项错误;B、根据有一个角是直角的平行四边形是矩形,故此选项错误;C、四条边相等的四边形是菱形,此选项正确;D、根据对角线互相垂直平分且相等的四边形是正方形,故此选项错误;故选:C.10.如图,在正方形ABCD所在平面内求一点P,使点P与正方形ABCD的任意两个顶点构成△P AB,△PBC,△P AD,△PCD均是等腰三角形,则满足上述条件的所有点P的个数为()A.8个B.9个C.10个D.11个【解答】解:分为三种情况:①正方形对角线的交点P1;②作AD边的垂直平分线MN,以点D为圆心,以DC为半径画弧,交MN于点P2和P3;以点C为圆心,以DC为半径画弧,交MN于点P4和P5,如图:③同理,作AB边的垂直平分线,分别以点A和点B为圆心,AD为半径画弧,与该垂直平分线也有4个交点.综上,符合题意的所有点P的个数为:1+4+4=9(个).故选:B.二.填空题(共8小题,满分32分,每小题4分)11.若一个多边形的内角和比外角和大360°,则这个多边形的边数为6.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=360°,解得n=6.故答案为:6.12.如图,在△ABC中,∠ACB=90°,∠ABC=60°,CD⊥AB,垂足为D,若BD=1,则AD的长为3.【解答】解:∵在三角形ABC中,∠ACB=90°,∠ABC=60°,∴∠A=30°,∵CD⊥AB,∴∠BCD=30°,∴在Rt△BCD中,BC=2BD=2,∴在Rt△ABC中,AB=2BC=4,∴AD=AB﹣BD=4﹣1=3,故答案为:3.13.如图所示,△ABC和△DCB有公共边BC,且AB=DC,作AE⊥BC,DF⊥BC,垂足分别为E、F,AE=DF,那么求证AC=BD时,需要证明三角形全等的三角形是Rt△ABE≌Rt△DCF,△AEC≌△DFB..【解答】证明:∵AE⊥BC,DF⊥BC,垂足分别为E、F,∴∠AEB=∠DFC=90°,而AB=DC,AE=DF,∴Rt△ABE≌Rt△DCF,∴BE=CF,∴EC=BF,而AE=DF,∴△AEC≌△DFB.故填空答案为:Rt△ABE≌Rt△DCF,△AEC≌△DFB.14.如图,第1个图形有1个三角形,第2个图形中有5个三角形,第3个图形中有9个三角形,……,则第2019个图形中有8073个三角形.【解答】解:由图可得,第1个图形有1个三角形,第2个图形中有1+4=5个三角形,第3个图形中有1+4+4=1+4×2=9个三角形,……,则第2019个图形中有:1+4×(2019﹣1)=8073个三角形,故答案为:8073.15.顺次连接四边形ABCD各边的中点得到的四边形一定是平行四边形.【解答】解:连接BD,∵E、F、G、H分别是边AD、DC、BC、AB的中点,∴EH∥BD,FG∥BD,EH=12BD,FG=12BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形,故答案为:平行四边形.16.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH 的长为 4.8cm.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=12AC=4cm,OB=OD=3cm,∴AB=5cm,∴S菱形ABCD=12AC•BD=AB•DH,∴DH=AC⋅BD2AB=4.8cm.17.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为3或6.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC=√82+62=10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,∴EB=EB′,AB=AB′=6,∴CB′=10﹣6=4,设BE=x,则EB′=x,CE=8﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6.综上所述,BE的长为3或6.故答案为:3或6.18.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为(a+b).(用含a,b的代数式表示)【解答】解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=14a,∴正方形ABCD的面积=4×14a+b=a+b.故答案为(a+b).三.解答题(共8小题,满分78分)19.(8分)如图,在▱ABCD中,AE=CF,求证:四边形DEBF是平行四边形.【解答】证明:在▱ABCD中,则AB∥CD,AB=CD,∵AE=CF,∴AB﹣AE=CD﹣CF,∴BE=DF,∵BE∥DF,∴四边形DEBF是平行四边形.20.(8分)已知:如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,∠ABC=90°,求四边形ABCD的面积.【解答】解:连接AC,在Rt△ABC中,由勾股定理得:AC=√AB2+BC2=√22+22=2√2,∵CD=1,AD=3,AC=2√2,∴AC2+CD2=AD2,∴∠ACD=90°,∴四边形ABCD的面积:S=S△ABC+S△ACD=12AB×BC+12×AC×CD=12×2×2+12×1×2√2=2+√2.21.(8分)有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC=√AE2+EC2=√62+82=10m,故小鸟至少飞行10m.22.(10分)如图,▱ABCD的两条对角线相交于O点,过O点作OE⊥AB,垂足为E,已知∠DBA=∠DBC,AB=5.(1)求证:四边形ABCD为菱形;(2)若sin∠ADB=45,求线段OE的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADB=∠DBC,∵∠DBA=∠DBC,∴∠ADB=∠DBA,∴AD=AB,∴四边形ABCD为菱形;(2)解:∵四边形ABCD为菱形,∴AC⊥BD,AD=AB=5,OB=OD,∵sin∠ADB=OAAD=45,∴OA=4,∴OB=OD=2−OA2=3,∵OE⊥AB,△OAB的面积=12AB×OE=12OA×OB,∴OE=OA×OBAB=4×35=125.23.(10分)如图,在▱ABCD中,点E是BC上的一点,连接DE,在DE上取一点F使得∠AFE=∠ADC.若DE=AD,求证:DF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠ADC,∴∠AFD=∠C,在△AFD 和△DEC 中,{∠ADF =∠DEC∠AFD =∠C AD =DE,∴△AFD ≌△DCE (AAS ),∴DF =CE .24.(10分)如图所示,有一个直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上且与AE 重合,你能求出CD 的长吗?【解答】解:在Rt 三角形中,由勾股定理可知:AB =√BC 2+AC 2=√82+62=10. 由折叠的性质可知:DC =DE ,AC =AE ,∠DEA =∠C .∴BE =4,∠DEB =90°.设DC =x ,则BD =8﹣x .在Rt △BDE 中,由勾股定理得:BE 2+ED 2=BD 2,即42+x 2=(8﹣x )2.解得:x =3.∴CD =3.25.(12分)如图,在矩形ABCD 中,AB =2,AD =4.点E ,F 分别在AD ,BC 上,点A与点C 关于EF 所在的直线对称,P 是边DC 上的一动点.(1)连接AF ,CE ,求证:四边形AFCE 是菱形;(2)当△PEF 的周长最小时,求DP CP 的值.【解答】解:(1)证明:如图,连接AF ,CE ,AC 交EF 于点O∵四边形ABCD 是矩形∴AB =CD ,AD =BC ,AD ∥BC∴∠AEO =∠CFO ,∠EAO =∠FCO∵点A 与点C 关于EF 所在的直线对称∴AO =CO ,AC ⊥EF∵∠AEO =∠CFO ,∠EAO =∠FCO ,AO =CO∴△AEO ≌△CFO (AAS )∴AE =CF ,且AE ∥CF∴四边形AFCE 是平行四边形,又∵AC ⊥EF∴四边形AFCE 是菱形;(2)如图,作点F 关于CD 的对称点H ,连接EH ,交CD 于点P ,此时△PEF 的周长最小∵四边形AFCE 是菱形∴AF =CF =CE =AE∵AF 2=BF 2+AB 2∴AF 2=(4﹣AF )2+4∴AF =52∵AD ∥BC∴△DEP ∽△CHP∴DP CP =DE CH =35. 答:当△PEF 的周长最小时,DP CP 的值为35. 26.(12分)如图,正方形ABCD 的边长为4,点E ,F 分别在边AB ,AD 上,且∠ECF =45°,CF 的延长线交BA 的延长线于点G ,CE 的延长线交DA 的延长线于点H ,连接AC ,EF ,GH .(1)填空:∠AHC=∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.【解答】解:(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°,∠DAC=∠BAC=45°,∴AC=√42+42=4√2,∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,∴△AHC∽△ACG,AH AC =ACAG,∴AC2=AG•AH.(3)①△AGH的面积不变.理由:∵S△AGH=12•AH•AG=12AC2=12×(4√2)2=16.∴△AGH的面积为16.②如图1中,当GC =GH 时,易证△AHG ≌△BGC ,可得AG =BC =4,AH =BG =8,∵BC ∥AH ,∴BC AH =BE AE =12, ∴AE =23AB =83.如图2中,当CH =HG 时,易证AH =BC =4(可以证明△GAH ≌△HDC 得到) ∵BC ∥AH ,∴BE AE =BC AH =1,∴AE =BE =2.如图3中,当CG =CH 时,易证∠ECB =∠DCF =22.5°.在BC 上取一点M ,使得BM =BE , ∴∠BME =∠BEM =45°,∵∠BME =∠MCE +∠MEC ,∴∠MCE =∠MEC =22.5°,∴CM =EM ,设BM =BE =x ,则CM =EM =√2x , ∴x +√2x =4,∴x =4(√2−1),∴AE =4﹣4(√2−1)=8﹣4√2,综上所述,满足条件的m 的值为83或2或8﹣4√2.。

2020-2021学年八年级下期中数学试题及答案解析

2020-2021学年八年级下期中数学试题及答案解析

2020-2021学年八年级下期中考试数学试卷一.选择题(共12小题,满分36分,每小题3分) 1.下列各方程组中,属于二元一次方程组的是( ) A .{x =0y =2B .{x +y =0z +y =2C .{x +y =01x+y =2D .{x +y =0xy =2【解答】解:A 、该方程组符合二元一次方程组的定义,故本选项符合题意; B 、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意; C 、该方程组的第二个方程是分式方程,不是二元一次方程组,故本选项不符合题意; D 、该方程组中的第二个方程的最高次数2,不是二元一次方程组,故本选项不符合题意; 故选:A .2.如图是12个大小相同的小正方形,其中5个小正方形已涂上阴影,现随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是( )A .56B .512C .59D .712【解答】解:如图所示:12个大小相同的小正方形,其中5个小正方形已涂上阴影, 则随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是:512.故选:B .3.如图,∠DAC 是△ABC 的一个外角,AE 平分∠DAC ,且AE ∥BC ,则△ABC 一定是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形【解答】证明:∵AE 平分∠DAC ,∴∠1=∠2,∵AE∥BC,∴∠1=∠C,∠B=∠2,∴∠B=∠C,即AB=AC,∴△ABC是等腰三角形.故选:C.4.下列命题中,真命题是()A.两个锐角的和一定是钝角B.相等的角是对顶角C.垂线段最短D.带根号的数一定是无理数【解答】解:A、两个锐角的和可能是锐角、直角或钝角,故原命题错误,是假命题,不符合题意;B、相等的角不一定是对顶角,故原命题错误,不符合题意;C、垂线段最短,正确,是真命题,符合题意;D、带根号的数不一定是无理数,如√4,故原命题错误,不符合题意,故选:C.5.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为x甲、x乙,方差分别为s甲2、s乙2,若x甲=x乙,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为120,表示抽奖20次就有1次中奖【解答】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A 不符合题意;任意画一个三角形,其内角和是360°是不可能事件,因此选项B 不符合题意; 根据平均数和方差的意义可得选项C 符合题意; 一个抽奖活动中,中奖概率为120,表示中奖的可能性为120,不代表抽奖20次就有1次中奖,因此选项D 不符合题意; 故选:C .6.如图,AB ∥CD ,点E 在BC 上,且CD =CE ,∠D =74°,则∠B 的度数为( )A .74°B .32°C .22°D .16°【解答】解:∵CD =CE ,∠D =74°, ∴∠DEC =∠D =74°,∴∠C =180°﹣74°﹣74°=32°, ∵AB ∥CD , ∴∠B =∠C =32°, 故选:B .7.已知方程组{2x −y +3=0ax −y +c =0的解为{x =−1y =1,则一次函数y =2x +3与y =ax +c 的图象的交点坐标是( ) A .(﹣1,1)B .(1,﹣1)C .(2,﹣2)D .(﹣2,2)【解答】解:∵方程组{2x −y +3=0ax −y +c =0的解为{x =−1y =1,∴一次函数y =2x +3与y =ax +c 的图象的交点坐标是(﹣1,1), 故选:A .8.口袋中有14个红球和若干个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,记下颜色后放回,多次实验后发现摸到白球的频率稳定在0.3,则白球的个数是( ) A .5B .6C .7D .8【解答】解:设袋中白球有x 个,根据题意得:x x+14=0.3,解得:x =6,经检验:x =6是分式方程的解,故选:B .9.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长( )尺. A .25B .20C .15D .10【解答】解:设索长x 尺,竿子长y 尺, 依题意,得:{x −y =5y −12x =5, 解得:{x =20y =15.故选:B .10.如图,把一个长方形纸片沿EF 折叠后,点C 、D 分别落在M 、N 的位置.若∠EFB =65°,则∠AEN 等于( )A .25°B .50°C .65°D .70°【解答】解:∵∠EFB =65°,AD ∥CB , ∴∠DEF =65°,由折叠可得∠NEF =∠DEF =65°, ∴∠AEN =180°﹣65°﹣65°=50°, 故选:B .11.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( ) A .{x +y =83x −y =12B .{x −y =83x −y =12C .{x +y =183x +y =12D .{x −y =83x +y =12【解答】解:设这个队胜x 场,负y 场, 根据题意,得{x +y =83x −y =12.故选:A .12.同型号的甲、乙两辆车加满气体燃料后均可行驶210km ,它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .120kmB .140kmC .160kmD .180km【解答】解:设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回A 地时燃料用完,如图:设AB =xkm ,AC =ykm ,根据题意得: {2x +2y =210×2x −y +x =210, 解得:{x =140y =70.∴乙在C 地时加注行驶70km 的燃料,则AB 的最大长度是140km .或者:设AC =ykm 即可,从甲车的角度考虑问题,甲车给乙车注入燃料,要想最远,需满足一下两个条件:①注满乙车;②刚好够甲车从C 回到A .从A 到C ,甲、乙两车都行驶了AC ,即乙车耗油量为ykm ,也即甲车注入燃料量为ykm ,注入后甲车剩余ykm (刚好返回A 地),所以对于甲车,y +y +y =210,所以y =70.从乙车角度,从C 出发是满燃料,所以AB 为:105+70÷2=140(km ). 故选:B .二.填空题(共6小题,满分18分,每小题3分)13.把命题“对顶角相等”改写成“如果…那么…”的形式: 如果两个角是对顶角,那么这两个角相等 .【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等, 故答案为:如果两个角是对顶角,那么这两个角相等.14.甲乙两人同解方程组{ax +by =2cx −7y =8时,甲正确解得{x =3y =−2,乙因抄错c 而得{x =−2y =2,则a +c = 2 .【解答】解:{ax +by =2①cx −7y =8②把{x =3y =−2代入②得:3c +14=8, 解得:c =﹣2,把{x =3y =−2和{x =−2y =2代入①得:{3a −2b =2−2a +2b =2, 解得:{a =4b =5,所以a +c =4+(﹣2)=2, 故答案为:2.15.在一个不透明的盒子里装有除颜色外其余均相同的2个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到黄色乒乓球的概率为13,那么盒子内白色乒乓球的个数为 4 .【解答】解:盒子内乒乓球的个数为2÷13=6(个), 白色乒乓球的个数6﹣2=4(个) 故答案为4.16.一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那它停在4号板上的概率是116.【解答】解:因为4号板的面积占了总面积的116,故停在4号板上的概率为116,故答案为:116.17.如图,已知AB ∥CD ∥EF ,则∠1,∠2,∠3之间的数量关系是 ∠1﹣∠3+∠2=180° .【解答】解:∵CD ∥EF ,∴∠2+∠CEF =180°, ∵AB ∥EF , ∴∠1=∠3+∠CEF , ∴∠CEF =∠1﹣∠3, ∴∠2+∠1﹣∠3=180°, 即∠1﹣∠3+∠2=180°. 故答案为:∠1﹣∠3+∠2=180°.18.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题.如图所示,已知AB ∥CD ,∠BAE =78°,∠DCE =120°,则∠E 的度数是 42° .【解答】解:如图,延长DC 交AE 于F , ∵AB ∥CD ,∠BAE =78°, ∴∠CFE =78°, 又∵∠DCE =120°,∴∠E =∠DCE ﹣∠CFE =120°﹣78°=42°. 故答案为:42°.三.解答题(共6小题,满分66分)19.(12分)解二元一次方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组.下面,我们就来解一个三元一次方程组:解方程组{x +y +z =2,①2x +3y −z =8,②3x −2y +z =3,③小曹同学的部分解答过程如下:解: ① + ② ,得3x +4y =10,④ ② + ③ ,得5x +y =11,⑤ ⑤ 与 ④ 联立,得方程组 {3x +4y =10,④5x +y =11,⑤(1)请补全小曹同学的解答过程:(2)若m 、n 、p 、q 满足方程组{m +n +p +q =42(m +n)+3p −q =163(m +n)−2p +q =6,则m +n ﹣2p +q = ﹣2 .【解答】解:(1)方程组{x +y +z =2,①2x +3y −z =8,②3x −2y +z =3,③小曹同学的部分解答过程如下: 解:①+②,得3x +4y =10,④ ②+③,得5x +y =11,⑤ ⑤与④联立,得方程组 {3x +4y =10,④5x +y =11,⑤ 解得:{x =2y =1把{x =2y =1代入①得:2+1+z =2, 解得:z =﹣1,∴原方程组的解是{x =2y =1z =−1故答案为:①,②,②,③,⑤,④.(2){m +n +p +q =4①2(m +n)+3p −q =16②3(m +n)−2p +q =6③②﹣①×2得:p ﹣3q =8④, ③﹣①×3得:﹣5p ﹣2q =﹣6⑤, 由④与⑤组成方程组{p −3q =8−5p −2q =−6解得:{p =2q =−2,代入①得:m +n =4 ∴m +n ﹣2p +q =﹣2 故答案为:﹣2.20.(10分)(1)解方程组:{x +2y =1,①3x −2y =11,②(2)计算:√4+|﹣2|+√−273+(﹣1)2016.【解答】解:(1)①+②得:4x =12, 解得:x =3;把x =3代入①得:y =﹣1, 则方程组的解为{x =3y =−1;(2)原式=2+2﹣3+1 =4﹣3+1 =1+1 =2.21.(10分)(1)解方程组:{23x −34y =124(x −y)−3(2x +y)=17; (2)已知关于x 、y 的方程组{x −y =a +32x +y =5a 的解满足x >y >0,化简|a |+|3﹣a |.【解答】解:(1)原方程化为{8x −9y =6①2x +7y =−17②,①﹣②×4得:﹣37y =74, 解得y =﹣2,把y =﹣2代入①得x =−32, ∴原方程组的解为{x =−32y =−2;(2)由方程组{x −y =a +32x +y =5a ,解得{x =2a +1y =a −2,由x >y >0,得{2a +1>a −2a −2>0,解得a>2,当2<a≤3时,|a|+|3﹣a|=a+3﹣a=3;当a>3时,|a|+|3﹣a|=a+a﹣3=2a﹣3.22.(12分)已知:如图,点D、E、F、G都在△ABC的边上,DE∥AC,且∠1+∠2=180°(1)求证:AD∥FG;(2)若DE平分∠ADB,∠C=40°,求∠BFG的度数.【解答】证明:(1)∵DE∥AC∴∠2=∠DAC∵∠l+∠2=180°∴∠1+∠DAC=180°∴AD∥GF(2)∵ED∥AC∴∠EDB=∠C=40°∵ED平分∠ADB∴∠2=∠EDB=40°∴∠ADB=80°∵AD∥FG∴∠BFG=∠ADB=80°23.(10分)小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?【解答】解:公平.画树状图得:从表中可以得到:P 积为奇数=26=13,P 积为偶数=46=23,∴小明的积分为26×2=23,小刚的积分为46×1=46=23.24.(12分)5G 时代的到来,将给人类生活带来巨大改变.现有A 、B 两种型号的5G 手机,进价和售价如表所示:型号价格进价(元/部) 售价(元/部) A3000 3400 B 3500 4000某营业厅购进A 、B 两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A 、B 两种型号手机各多少部?(2)若营业厅再次购进A 、B 两种型号手机共30部,其中B 型手机的数量不多于A 型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?【解答】解:(1)设营业厅购进A 、B 两种型号手机分别为a 部、b 部,{3000a +3500b =32000(3400−3000)a +(4000−3500)b =4400, 解得,{a =6b =4, 答:营业厅购进A 、B 两种型号手机分别为6部、4部;(2)设购进A 种型号的手机x 部,则购进B 种型号的手机(30﹣x )部,获得的利润为w 元,w=(3400﹣3000)x+(4000﹣3500)(30﹣x)=﹣100x+15000,∵B型手机的数量不多于A型手机数量的2倍,∴30﹣x≤2x,解得,x≥10,∵w=﹣100x+15000,k=﹣100,∴w随x的增大而减小,∴当x=10时,w取得最大值,此时w=14000,30﹣x=20,答:营业厅购进A种型号的手机10部,B种型号的手机20部时获得最大利润,最大利润是14000元.四.解答题(共2小题,满分30分)25.(14分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟10米,乙在A地时距地面的高度b为30米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?【解答】解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y={15x(0≤x <2)30x−30(2≤x≤11);(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y =10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.26.(16分)探究与发现:【探究一】我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图①,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD 的数量关系,并证明你探究的数量关系.【探究二】三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图②,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠A与∠P的数量关系,并证明你探究的数量关系.【探究三】若将△ADC改成任意四边形ABCD呢?已知:如图③,在四边形ABCD中,DP、CP分别平分∠BDC和∠ACD,试利用上述结论直接写出∠A+∠B与∠P的数量关系2∠P=∠B+∠A.【解答】解:探究一:∠FDC+∠ECD=180°+∠A.理由如下:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∠FDC+∠ECD=180°+∠A.理由如下:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=12∠ADC,∠PCD=12∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°−12∠ADC−12∠ACD,=180°−12(∠ADC+∠ACD),=180°−12(180°﹣∠A),=90°+12∠A;探究三:2∠P=∠B+∠A.理由如下:∵DP,CP分别平分∠BDC和∠ACD,∴∠PDC=12∠ADC,∠PCD=12∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°−12∠ADC−12∠BCD=180°−12(∠ADC+∠BCD)=180°−12(360°﹣∠A﹣∠B)=12(∠A+∠B).即2∠P=∠B+∠A.故答案为:2∠P=∠B+∠A.。

2020-2021学年八年级下期中数学试卷及答案

2020-2021学年八年级下期中数学试卷及答案

2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分20分,每小题2分)1.下列各式与√2是同类二次根式的是()A.√8B.√24C.√27D.√1252.一组数据2,0,1,4,3,这组数据的方差是()A.2B.4C.1D.33.下列平面直角坐标系中的图象,不能表示y是x的函数是()A.B.C.D.4.服装店为了解某品牌外套销售情况,对各种码数销量进行统计,店主最应关注的统计量是()A.平均数B.中位数C.方差D.众数5.如图所示,正方形网格中,M、N、P在格点上,则∠MPN=()A.150°B.135°C.120°D.105°6.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±47.若函数y=kx+b的图象如图所示,则关于x的不等式﹣kx+b<0的解集是()A.x<﹣6B.x>﹣6C.x<6D.x>68.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B.C.D.9.如图,矩形ABCD中,连接AC,延长BC至点E,使BE=AC,连接DE.若∠BAC=40°,则∠E的度数是()A.65o B.60o C.50o D.40°10.如图,菱形ABCD的边长为2,且∠ABC=120°,E是BC的中点,P为BD上一点,且△PCE的周长最小,则△PCE的周长的最小值为()A.√3+1B.√7+1C.2√3+1D.2√7+1二.填空题(共5小题,满分15分,每小题3分)11.(3分)若√x−3在实数范围内有意义,则x的取值范围是.12.(3分)某公司要招聘1名广告策划人员,某应聘者参加了3项素质测试,成绩如下(单位:分)测试项目创新能力综合知识语言表达测试成绩708090若创新能力、综合知识和语言表达的成绩按5:3:2计算,则该应聘者的素质测试平均成绩是分.13.(3分)实数a,b在数轴上对应点的位置如图所示,则下列式子正确的是.(填序号)①ab<0;②|a|<|b|;③﹣a>b;④a﹣b>0.14.(3分)A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B 地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE ﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.15.(3分)若顺次连接四边形ABCD四边中点所得的四边形是菱形,则原四边形的对角线AC、BD所满足的条件是.三.解答题(共7小题)16.计算:(1)√12×(√75+3√13−√48);(2)(√2−1)2+√3×(√3−√6)+√8.17.某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班、(2)班进行了检测,如图表示从两班各随机抽取的10名学生的得分情况.(1)利用图中提供的信息,补全下表:班级平均数/分中位数/分众数/分初三(1)班24初三(2)班2421(2)若把24分以上(含24分)记为“优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;(3)观察如图的数据分布情况,请通过计算说明哪个班的学生纠错的得分更稳定.18.如图,四边形ABCD是矩形.(1)尺规作图:在图中,求作AB的中点E(保留作图痕迹,不写作法);(2)在(1)的条件下,连接CE,DE,若AB=2,AD=√3,求证:CE平分∠BED.19.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?20.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D 与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.21.如图,已知四边形ABCD是正方形,点E、F分别在AD、DC上,BE与AF相交于点G,且BE=AF.(1)求证:△ABE≌△DAF;(2)求证:BE⊥AF;(3)如果正方形ABCD的边长为5,AE=2,点H为BF的中点,连接GH.求GH的长.22.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B 的另一条直线交x轴正半轴于点C,且OC=3.(1)求直线BC的解析式;(2)如图1,若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G 的坐标.2020-2021学年八年级下期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.下列各式与√2是同类二次根式的是()A.√8B.√24C.√27D.√125【解答】解:(A)原式=2√2,故A与√2是同类二次根式;(B)原式=2√6,故B与√2不是同类二次根式;(C)原式=3√3,故C与√2不是同类二次根式;(D)原式=5√5,故D与√2不是同类二次根式;故选:A.2.一组数据2,0,1,4,3,这组数据的方差是()A.2B.4C.1D.3【解答】解:x=15(2+0+1+4+3)=2,∴S2=15[(2﹣2)2+(0﹣2)2+(1﹣2)2+(4﹣2)2+(3﹣2)2]=2,故选:A.3.下列平面直角坐标系中的图象,不能表示y是x的函数是()A.B.C.D.【解答】解:A、能表示y是x的函数,故此选项不合题意;B、不能表示y是x的函数,故此选项符合题意;C、能表示y是x的函数,故此选项不合题意;D、能表示y是x的函数,故此选项不合题意;故选:B.4.服装店为了解某品牌外套销售情况,对各种码数销量进行统计,店主最应关注的统计量是()A.平均数B.中位数C.方差D.众数【解答】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:D.5.如图所示,正方形网格中,M、N、P在格点上,则∠MPN=()A.150°B.135°C.120°D.105°【解答】解:延长NP至A,连结AM,根据勾股定理可得MP=AM=√12+22=√5,AP=√32+12=√10,又∵(√5)2+(√5)2=(√10)2,∴△AMP是等腰直角三角形,∴∠APM=45°,∴∠MPN=135°.故选:B.6.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4【解答】解:A、√2与√3不能合并,所以A选项错误;B、原式=5,所以B选项正确;C、原式=√2,所以C选项错误;D、原式=4,所以D选项错误.故选:B.7.若函数y=kx+b的图象如图所示,则关于x的不等式﹣kx+b<0的解集是()A.x<﹣6B.x>﹣6C.x<6D.x>6【解答】解:由图象可知函数y=kx+b与x轴的交点为(6,0),则函数y=﹣kx+b与x 轴的交点为(﹣6,0),且y随x的增大而增大,∴当x<﹣6时,﹣kx+b<0,所以关于x的不等式﹣kx+b<0的解集是x<﹣6,故选:A.8.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B.C.D.【解答】解:A、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b>0,两结论不矛盾,故正确;B、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误;C、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b<0,两结论相矛盾,故错误;D、如果过第二三四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b<0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误.故选:A.9.如图,矩形ABCD中,连接AC,延长BC至点E,使BE=AC,连接DE.若∠BAC=40°,则∠E的度数是()A.65o B.60o C.50o D.40°【解答】解:如图,连接BD,∵矩形ABCD中,∠BAC=40°,OA=OB,∴∠ABD=40°,∠DBE=90°﹣40°=50°,∵AC=BD,AC=BE,∴BD=BE,∴△BDE中,∠E=12(180°﹣∠DBE)=12(180°﹣50°)=65°,故选:A.10.如图,菱形ABCD的边长为2,且∠ABC=120°,E是BC的中点,P为BD上一点,且△PCE的周长最小,则△PCE的周长的最小值为()A.√3+1B.√7+1C.2√3+1D.2√7+1【解答】解:∵菱形ABCD中,∠ABC=120°,∴BC=CD=AD=2,∠C=180°﹣∠ABC=60°,∠ADC=∠ABC=120°,∴∠ADB=∠BDC=12∠ADC=60°,△BCD是等边三角形,∵点E是BC的中点,∴∠BDE=12∠BDC=30°,∴∠ADE=∠ADB+∠BDE=90°,如图,连接AE,交BD于点P,此时,△PCE的周长最小,∵DE=CD•sin60°=√3,CE=12BC=1,∴在Rt△ADE中,AE=√AD2+DE2=√7,∵四边形ABCD是菱形,∴BD垂直平分AC,∴P A=PC,∴△PCE周长为:PC+PE+CE=P A+PE+CE=AE+CE=√7+1,故选:B.二.填空题(共5小题,满分15分,每小题3分)11.(3分)若√x−3在实数范围内有意义,则x的取值范围是x≥3.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.12.(3分)某公司要招聘1名广告策划人员,某应聘者参加了3项素质测试,成绩如下(单位:分)测试项目创新能力综合知识语言表达测试成绩708090若创新能力、综合知识和语言表达的成绩按5:3:2计算,则该应聘者的素质测试平均成绩是77分.【解答】解:根据题意,该应聘者的素质测试平均成绩是:70×510+80×310+90×210=77(分).故答案为:77.13.(3分)实数a,b在数轴上对应点的位置如图所示,则下列式子正确的是①③.(填序号)①ab<0;②|a|<|b|;③﹣a>b;④a﹣b>0.【解答】解:由图可得:a<0<b,且|a|>|b|,∴ab<0,﹣a>b,a﹣b<0,∴正确的有:①③;故答案为:①③.14.(3分)A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B 地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE ﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是(4,160).【解答】解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(km/h),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到达A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).15.(3分)若顺次连接四边形ABCD四边中点所得的四边形是菱形,则原四边形的对角线AC、BD所满足的条件是AC=BD.【解答】解:∵E、F、H分别是边AD、AB、CD的中点,∴EF=12BD,EH=12AC,∵四边形EFGH是菱形,∴EF=EH,∵EF=12BD,EH=12AC,∴AC=BD,故答案为:AC=BD.三.解答题(共7小题)16.计算:(1)√12×(√75+3√13−√48);(2)(√2−1)2+√3×(√3−√6)+√8.【解答】解:(1)√12×(√75+3√13−√48=2√3×(5√3+√3−4√3)=12;(2)(√2−1)2+√3×(√3−√6)+√8=2﹣2√2+1+3﹣3√2+2√2=6﹣3√2.17.某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班、(2)班进行了检测,如图表示从两班各随机抽取的10名学生的得分情况.(1)利用图中提供的信息,补全下表:班级平均数/分中位数/分众数/分初三(1)班242424初三(2)班242421(2)若把24分以上(含24分)记为“优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;(3)观察如图的数据分布情况,请通过计算说明哪个班的学生纠错的得分更稳定.【解答】解:(1)初三(1)班平均分:110(21×3+24×4+27×3)=24(分);有4名学生24分,最多,故众数为24分;把初三(2)班的成绩从小到大排列,则处于中间位置的数为24和24,故中位数为24分, 填表如下:班级 平均数/分中位数/分众数/分 初三(1)班 24 24 24 初三(2)班 242421故答案为:24,24,24;(2)初三(1)班优秀学生所占的百分比是:4+310×100%=70%,初三(1)班优秀学生约是70%×40=28人; 初三(2)班优秀学生所占的百分比是:610×100%=60%,初三(2)班优秀学生约是60%×40=24人.(3)S 12=110[(21﹣24)2×3+(24﹣24)2×4+(27﹣24)2×3] =110×(27+27) =5.4;S 22=110[(21﹣24)2×3+(24﹣24)2×2+(27﹣24)2×2+(30﹣24)2×2+(15﹣24)2]=110×198 =19.8; ∵S 12<S 22,∴初三(1)班的学生纠错的得分更稳定. 18.如图,四边形ABCD 是矩形.(1)尺规作图:在图中,求作AB 的中点E (保留作图痕迹,不写作法);(2)在(1)的条件下,连接CE ,DE ,若AB =2,AD =√3,求证:CE 平分∠BED .【解答】解:(1)如图所示,点E即为所求.(2)∵E是AB的中点,∴AE=12AB=1,∵四边形ABCD是矩形,∴∠A=90°,AB=CD=2,∴DE=√AD2+AE2=2,∴DE=DC,∴∠DEC=∠DCE,∵AB∥CD,∴∠CEB=∠DCE,∴∠CEB=∠DEC,∴CE平分∠BED.19.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟10米,乙在A地时距地面的高度b为30米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?【解答】解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y={15x(0≤x <2)30x−30(2≤x≤11);(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y =10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.20.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D 与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD =x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.【解答】(1)证明:如图1中,∵∠EDE ′=∠C =90°,∴∠ADP +∠CDE =90°,∠CDE +∠DEC =90°, ∴∠ADP =∠DEC .(2)解:如图1中,当C ′E ′与AB 相交于Q 时,即65<x ≤127时,过P 作MN ∥DC ′,设∠B =α∴MN ⊥AC ,四边形DC ′MN 是矩形, ∴PM =PQ •cos α=45y ,PN =43×12(3﹣x ), ∴23(3﹣x )+45y =x ,∴y =2512x −52,当DC ′交AB 于Q 时,即127<x <3时,如图2中,作PM ⊥AC 于M ,PN ⊥DQ 于N ,则四边形PMDN 是矩形,∴PN =DM ,∵DM =12(3﹣x ),PN =PQ •sin α=35y , ∴12(3﹣x )=35y ,∴y =−56x +52. 综上所述,y ={−56x +52(127<x <3)2512x −52(65<x ≤127)21.如图,已知四边形ABCD 是正方形,点E 、F 分别在AD 、DC 上,BE 与AF 相交于点G ,且BE =AF .(1)求证:△ABE ≌△DAF ; (2)求证:BE ⊥AF ;(3)如果正方形ABCD 的边长为5,AE =2,点H 为BF 的中点,连接GH .求GH 的长.【解答】解:(1)证明:∵四边形ABCD 为正方形, ∴∠BAE =∠D =90°,AB =AD , 在Rt △ABE 和Rt △DAF 中, {BE =AFAB =AD, ∴Rt △ABE ≌Rt △DAF (HL ); (2)证明:∵Rt △ABE ≌Rt △DAF ,∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∴BE⊥AF;(3)∵BE⊥AF,∵点H为BF的中点,∴GH=12BF,∵在Rt△BCF中,BC=5,CF=CD﹣DF=5﹣2=3,根据勾股定理,得∴BF=√BC2+CF2=√34,∴GH=√34 2.22.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B 的另一条直线交x轴正半轴于点C,且OC=3.(1)求直线BC的解析式;(2)如图1,若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G 的坐标.【解答】解:(1)∵直线y=2x+4与x轴交于点A,与y轴交于点B,∴A(﹣2,0),B(0,4),∴OA=2,OB=4,∵OC =3,则C (3,0),设直线BC 的解析式为y =kx +b ,则有{3k +b =0b =4,解得{k =−43b =4,∴直线BC 的解析式为y =−43x +4;(2)设M (m ,−43m +4), ∵S △AMB =S △AOB , ∴S △ABC ﹣S △AMC =S △AOB , ∴12×5×4−12×5×(−43m +4)=12×2×4, ∴m =65, ∴M (65,125);(3)∵F A =FB ,A (﹣2,0),B (0,4), ∴F (﹣1,2),设G (0,n ),①当n >2时,如图1,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .∵四边形FGQP 是正方形,∴∠MGF +∠NGQ =90°,∠NGQ +∠NQG =90°, ∴∠MGF =∠NQG ,∵∠FMG =∠GNQ =90°,GF =GQ , ∴△FMG ≌△GNQ (AAS ), ∴MG =NQ =1,FM =GN =n ﹣2, ∴Q (n ﹣2,n ﹣1),第 21 页 共 21 页∵点Q 在直线y =−43x +4上,∴n ﹣1=−43(n ﹣2)+4,∴n =237,∴G (0,237);②当n <2时,如图2﹣2中,同法可得Q (2﹣n ,n +1),∵点Q 在直线y =−43x +4上,∴n +1=−43(2﹣n )+4,∴n =﹣1,∴G (0,﹣1).综上所述,满足条件的点G 坐标为(0,237)或(0,﹣1).。

2020-2021学年八年级下期中考试数学试题及答案

2020-2021学年八年级下期中考试数学试题及答案

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分20分,每小题2分)1.在线段、角、等腰三角形、平行四边形、矩形、菱形这几个图形中是中心对称图形的个数是( )A .2个B .3个C .4个D .5个【解答】解:由题可得,中心对称图形的有:线段、平行四边形、矩形、菱形共4个. 故选:C .2.如果分式x 2−4x+2的值为零,那么x 的值为( ) A .2B .﹣2C .0D .±2 【解答】解:∵分式x 2−4x+2的值为零,∴{x 2−4=0x +2≠0, 解得,x =2,故选:A .3.将分式x 2y x−y 中的x ,y 的值同时扩大为原来的3倍,则分式的值( )A .扩大6倍B .扩大9倍C .不变D .扩大3倍 【解答】解:∵把分式x 2y x−y 中的x 与y 同时扩大为原来的3倍, ∴原式变为:27x 2y 3x−3y =9x 2y x−y=9×x 2y x−y , ∴这个分式的值扩大9倍.故选:B .4.如果反比例函数y =a−2x (a 是常数)的图象在第二、四象限,那么a 的取值范围是( ) A .a >2 B .a <2C .a >0D .a <0 【解答】解:∵反比例函数y =a−2x 的图象分布在第二、四象限,∴a ﹣2<0,解得a <2,故选:B .5.已知∠AOB =30°,点P 在∠AOB 内部,点P 1与点P 关于OA 对称,点P 2与点P 关于OB 对称,则△P 1OP 2是( )A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形【解答】解:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴故△P1OP2是等边三角形.故选:C.6.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个【解答】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的一个内角,所以③错误;如果x2>0,那么x≠0,所以④错误.故选:A.7.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=kx(k>0,x>0)的图象经过AC的中点D,则k的值为()A .4B .5C .6D .8【解答】解:作CE ⊥x 轴于E ,∵AC ∥x 轴,OA =2,OB =1,∴OA =CE =2,∵∠ABO +∠CBE =90°=∠OAB +∠ABO ,∴∠OAB =∠CBE ,∵∠AOB =∠BEC ,∴△AOB ∽△BEC ,∴BE OA =CE OB ,即BE 2=21, ∴BE =4,∴OE =5,∵点D 是AB 的中点,∴D (52,2). ∵反比例函数y =k x(k >0,x >0)的图象经过点D ,∴k =52×2=5. 故选:B .8.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,连接BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A.45°B.60°C.70°D.90°【解答】解:∵将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,∴∠BAB′=∠CAC′=120°,AB=AB′,∴∠AB′B=12(180°﹣120°)=30°,∵AC′∥BB′,∴∠C′AB′=∠AB′B=30°,∴∠CAB′=∠CAC′﹣∠C′AB′=120°﹣30°=90°.故选:D.9.如图,四边形ABCD是平行四边形,顶点A、B的坐标分别是A(1,0),B(0,﹣2),顶点C、D在双曲线y=kx(k≠0)上,边AD与y轴相交于点E,S四边形BEDC=5S△ABE=10,则k的值是()A.﹣16B.﹣9C.﹣8D.﹣12【解答】解:如图,过C、D两点作x轴的垂线,垂足为F、G,DG交BC于M点,过C点作CH⊥DG,垂足为H,∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵BO∥DG,∴∠OBC=∠GDE,∴∠HDC=∠ABO,在△CDH和△ABO中,{∠ABO =∠HDC ∠AOB =∠CDH AB =CD,∴△CDH ≌△ABO (AAS ),∴CH =AO =1,DH =OB =2,设C (m ﹣1,n ),D (m ,n +2),则(m ﹣1)n =m (n +2)=k ,解得n =﹣2m ,则D 的坐标是(m ,﹣2m +2),设直线AD 解析式为y =ax +b ,将A 、D 两点坐标代入得{a +b =0ma +b =−2m +2, 由①得:a =﹣b ,代入②得:﹣mb +b =﹣2m +2,即﹣b (m +1)=﹣2(m +1),解得b =2,则{a =−2b =2, ∴y =﹣2x +2,∴E (0,2),BE =4,∴S △ABE =12×BE ×AO =2, ∵S 四边形BCDE =5S △ABE =5×12×4×1=10,∵S 四边形BCDE =S △ABE +S 四边形BEDM =10,即2+4×m =10,解得:m =2,∴n =2m =4,∴|k |=(m +1)n =12.∵双曲线图形在第二象限,∴k =﹣12故选:D .10.如图,以Rt△ABC的两条直角边向内分别作两个等边三角形△ABD与△ACE,连结DE,若∠AED=45°,则下列叙述正确的是()A.DE=12AE B.DE=√22AE C.DE=12AB D.DE=√22AB【解答】解:设BD与AE交于F点,∵∠BAC=90°,△ABD和△AEC是等边三角形,∴∠BAD+∠CAE=120°,∴∠DAE=∠BAD+∠CAE﹣∠BAC=120°﹣90°=30°,∴AF为∠BAD的平分线,∴AF⊥BD,且F为BD的中点,∵∠AED=45°,∴∠FDE=90°﹣∠FED=90°﹣45°=45°,∴△FED是等腰直角三角形,∴FD =FE ,设FD =x ,在Rt △FED 中,DE =√FD 2+FE 2=√x 2+x 2=√2x ,在Rt △AFD 中,∠F AD =30°,∴AB =AD =2FD =2x ,∴AF =√AD 2−FD 2=√4x 2−x 2=√3x ,∴AE =AF +FE =(√3+1)x ,∴DE =√2√3+1=√6−√22AE ,故选:D .二.填空题(共8小题,满分16分,每小题2分)11.若分式2x−3x+2无意义,则x 的值为 ﹣2 .【解答】解:由分式2x−3x+2无意义,得x +2=0.解得x =﹣2,故答案是:﹣2. 12.若关于x 的分式方程m(x+1)−52x+1=m −3无解,则m = 6,10 . 【解答】解:∵关于x 的分式方程m(x+1)−52x+1=m −3无解, ∴x =−12, 原方程去分母得:m (x +1)﹣5=(2x +1)(m ﹣3)解得:x =26−m ,m =6时,方程无解.或26−m =−12是方程无解,此时m =10. 故答案为6,10.13.如图,在菱形ABCD 中,AB =18cm ,∠A =60°,点E 以2cm /s 的速度沿AB 边由A 向B 匀速运动,同时点F 以4cm /s 的速度沿CB 边由C 向B 运动,F 到达点B 时两点同时停止运动.设运动时间为t 秒,当△DEF 为等边三角形时,t 的值为 3s .【解答】解:连接BD .如图:∵四边形ABCD 是菱形,∠A =60°,∴AD =CD =BC =AB =18,△ADB ,△BDC 都是等边三角形,∴AD =BD ,∠ADB =∠DBF =60°,∵△DEF 是等边三角形,∴∠EDF =60°,∴∠ADB =∠EDF ,∴∠ADE =∠BDF ,在△ADE 和△BDF 中,{∠A =∠DBF =60°AD =BD ∠ADE =∠BDF,∴△ADE ≌△BDF (ASA ),∴AE =BF ,∴2t =18﹣4t ,∴t =3,故答案为:3s .14.如图,一次函数y =ax +b 的图象交x 轴于点B ,交y 轴于点A ,交反比例函数y =k x 的图象于点C ,若AB =BC ,且△OBC 的面积为2,则k 的值为 8 .【解答】解:作CD ⊥y 轴于D ,则OB ∥CD ,∴OA OD =AB BC ,∵AB =BC ,∴OA =OD ,∴S △OCD =S △AOC∵AB =BC ,∴S △AOB =S △OBC =2,∴S △AOC =S △AOB +S △OBC =4,∴S △OCD =4,∵反比例函数y =k x的图象经过点C ,∴S △OCD =12|k |=4,∵在第一象限,∴k =8.故答案为8.15.如图,在矩形ABCD 中,AB =6,AD =8,以A 为圆心,任意长为半径画弧交AB ,AC于M ,N ,再分别以M ,N 为圆心,大于12MN 为半径画弧,两弧交于点G ,连接AG ,交边BC 于E ,则△AEC 的面积为 15 .【解答】解:作EF ⊥AC 于F ,如图:由题意得:AE 平分∠BAC ,∵四边形ABCD 是矩形,∴∠B =90°,BC =AD =8,∴AC =2+BC 2=√62+82=10,EB ⊥AB ,∵AE 平分∠BAC ,∴EF =EB ,在Rt △AEF 和Rt △AEB 中,{AE =AE EF =EB, ∴Rt △AEF ≌Rt △AEB (HL ),∴AF =AB =6,∴CF =AC ﹣AF =4,设EF =EB =x ,则CE =8﹣x ,在Rt △CEF 中,由勾股定理得:x 2+42=(8﹣x )2, 解得:x =3,∴EF =3,∴△AEC 的面积=12AC ×EF =12×10×3=15; 故答案为:15.16.如图,点A、B在反比例函数y=12x的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是9.【解答】解:∵点A、B在反比例函数y=12x的图象上,A、B的纵坐标分别是3和6,∴A(4,3),B(2,6),作AD⊥y轴于D,BE⊥y轴于E,∴S△AOD=S△BOE=12×12=6,∵S△OAB=S△AOD+S梯形ABED﹣S△BOE=S梯形ABED,∴S△AOB=12(4+2)×(6﹣3)=9,故答案为9.17.如图,在菱形ABCD中,∠B=50°,点E在CD上,若AE=AC,则∠BAE=115°.【解答】解:∵四边形ABCD 是菱形, ∴CA 平分∠BCD ,AB ∥CD ,∴∠BAE +∠AEC =180°,∠B +∠BCD =180°, ∴∠BCD =180°﹣∠B =180°﹣50°=130°, ∴∠ACE =12∠BCD =65°, ∵AE =AC ,∴∠AEC =∠ACE =65°, ∴∠BAE =180°﹣∠AEC =115°; 故答案为:115.18.如图,矩形ABCD 的两个顶点A 、B 分别落在x 、y 轴上,顶点C 、D 位于第一象限,且OA =3,OB =2,对角线AC 、BD 交于点G ,若曲线y =kx (x >0)经过点C 、G ,则k =72.【解答】解:如图,分别过C 、G 两点作x 轴的垂线,交x 轴于点E 、F , ∴CE ∥GF , 设C (m .n ),∵四边形ABCD 是矩形, ∴AG =CG ,∴GF =12CE ,EF =12(3﹣m ), ∴OF =12(3﹣m )+m =32+12m , ∴G (3+m 2,12n ),∵曲线y =kx (x >0)经过点C 、G , ∴mn =3+m 2×12n ,解得m =1, 作CH ⊥y 轴于H , ∴CH =1, ∵∠ABC =90°, ∴∠CBH +∠ABO =90°, ∵∠OAB +∠ABO =90°, ∴∠OAB =∠CBH , ∵∠AOB =∠BHC =90°, ∴△AOB ∽△BHC , ∴BH OA=CH OB,即BH 3=12,∴BH =32, ∴OH =32+2=72, ∴C (1,72),∴k =1×72=72; 故答案为72.三.解答题(共10小题,满分64分)19.(8分)阅读下面的材料,并解答后面的问题 材料:将分式3x 2+4x−1x+1拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x +1,可设3x 2+4x ﹣1=(x +1)(3x +a )+b . 因为(x +1)(3x +a )+b =3x 2+ax +3x +a +b =3x 2+(a +3)x +a +b , 所以3x 2+4x ﹣1=3x 2+(a +3)x +a +b . 所以{a +3=4a +b =−1,解之,得{a =1b =−2.所以3x 2+4x−1x+1=(x+1)(3x+1)−2x+1=(x+1)(3x+1)x+1−2x+1=3x +1−2x+1这样,分式就被拆分成了一个整式3x +1与一个分式2x+1的差的形式.问题:(1)请将分式2x 2+3x+6x−1拆分成一个整式与一个分式(分子为整数)的和(差)的形式; (2)请将分式5x 4+9x 2−3x +2拆分成一个整式与一个分式(分子为整数)的和(差)的形式.【解答】解:(1)由分母为x ﹣1,可设2x 2+3x +6=(x ﹣1)(2x +a )+b . 因为(x ﹣1)(2x +a )+b =2x 2+ax ﹣2x ﹣a +b =2x 2+(a ﹣2)x ﹣a +b , 所以2x 2+3x +6=2x 2+(a ﹣2)x ﹣a +b . 所以{a −2=3−a +b =6,解得{a =5b =11.所以分式2x 2+3x+6x−1=(x−1)(2x+5)+11x−1=2x +5+11x−1.(2)由分母为x 2+2,可设5x 4+9x 2﹣3=(x 2+2)(5x 2+a )+b . 因为(x 2+2)(5x 2+a )+b =5x 4+ax 2+10x 2+2a +b =5x 4+(a +10)x 2+2a +b ,所以5x 4+9x 2﹣3=5x 4+(a +10)x 2+2a +b . 所以{a +10=92a +b =−3,解得{a =−1b =−1.所以5x 4+9x 2−3x 2+2=(x 2+2)(5x 2−1)−1x 2+2=5x 2﹣1−1x 2+2.20.(4分)解方程:4x 2−1+x+21−x=−1.【解答】解:两边都乘以(x +1)(x ﹣1),得:4﹣(x +2)(x +1)=﹣(x +1)(x ﹣1), 解得:x =13,检验:当x =13时,(x +1)(x ﹣1)≠0, 所以原分式方程的解为x =13. 21.(5分)计算:2x+2+2x−2−x 2+4x 2−4.【解答】解:原式=2(x−2)(x+2)(x−2)+2(x+2)(x−2)(x+2)−x 2+4(x+2)(x−2),=2x−4+2x+4−x 2−4(x+2)(x−2),=4x−4−x 2(x+2)(x−2), =−(x−2)2(x−2)(x+2),=−x−2x+2.22.(6分)先化简,再求值:(x 2+4x +4)÷x 2−4x 2−2x −x−x 2x−1,然后在0,1,2,3中选一个你认为合适的x 值,代入求值.【解答】解:原式=(x+2)2x ÷(x+2)(x−2)x(x−2)−x(1−x)x−1=2x +2不能代入0,1,2 所以只能代入3得:8. 23.(5分)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?【解答】解:设2002年地铁每小时客运量x 万人,则2017年地铁每小时客运量4x 万人, 由题意得240x−30=2404x,解得x =6,经检验x =6是分式方程的解,答:2017年每小时客运量24万人.24.(6分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3).(1)画出△ABC关于点O的中心对称图形△A1B1C1.(2)①画出△ABC绕原点O逆时针旋转90°的△A2B2C2;②直接写出点B2的坐标为(﹣3,3).【解答】解:(1)如图,△A1B1C1为所作;(2)①画如图,△A2B2C2为所作;②点B2的坐标为(﹣3,3).故答案为(﹣3,3).25.(5分)如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)AB=6,AC=4,求四边形AEDF的周长;(2)EF与AD有怎样的位置关系?证明你的结论.【解答】解:(1)∵AD是高,∴∠ACB=∠ADC=90°,在Rt△ADB中,E是AB的中点,∴DE=12AB=3,AE=12AB=3,同理可得,AF=DF=12AC=2,∴四边形AEDF的周长=3+3+2+2=10;(2)EF垂直平分AD,理由如下:∵EA=ED,F A=FD,∴EF是AD的垂直平分线.26.(7分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∵BE=CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)解:∵四边形ABCD是菱形,AD=10,∴AD=AB=BC=10,∵EC=4,∴BE=10﹣4=6,在Rt△ABE中,AE=2−BE2=√102−62=8,在Rt△AEC中,AC=√AE2+EC2=√82+42=4√5,∵四边形ABCD是菱形,∴OA=OC,∴OE=12AC=2√5.27.(9分)已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=1 2.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO=OBOA=12,∴OA=8,∴A (﹣8,0).(2)∵EC ⊥AB ,∴∠ACD =∠AOB =∠DOE =90°,∴∠OAB +∠ADC =90°,∠DEO +∠ODE =90°, ∵∠ADC =∠ODE , ∴∠OAB =∠DEO , ∴△AOB ∽△EOD , ∴OA OE=OB OD,∴OE :OD =OA :OB =2,设OD =m ,则OE =2m , ∵12•m •2m =16,∴m =4或﹣4(舍弃), ∴D (﹣4,0),E (0,﹣8), ∴直线DE 的解析式为y =﹣2x ﹣8, ∵A (﹣8,0),B (0,4), ∴直线AB 的解析式为y =12x +4,由{y =−2x −8y =12x +4,解得{x =−245y =85, ∴C (−245,85),∵若反比例函数y =kx的图象经过点C , ∴k =−19225.(3)如图1中,当四边形MNPQ 是矩形时,∵OD =OB =4, ∴∠OBD =∠ODB =45°, ∴∠PNB =∠ONM =45°, ∴OM =DM =ON =2, ∴BN =2,PB =PN =√2, ∴P (﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P(0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);28.(9分)定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=√13;②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是(5,3),(3,5);(整点指横坐标、纵坐标都为整数的点)(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是√15+√3,√39+√3,2√15.【解答】解:(1)①∵∠ABC=90°,∴BD=AC=2+BC2=√4+9=√13,故答案为√13,②∵A(0,3),B(5,0),∴AB=√52+32=√34,设点P(m,n),O(0,0),∴OP=√m2+n2=√34,∵m,n都为整数,∴点P(3,5)或(5,3);故答案为P(3,5)或(5,3);(2)∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴∠EBF+∠EBC=90°,∵BE⊥CF,∴∠EBC+∠BCF=90°,∴∠EBF=∠BCF,∴△ABE≌△BCF,∴BE=CF,∴四边形BCEF是准矩形;(3)√15+√3,√39+√3,2√15∵∠ABC=90°,∠BAC=60°,AB=2,∴BC=2√3,AC=4,准矩形ABCD中,BD=AC=4,①当AC=AD时,如图1,作DE⊥AB,∴AE=BE=12AB=1,∴DE=√AD2−AE2=√16−1=√15,∴S准矩形ABCD=S△ADE+S梯形BCDE=12DE×AE+12(BC+DE)×BE=12×√15+12(2√3+√15)×1=√15+√3;②当AC=CD时,如图2,作DF⊥BC,∴BD=CD,∴BF=CF=12BC=√3,∴DF=√CD2−CF2=√16−3=√13,∴S准矩形ABCD=S△DCF+S梯形ABFD=12FC×DF+12(AB+DF)×BF=12×√3×√13+12(2+√13)×√3=√39+√3;③当AD=CD,如图3,连接AC中点和D并延长交BC于M,连接AM,连接BG,过B作BH⊥DG,在Rt△ABC中,AC=2AB=4,∴BD=AC=4,∴AG=12AC=2,∵AB=2,∴AB=AG,∵∠BAC=60°,∴∠ABG=60°,∴∠CBG=30°在Rt△BHG中,BG=2,∠BGH=30°,∴BH=1,在Rt△BHM中,BH=1,∠CBH=30°,∴BM=2√33,HM=√33,∴CM=4√3 3,在Rt△DHB中,BH=1,BD=4,∴DH=√15,∴DM=DH﹣MH=√15−√3 3,∴S准矩形ABCD=S△ABM+S四边形AMCD,=12BM×AB+12AC×DM=12×2√33×2+12×4×(√15−√33)=2√15;故答案为√15+√3,√39+√3,2√15.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下数学期中考试卷
时间:120分钟 满分:150分
学校: 班级: 姓名: 得分:______ 一、选择题(每小题4分,共40分,将正确答案写在下面答案框中)
1.下列各式:





中,分式有 个.
A .2
B .3
C .4
D . 5
2. 某种感冒病毒的直径是0.00000012米,用科学记数法表示为 米. A .71.210-⨯ B.71012.0-⨯ C.6102.1-⨯ D.61012.0-⨯
3. x=2是方程mx+5=0的解,则函数2-=mx y 的图象不经过 A.第一象限 B.第二象限 C.第三象限 D.第四象限
4. 点P (5,4-)关于x 轴对称点是
A .(5,4) B.(5,4- C.(4,5-)D.(5-,4-) 5. 已知2
111=-b a ,则b a ab -的值是
A .21
B.21-
C.2
D.2-
6.若点P(3,-1m )在第二象限,则m 的取值范围是 A. m <1 B. m <0 C. m >0 D. m >1
7.若点(x 1,y 1)、(x 2,y 2)和(x 3,y 3)分别在反比例函数2y x
=- 的图象上,,
则下列判断中正确的是
A 、123y y y <<
B 、312y y y <<
C 、231y y y <<
D 、321y y y <<
8.在同一坐标系中,函数x
k
y =
和3+=kx y )0(≠k 的图像大致是
9.如图,在□ABCD 中,AD=5,AB=3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC
的长度分别为 A .2和3 B .3和2 C .4和1 D .1和4 10.百米赛跑中,队员所用的时间y 秒与其速度x 米/秒之间的函数图像应为
A B C D
二、填空题:(每小题4分,共24分)
11. 当x=__________时,分式2
42
x x --的值为零
12.函数121
x y x +=-中,自变量x 的取值范围是
13.若分式方程2
12
-=--x x m x 有增根,则m =
14.如图,将平行四边形的ABCD 的一边BC 延长至点E ,若∠A=110°,则∠DCE= 。

第14题图 第15题图 第16题图 15.如图,A 、B 两点在双曲线y= 6
x
(x>0)的图象上,分别经过A 、B 两点向轴作垂
线段,已知S 阴影=1,则S 1+S 2=
题 号 1 2 3 4 5 6 7 8 9 10 答 案
x y o
x
y o x
y o
o x
y
A
D
3
210x x x <<<
16.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图方式放置,点A 1、A 2、A 3…和点C 1、C 2、C 3…分别在直线()0>+=k b kx y 和x 轴上。

已知点B 1(1,1)、B 2(3,2),请写出点B 3的是 ,……,点B n 的坐标是 。

三、解答题:(共86分) 17、(10分)
(1)计算:02)14.3()2
1(9-+--π (2)2
2()a b a b b a a ab ⋅--
18、(10分)解分式方程:
(1)2133
3x x x
-+=-- (2)2
1
12
4
x x x -
=--
19、(10分)先化简,再求值:212141
(1).()11443
x x x x x ---÷=+-++其中
20.(10分)已知:如图,ABCD 的周长是,由钝角顶
点D 向AB ,BC 引两条高DE.DF,且DE=8cm ,DF=10cm ,求这个平行四边形的面积。

21.(12分)小聪和小明沿同一条路同时从学校出发到某超市购物,学校与超市的路程是4千米。

小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达超市.图中折线O-A-B-C 和线段OD 分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:
(1)小聪在超市购物的时间为 分钟,小聪返回学校的速度为 千米/分钟;(4分)
(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;(4分)
(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?(4分)
22. (本题10分)列分式方程解应用题
2013年4月20日,四川雅安发生了7.0级地震。

在抗震救灾活动中,重庆某厂接到一份订单要求生产7200顶帐篷支援四川灾区,后来由于情况紧急,接收到上级指示,要求生产总量比原计划增加20%,且必须提前5天完成生产任务,该厂迅速加派人员组织生产,实际每天生产的顶数是原计划每天生产的顶数的2倍,请问该厂实际每天生产多少顶帐篷?
23、(12分) 如图7,一次函数b kx y +=的图像与反比例函数x
m y =的图像相
交于A (2,3-)、B (n ,2)两点。

(1)求反比例函数和一次函数的解析式; (2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;
(3)根据图像直接写出使一次函数的值大于反比例函数的值的x 的取值范围
24、(12分)已知,在直角坐标系中,平行四边形OABC 的顶点A,C 坐标分别为A(2,0),C(-1,2),反比例函数x
m y =的图象经过点B (m ≠0)
(1)求出反比例函数的解析式 (2)将
OABC 沿着x 轴翻折,点C 落在点D 处,做出点
D 并判断点D 是否在反比例函数x
m y =的图象上
(3)在x 轴是否存在一点P 使△OCP 为等腰三角形,若存在,写出点P 的坐标;若不存在,请说明理由。

相关文档
最新文档