2016年天津市五区县中考数学一模试卷 (1)
2016届天津东丽区中考一模数学试卷(带解析)

绝密★启用前2016届天津东丽区中考一模数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:135分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、已知抛物线y=2x 2﹣8x+6与x 轴相交于点A 、B (点A 在点B 的左边),与y 轴交于点C ,BC 的中点为M ,点B 关于y 轴的对称点为N ,则MN 的长度等于( )A .B .C .D .6【答案】A . 【解析】试题分析:求出A ,B .C 的坐标,根据中点公式求出点M 坐标,根据对称求出点N 坐标,运用两点距离公式即可求解.y=2x 2﹣8x+6,当x=0时,y=6,∴点C (0,6),当y=0时,2x 2﹣8x+6=0,解得:x=1或x=3,∴点A (1,0),点B (3,0),可求BC 的中点为M (,3),点B 关于y 轴的对称点为N (﹣3,0),MN=.故选A .【考点】抛物线与x 轴的交点.试卷第2页,共17页2、如图,四边形ABDC 中,△EDC 是由△ABC 绕顶点C 旋转40°所得,顶点A 恰好转到AB 上一点E 的位置,则∠1+∠2=( )A .90°B .100°C .110°D .120°【答案】C . 【解析】试题分析:由旋转的性质可知AC=EC ,BC=DC ,∠BCD=∠ACE=40°,在△BCD 中,由内角和定理求∠1,根据外角定理可求∴∠2=∠ACE=40°,∴∠1+∠2=70°+40°=110°,故选C .【考点】旋转的性质. 3、已知圆的半径是2,则该圆的内接正六边形的面积是( ) A .3B .9C .18D .36【答案】C . 【解析】试题分析:连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是2,高为3,因而等边三角形的面积是3,∴正六边形的面积=18,故选C .【考点】正多边形和圆.4、在反比例函数y=的每一条曲线上,y 都随着x 的增大而减小,则k 的值可以是( ) A .﹣1B .1C .2D .3【答案】A . 【解析】试题分析:利用反比例函数的增减性,y 随x 的增大而减小,则求解不等式1﹣k >0.解得k<1.故选A.【考点】反比例函数的性质.5、方程的解是()A.x="3"B.x=﹣2C.x="2"D.x=5【答案】C.【解析】试题分析:方程两边都乘以3(5﹣x),得3x=2(5﹣x).解得x=2.检验:x=2时,3(5﹣x)≠0,∴x=2时原分式方程的解,故选:C.【考点】解分式方程.6、在平面直角坐标系xOy中,A点坐标为(3,4),将OA绕原点O顺时针旋转180°得到OA′,则点A′的坐标是()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣4,﹣3)D.(﹣3,4)【答案】B.【解析】试题分析:将OA绕原点O顺时针旋转180°,实际上是求点A关于原点的对称点的坐标.根据题意得,点A关于原点的对称点是点A′,∵A点坐标为(3,4),∴点A′的坐标(﹣3,﹣4).故选B.【考点】坐标与图形变化-旋转.7、实数在哪两个整数之间()A.1与2B.2与3C.3与4D.4与5【答案】D.【解析】试题分析:先求出的范围,即可得出选项.4<<5,即在4与5之间,故选D.【考点】估算无理数的大小.试卷第4页,共17页8、如图所示的立体图形的主视图是( )A .B .C .D .【答案】B . 【解析】试题分析:分别找出此几何体从正面看所得到的视图.此立体图形从正面看所得到的图形为矩形,里面有一条竖线,故选:B . 【考点】简单几何体的三视图.9、截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为( ) A .14×104B .1.4×105C .1.4×106D .14×106【答案】B . 【解析】试题分析:将140000用科学记数法表示即可.140000=1.4×105,故选B . 【考点】科学记数法—表示较大的数. 10、sin30°的值等于( ) A .1B .C .D .【答案】D . 【解析】试题分析:根据特殊角的三角函数值来解本题.sin30°=.故选D .【考点】特殊角的三角函数值.11、在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A.B.C.D.【答案】A.【解析】试题分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【考点】轴对称图形.12、计算(﹣2)+(﹣4)的结果等于()A.﹣2B.6C.﹣6D.8【答案】C.【解析】试题分析:原式利用同号两数相加的法则计算即可得到结果.原式=﹣(2+4)=﹣6,故选C.【考点】有理数的加法.试卷第6页,共17页第II 卷(非选择题)二、填空题(题型注释)13、如图,在△ABC 中,AB=AC ,D 、E 是△ABC 内的两点,AE 平分∠BAC ,∠D=∠DBC=60°,若BD=5cm ,DE=3cm ,则BC 的长是 cm .【答案】8. 【解析】试题分析:作出辅助线后根据等边三角形的判定得出△BDM 为等边三角形,△EFD 为等边三角形,从而得出BN 的长,进而求出答案.试题解析:延长DE 交BC 于M ,延长AE 交BC 于N ,作EF ∥BC 于F ,∵AB=AC ,AE 平分∠BAC ,∴AN ⊥BC ,BN=CN ,∵∠DBC=∠D=60°,∴△BDM 为等边三角形,∴△EFD 为等边三角形,∵BD=5,DE=3,∴EM=2,∵△BDM 为等边三角形,∴∠DMB=60°,∵AN ⊥BC ,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm ),故答案为8.【考点】等边三角形的判定与性质;等腰三角形的性质.14、如图,在△ABC 中,DE ∥BC ,AD=6,DB=3,AE=4,则AC 的长为 .【答案】6.试题分析:∵DE∥BC,∴,∴,∴AC=6,故答案为:6.【考点】平行线分线段成比例.15、一个不透明的盒子中装有7个大小相同的乒乓球,其中5个是黄球,2个是白球,从该盒子中任意摸出一个球,摸到黄球的概率是.【答案】.【解析】试题分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.∵盒子中装有7个大小相同的乒乓球,其中5个是黄球,2个是白球,∴该盒子中任意摸出一个球,摸到黄球的概率是;故答案为:.【考点】概率公式.16、若一次函数y=﹣x+b﹣的图象不过第三象限,则b的取值范围是.【答案】b≤.【解析】试题分析:∵一次函数y=﹣x+b﹣的图象不过第三象限,∴b﹣≤0,解得b≤.故答案为:b≤.【考点】一次函数的性质.17、计算3x2•x3的结果等于.【答案】3x5试卷第8页,共17页【解析】试题分析:根据单项式乘单项式,系数乘系数,同底数的幂相乘,可得答案. 3x 2•x 3=3x 2+3=3x 5,故答案为:35. 【考点】单项式乘单项式.三、解答题(题型注释)18、在平面直角坐标系xOy 中,二次函数y=mx 2﹣(m+n )x+n (m <0)的图象与y 轴正半轴交于A 点.(1)求证:该二次函数的图象与x 轴必有两个交点;(2)设该二次函数的图象与x 轴的两个交点中右侧的交点为点B ,若∠ABO=45°,将直线AB 向下平移2个单位得到直线l ,求直线l 的解析式;(3)在(2)的条件下,设M (p ,q )为二次函数图象上的一个动点,当﹣3<p <0时,点M 关于x 轴的对称点都在直线l 的下方,求m 的取值范围.【答案】(1)该二次函数的图象与轴必有两个交点;(2)y=﹣x ﹣1;(3)m 的取值范围为:﹣<m <0.【解析】试题分析:(1)直接利用根的判别式,结合完全平方公式求出△的符号进而得出答案; (2)首先求出B ,A 点坐标,进而求出直线AB 的解析式,再利用平移规律得出答案; (3)根据当﹣3<p <0时,点M 关于x 轴的对称点都在直线l 的下方,当p=0时,q=1;当p=﹣3时,q=12m+4;结合图象可知:﹣(12m+4)≤2,即可得出m 的取值范围. 试题解析:(1)令mx 2﹣(m+n )x+n=0,则△=(m+n )2﹣4mn=(m ﹣n )2, ∵二次函数图象与y 轴正半轴交于A 点,∴A (0,n ),且n >0, 又∵m <0,∴m ﹣n <0,∴△=(m ﹣n )2>0, ∴该二次函数的图象与轴必有两个交点;(2)令mx 2﹣(m+n )x+n=0,解得:x 1=1,x 2=,由(1)得<0,故B 的坐标为(1,0),又因为∠ABO=45°, 所以A (0,1),即n=1,则可求得直线AB 的解析式为:y=﹣x+1. 再向下平移2个单位可得到直线l :y=﹣x ﹣1;(3)由(2)得二次函数的解析式为:y=mx 2﹣(m+1)x+1. ∵M (p ,q )为二次函数图象上的一个动点, ∴q=mp 2﹣(m+1)p+1.∴点M 关于轴的对称点M′的坐标为(p ,﹣q ). ∴M′点在二次函数y=﹣m 2+(m+1)x ﹣1上.∵当﹣3<p <0时,点M 关于x 轴的对称点都在直线l 的下方, 当p=0时,q=1;当p=﹣3时,q=12m+4;结合图象可知:﹣(12m+4)<2,解得:m >﹣.∴m 的取值范围为:﹣<m <0.【考点】二次函数综合题.19、在△ABC 中,AB=AC=5,cos ∠ABC=,将△ABC 绕点C 顺时针旋转,得到△A 1B 1C . (1)如图①,当点B 1在线段BA 延长线上时.①求证:BB 1∥CA 1;②求△AB 1C 的面积;(2)如图②,点E 是BC 边的中点,点F 为线段AB 上的动点,在△ABC 绕点C 顺时试卷第10页,共17页针旋转过程中,点F 的对应点是F 1,求线段EF 1长度的最大值与最小值的差.【答案】(1)①见试题解析;②(3).【解析】试题分析:(1)①根据旋转的性质和平行线的性质证明;②过A 作AF ⊥BC 于F ,过C 作CE ⊥AB 于E ,根据三角函数和三角形的面积公式解答; (2)过C 作CF ⊥AB 于F ,以C 为圆心CF 为半径画圆交BC 于F 1,和以C 为圆心BC 为半径画圆交BC 的延长线于F 1,得出最大和最小值解答即可.试题解析:(1)①证明:∵AB=AC ,B 1C=BC ,∴∠AB 1C=∠B ,∠B=∠ACB , ∵∠AB 1C=∠ACB (旋转角相等),∴∠B 1CA 1=∠AB 1C ,∴BB 1∥CA 1; ②过A 作AF ⊥BC 于F ,过C 作CE ⊥AB 于E ,如图①:∵AB=AC ,AF ⊥BC ,∴BF=CF ,∵cos ∠ABC=,AB=5,∴BF=3,∴BC=6,∴B 1C=BC=6,∵CE ⊥AB ,∴BE=B 1E=×6=,∴BB 1=,CE=×6=,∴AB 1=-5=,∴△AB 1C 的面积为:;(2)如图2,过C 作CF ⊥AB 于F ,以C 为圆心CF 为半径画圆交BC 于F 1,EF 1有最小值,此时在Rt △BFC 中,CF=,∴CF 1=,∴EF 1的最小值为-3=;如图,以C 为圆心BC 为半径画圆交BC 的延长线于F 1,EF 1有最大值; 此时EF 1=EC+CF 1=3+6=9,∴线段EF 1的最大值与最小值的差为9-=.【考点】几何变换综合题.20、九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表: 已知该运动服的进价为每件60元,设售价为x 元.(1)请用含x 的式子表示:①销售该运动服每件的利润是______元;②月销量是______件;(直接写出结果)(2)设销售该运动服的月利润为y 元,那么售价为多少时,当月的利润最大,最大利润是多少?【答案】(1)W=﹣2x+400;(2)售价为130元时,当月的利润最大,最大利润是9800元. 【解析】试题分析:(1)根据利润=售价﹣进价求出利润,运用待定系数法求出月销量; (2)根据月利润=每件的利润×月销量列出函数关系式,根据二次函数的性质求出最大利润.试题解析:(1)①销售该运动服每件的利润是(x ﹣60)元; ②设月销量W 与x 的关系式为w=kx+b ,试卷第12页,共17页由题意得,,解得,,∴W=﹣2x+400;(2)由题意得,y=(x ﹣60)(﹣2x+400) =﹣2x 2+520x ﹣24000 =﹣2(x ﹣130)2+9800,∴售价为130元时,当月的利润最大,最大利润是9800元. 【考点】二次函数的应用.21、天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A 处测得天塔最高点C 的仰角为45°,再往天塔方向前进至点B 处测得最高点C 的仰角为54°,AB=112m ,根据这个兴趣小组测得的数据,计算天塔的高度CD (tan36°≈0.73,结果保留整数).【答案】天塔的高度CD 约为:415m . 【解析】试题分析:首先根据题意得:∠CAD=45°,∠CBD=54°,AB=112m ,在Rt △ACD 中,易求得BD=AD ﹣AB=CD ﹣112;在Rt △BCD 中,可得BD=CD•tan36°,即可得CD•tan36°=CD ﹣112,继而求得答案.试题解析:根据题意得:∠CAD=45°,∠CBD=54°,AB=112m , ∵在Rt △ACD 中,∠ACD=∠CAD=45°,∴AD=CD ,∵AD=AB+BD ,∴BD=AD ﹣AB=CD ﹣112(m ),∵在Rt △BCD 中,tan ∠BCD=,∠BCD=90°﹣∠CBD=36°,∴tan36°=,∴BD=CD•tan36°,∴CD•tan36°=CD ﹣112,∴CD=≈≈415(m ).答:天塔的高度CD 约为:415m .【考点】解直角三角形的应用-仰角俯角问题.22、某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),对调查结果进行统计后,绘制了如下不完整的两个统计图.根据以上统计图提供的信息,回答下列问题:(1)此次调查抽取的学生人数为a= 人,其中选择“绘画”的学生人数占抽样人数的百分比为b= 4 ;(2)补全条形统计图;(3)若该校有2000名学生,请估计全校选择“绘画”的学生大约有多少人?【答案】(1)100;40%;(2)见试题解析;(3)估计全校选择“绘画”的学生大约有800人. 【解析】试题分析:(1)用音乐的人数除以所占的百分比计算即可求出a ,再用绘画的人数除以总人数求出b ;(2)求出体育的人数,然后补全统计图即可; (3)用总人数乘以“绘画”所占的百分比计算即可得解.试题解析:(1)a=20÷20%=100人,b=×100%=40%;故答案为:100;40%;(2)体育的人数:100﹣20﹣40﹣10=30人, 补全统计图如图所示;(3)选择“绘画”的学生共有2000×40%=800(人). 答:估计全校选择“绘画”的学生大约有800人.试卷第14页,共17页【考点】条形统计图;用样本估计总体;扇形统计图.23、解不等式组并将解集在数轴上表示出来.【答案】x <2. 【解析】试题分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集. 试题解析:,解①得:x≥﹣3, 解②得:x <2.不等式组的解集是:﹣3≤x <2.【考点】解一元一次不等式组;在数轴上表示不等式的解集.24、如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABO 的三个顶点A 、B 、O 都在格点上.(1)画出△ABO 绕点O 逆时针旋转90°后得到的△A 1B 1O 三角形; (2)点B 的运动路径的长;(3)求△ABO 在上述旋转过程中所扫过的面积.【答案】(1)见试题解析;(2)2π;(3)4π+4. 【解析】试题分析:(1)根据网格结构找出点A 、B 绕点O 逆时针旋转90°后的对应点A 1、B 1的位置,然后顺次连接即可;(2)利用弧长公式列式计算即可得解;(3)观察图形,△ABO 旋转过程中所扫过的面积等于一个扇形的面积加上三角形的面积列式计算即可得解.【考点】作图-旋转变换;弧长的计算;扇形面积的计算. 25、已知△ABC 中,BC=5,以BC 为直径的⊙O 交AB 边于点D . (1)如图1,连接CD ,则∠BDC 的度数为;(2)如图2,若AC 与⊙O 相切,且AC=BC ,求BD 的长; (3)如图3,若∠A=45°,且AB=7,求BD 的长.【答案】(1)90°;(2)(3)BD 的长为3或4.试卷第16页,共17页【解析】试题分析:(1)如图1,只需依据直径所对的圆周角是直角就可解决问题;(2)如图2,连接CD ,根据条件可得△ACB 是等腰直角三角形,从而得到∠B=45°,再根据直径所对的圆周角是直角可得△BDC 是等腰直角三角形,然后运用勾股定理就可解决问题;(3)如图3,连接CD ,根据条件可得△ADC 是等腰直角三角形,从而得到DA=DC ,设BD=x ,然后在Rt △BDC 运用勾股定理就可解决问题. 试题解析:(1)如图1,∵BC 是⊙O 的直径,∴∠BDC=90° 故答案为90°;(2)连接CD ,如图2,∵AC 与⊙O 相切,BC 是⊙O 的直径,∴∠BDC=90°,∠ACB=90°.∵AC=BC , ∴∠A=∠B=45°,∴∠DCB=∠B=45°,∴DC=DB .∵BC=5,∴BD 2+DC 2=2BD 2=52,∴BD=;(3)连接CD ,如图3,∵BC 是⊙O 的直径,∴∠BDC=90°,∵∠A=45°,∴∠ACD=45°=∠A ,∴DA=DC . 设BD=x ,则CD=AD=7﹣x .在Rt △BDC 中,x 2+(7﹣x )2=52,解得x 1=3,x 2=4,【考点】圆的综合题.。
2016年天津市中考数学试卷及解析答案

2016年天津市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分1.计算(﹣2)﹣5的结果等于()A.﹣7 B.﹣3 C.3 D.72.sin60°的值等于()A.B.C.D.3.下列图形中,可以看作是中心对称图形的是()A.B.C. D.4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()A.0.612×107B.6.12×106 C.61.2×105 D.612×1045.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B. C.D.6.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.计算﹣的结果为()A.1 B.x C.D.8.方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=39.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CE11.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y312.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3二、填空题:本大题共6小题,每小题3分,共18分13.计算(2a)3的结果等于.14.计算(+)(﹣)的结果等于.15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是.16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是(写出一个即可).17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.18.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(Ⅰ)AE的长等于;(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明).三、综合题:本大题共7小题,共66分19.解不等式,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.21.在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P 的大小;(Ⅱ)如图2,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.22.小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的长.(结果保留小数点后一位)参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.23.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.表一:租用甲种货车的数量/辆 3 7 x租用的甲种货车最多运送机器的数量/台135租用的乙种货车最多运送机器的数量/台150表二:租用甲种货车的数量/辆 3 7 x租用甲种货车的费用/元2800租用乙种货车的费用/元280(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.24.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)25.已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1,).(Ⅰ)求点P,Q的坐标;(Ⅱ)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.①求抛物线C′的解析式;②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.2016年天津市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.计算(﹣2)﹣5的结果等于()A.﹣7 B.﹣3 C.3 D.7【考点】有理数的减法.【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:(﹣2)﹣5=(﹣2)+(﹣5)=﹣(2+5)=﹣7,故选:A.2.sin60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】直接利用特殊角的三角函数值求出答案.【解答】解:sin60°=.故选:C.3.下列图形中,可以看作是中心对称图形的是()A.B. C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:B.4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()A.0.612×107B.6.12×106 C.61.2×105 D.612×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:6120000=6.12×106,故选:B.5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,第三层左边有一个正方形.故选A.6.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【考点】估算无理数的大小.【分析】直接利用二次根式的性质得出的取值范围.【解答】解:∵<<,∴的值在4和5之间.故选:C.7.计算﹣的结果为()A.1 B.x C.D.【考点】分式的加减法.【分析】根据同分母分式相加减,分母不变,分子相加减计算即可得解.【解答】解:﹣==1.故选A.8.方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3【考点】解一元二次方程-因式分解法.【分析】将x2+x﹣12分解因式成(x+4)(x﹣3),解x+4=0或x﹣3=0即可得出结论.【解答】解:x2+x﹣12=(x+4)(x﹣3)=0,则x+4=0,或x﹣3=0,解得:x1=﹣4,x2=3.故选D.9.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a【考点】实数大小比较;实数与数轴.【分析】根据数轴得出a<0<b,求出﹣a>﹣b,﹣b<0,﹣a>0,即可得出答案.【解答】解:∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a,故选C.10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CE【考点】翻折变换(折叠问题).【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选D.11.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数图象的分布,结合增减性得出答案.【解答】解:∵点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,∴A,B点在第三象限,C点在第一象限,每个图象上y随x的增大减小,∴y3一定最大,y1>y2,∴y2<y1<y3.故选:D.12.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3【考点】二次函数的最值.【分析】由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x <h时,y随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.二、填空题:本大题共6小题,每小题3分,共18分13.计算(2a)3的结果等于8a3.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘方运算法则进行计算即可.【解答】解:(2a)3=8a3.故答案为:8a3.14.计算(+)(﹣)的结果等于2.【考点】二次根式的混合运算.【分析】先套用平方差公式,再根据二次根式的性质计算可得.【解答】解:原式=()2﹣()2=5﹣3=2,故答案为:2.15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是.【考点】概率公式.【分析】由题意可得,共有6种等可能的结果,其中从口袋中任意摸出一个球是绿球的有2种情况,利用概率公式即可求得答案.【解答】解:∵在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个红球、2个绿球和3个黑球,∴从口袋中任意摸出一个球是绿球的概率是=,故答案为:.16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是﹣1(写出一个即可).【考点】一次函数图象与系数的关系.【分析】根据一次函数的图象经过第二、三、四象限,可以得出k<0,b<0,随便写出一个小于0的b值即可.【解答】解:∵一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,∴k<0,b<0.故答案为:﹣1.17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.【考点】正方形的性质.【分析】根据辅助线的性质得到∠ABD=∠CBD=45°,四边形MNPQ和AEFG均为正方形,推出△BEF与△BMN是等腰直角三角形,于是得到FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,即可得到结论.【解答】解:在正方形ABCD中,∵∠ABD=∠CBD=45°,∵四边形MNPQ和AEFG均为正方形,∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,∴△BEF与△BMN是等腰直角三角形,∴FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,∴MN=BD=AB,∴==,故答案为:.18.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(Ⅰ)AE的长等于;(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.【考点】作图—应用与设计作图;勾股定理.【分析】(Ⅰ)根据勾股定理即可得到结论;(Ⅱ)取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.【解答】解:(Ⅰ)AE==;故答案为:;(Ⅱ)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.三、综合题:本大题共7小题,共66分19.解不等式,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≤4;(Ⅱ)解不等式②,得x≥2;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为2≤x≤4.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:(I)解不等式①,得x≤4.故答案为:x≤4;(II)解不等式②,得x≥2.故答案为:x≥2.(III)把不等式①和②的解集在数轴上表示为:;(IV)原不等式组的解集为:.故答案为:2≤x≤4.20.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为25;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.【考点】众数;扇形统计图;条形统计图;加权平均数;中位数.【分析】(Ⅰ)用整体1减去其它所占的百分比,即可求出a的值;(Ⅱ)根据平均数、众数和中位数的定义分别进行解答即可;(Ⅲ)根据中位数的意义可直接判断出能否进入复赛.【解答】解:(Ⅰ)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图得:==1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(Ⅲ)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.21.在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P 的大小;(Ⅱ)如图2,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.【考点】切线的性质.【分析】(Ⅰ)连接OC,首先根据切线的性质得到∠OCP=90°,利用∠CAB=27°得到∠COB=2∠CAB=54°,然后利用直角三角形两锐角互余即可求得答案;(Ⅱ)根据E为AC的中点得到OD⊥AC,从而求得∠AOE=90°﹣∠EAO=80°,然后利用圆周角定理求得∠ACD=∠AOD=40°,最后利用三角形的外角的性质求解即可.【解答】解:(Ⅰ)如图,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(Ⅱ)∵E为AC的中点,∴OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=∠AOD=40°,∵∠ACD是△ACP的一个外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.22.小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的长.(结果保留小数点后一位)参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.【考点】解直角三角形的应用.【分析】根据锐角三角函数,可用CD表示AD,BD,AC,BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,根据AC=CD,CB=,可得答案.【解答】解:过点C作CD⊥AB垂足为D,在Rt△ACD中,tanA=tan45°==1,CD=AD,sinA=sin45°==,AC=CD.在Rt△BCD中,tanB=tan37°=≈0.75,BD=;sinB=sin37°=≈0.60,CB=.∵AD+BD=AB=63,∴CD+=63,解得CD≈27,AC=CD≈1.414×27=38.178≈38.2,CB=≈=45.0,答:AC的长约为38.2cm,CB的长约等于45.0m.23.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.表一:租用甲种货车的数量/辆 3 7 x租用的甲种货车最多运送机器的数量/台135 31545x租用的乙种货车最多运送机器的数量/台150 30﹣30x+240表二:租用甲种货车的数量/辆 3 7 x租用甲种货车的费用/元12002800 400x租用乙种货车的费用/元1400280 ﹣280x+2240(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.【考点】一次函数的应用.【分析】(Ⅰ)根据计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元,可以分别把表一和表二补充完整;(Ⅱ)由(Ⅰ)中的数据和公司有330台机器需要一次性运送到某地,可以解答本题.【解答】解:(Ⅰ)由题意可得,在表一中,当甲车7辆时,运送的机器数量为:45×7=315(台),则乙车8﹣7=1辆,运送的机器数量为:30×1=30(台),当甲车x辆时,运送的机器数量为:45×x=45x(台),则乙车(8﹣x)辆,运送的机器数量为:30×(8﹣x)=﹣30x+240(台),在表二中,当租用甲货车3辆时,租用甲种货车的费用为:400×3=1200(元),则租用乙种货车8﹣3=5辆,租用乙种货车的费用为:280×5=1400(元),当租用甲货车x辆时,租用甲种货车的费用为:400×x=400x(元),则租用乙种货车(8﹣x)辆,租用乙种货车的费用为:280×(8﹣x)=﹣280x+2240(元),故答案为:表一:315,45x,30,﹣30x+240;表二:1200,400x,1400,﹣280x+2240;(Ⅱ)能完成此项运送任务的最节省费用的租车方案是甲车6辆,乙车2辆,理由:当租用甲种货车x辆时,设两种货车的总费用为y元,则两种货车的总费用为:y=400x+(﹣280x+2240)=120x+2240,又∵45x+(﹣30x+240)≥330,解得x≥6,∵120>0,∴在函数y=120x+2240中,y随x的增大而增大,∴当x=6时,y取得最小值,即能完成此项运送任务的最节省费用的租车方案是甲种货车6辆,乙种货车2辆.24.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)【考点】几何变换综合题.【分析】(1)如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C 交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D和DO′的长,从而可得到P′点的坐标.【解答】解:(1)如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+=,∴O′点的坐标为(,);(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(,),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=O′D=,∴DH=O′H﹣O′D=﹣=,∴P′点的坐标为(,).25.已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1,).(Ⅰ)求点P,Q的坐标;(Ⅱ)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.①求抛物线C′的解析式;②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.【考点】二次函数综合题.【分析】(1)令x=0,求出抛物线与y轴的交点,抛物线解析式化为顶点式,求出点P坐标;(2)①设出Q′(0,m),表示出Q′H,根据FQ′=OQ′,用勾股定理建立方程求出m,即可.②根据AF=AN,用勾股定理,(x﹣1)2+(y﹣)2=(x2﹣2x+)+y2﹣y=y2,求出AF=y,再求出直线Q′F的解析式,即可.【解答】解:(Ⅰ)∵y=x2﹣2x+1=(x﹣1)2∴顶点P(1,0),∵当x=0时,y=1,∴Q(0,1),(Ⅱ)①设抛物线C′的解析式为y=x2﹣2x+m,∴Q′(0,m)其中m>1,∴OQ′=m,∵F(1,),过F作FH⊥OQ′,如图:∴FH=1,Q′H=m﹣,在Rt△FQ′H中,FQ′2=(m﹣)2+1=m2﹣m+,∵FQ′=OQ′,∴m2﹣m+=m2,∴m=,∴抛物线C′的解析式为y=x2﹣2x+,②设点A(x0,y0),则y0=x02﹣2x0+,过点A作x轴的垂线,与直线Q′F相交于点N,则可设N(x0,n),∴AN=y0﹣n,其中y0>n,连接FP,∵F(1,),P(1,0),∴FP⊥x轴,∴FP∥AN,∴∠ANF=∠PFN,连接PK,则直线Q′F是线段PK的垂直平分线,∴FP=FK,有∠PFN=∠AFN,∴∠ANF=∠AFN,则AF=AN,根据勾股定理,得,AF2=(x0﹣1)2+(y0﹣)2,∴(x0﹣1)2+(y0﹣)2=(x﹣2x0+)+y﹣y0=y,∴AF=y0,∴y0=y0﹣n,∴n=0,∴N(x0,0),设直线Q′F的解析式为y=kx+b,则,解得,∴y=﹣x+,由点N在直线Q′F上,得,0=﹣x0+,∴x0=,将x0=代入y0=x﹣2x0+,∴y0=,∴A(,)2016年中考数学真题试题2016年8月10日。
天津市2016年九年级中考数学模拟题及答案

15. 从 -3,-2,-1,0,4
这五个数中随机抽取一个数记为
a,a 的值既是不等式组
2x 3 4 3x 1 11 的解 , 又在
1
y 函数
2x 2 2 x 的自变量取值范围内的概率是
.
16. 如图,将等边△ ABC的边 AC逐渐变成以 B 为圆心、 BA 为半径的 A⌒C, 长度不变 ,AB 、 BC的长度也
因为函数图像经过点 (4,20),(2.5,7.5)
25 m
3
4m n 20
40
.得 2.5m n 7.5 解得 n
3
25 40 所以线段 CD所表示的 y 与 x 之间的函数表达式为 y2= 3 x- 3 .
25 40 ( 2)线段 CD所表示的 y 与 x 之间的函数表达式为 y2= 3 x- 3 , 令 y2=0, 得 x=1.6. 即小东出发 1.6 h 后 , 小明开始出发. ①当 0≤ x< 1.6 时 ,y1=16, 即 -5x + 20=16,x=0.8 .
25 40 ②当 1.6 ≤ x<2.5 时, y1-y2=16 ,即 -5x +20-( 3 x- 3 )=16, 解得 x=1.3. (舍去)
25 40
③当
2.5 ≤ x≤4 时, y#43;20)=16,x=3.7 3
.
答 : 小东出发 0.8 h 或 3.7 h 后 , 两人相距 16 km .
. 截至 2016 年 2 月 22 日晚 10 点 , 超过 350 000 名
国内外游客来到夫子庙、老门东和大报恩寺遗址公园等景区观灯赏景
. 将 350 000 用科学记数法表示
为( )
A.0.35 × 106
B.3.5 × 104
2016年天津市河西区初三一模数学试卷--天津中考

为
A. 12°
B. 18°
C. 22°
D. 30°
10. 匀速地向一个容器内注水,最后把容器注满。在注水过程中,水面高度 h 随时间 t 的变化规律如图所示(图 中 OABC 为一折线),则对应的这个容器的形状为
A.
B.
C.
D.
11. 如图,在矩形 ABCD 中,AF⊥BD 于 E,AF 交 BC 于点 F,连接 DF,则图中面积相等但不全等的三角形共
MN 的最大值
(III)在(II)的条件下,点 N 在何位置时,BM 与 NC 相互垂直平分?并求出所有满足条件的 N 点的坐标
6/6
有 y2<y1。其中正确的是
A. ①②③
B. ①③⑤
C. ①③④
D. ②④⑤
二、填空题
2
3
13. 分式方程
的解为
x 3 x
14. 已知一次函数 y=kx+b(k≠0)的图像经过点(0,2),且 y 随着 x 的增大而减小,请你写出一个符合上述条
件的函数关系式
15. 掷一枚质地均匀的骰子,观察向上一面的点数,点数为奇数的概率是
3/6
21. (本小题 10 分) 已知 AB 是半圆 O 的直径,点 C 是半圆 O 上的动点,点 D 是线段 AB 延长线上的动点,在运动过程中,保 持 CD=OA (I)当直线 CD 与半圆 O 相切时(如图①),求∠ODC 的度数 (II)当直线 CD 与半圆 O 相交时(如图②),设另一交点为 E,连接 AE,若 AE∥OC,求∠ODC 的度数
5. 右图是一根钢管的直观图,则它的三视图为
A.
B.
C.
D.
1 6. 已知反比例函数 y ,下列结论中不正确的是
天津市南开区2016届中考数学一模试题(含解析)

天津市南开区2016届中考数学一模试题一、选择题1.﹣10+3的结果是()A.﹣7 B.7 C.﹣13 D.132.3tan60°的值为()A.B.C. D.33.下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为()A.B.C. D.4.据海关统计,2015年前两个月,我国进出口总值为37900亿元人民币,将37900用科学记数法表示为()A.3.79×102B.0.379×105C.3.79×104D.379×1025.由六个小正方体搭成的几何体如图所示,则它的主视图是()A.B.C. D.6.估计的值()A.在4和5之间 B.在3和4之间 C.在2和3之间 D.在1和2之间7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为()A.(1,﹣2)B.(﹣2,1)C.()D.(1,﹣1)8.化简的结果()A.x﹣1 B.x C.D.9.若点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数y=的图象上的点,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y3<y2B.y2<y3<y1C.y3<y2<y1D.y1<y2<y310.正六边形的边心距与边长之比为()A.1:2 B.:2 C.:1 D.:211.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则的值为()A.B.C.D.12.如图,是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1,给出四个结论:①b2>4ac;②2a﹣b=0;③a+b+c=0;④5a<b.其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题13.已知a+b=3,a﹣b=﹣1,则a2﹣b2的值为.14.若二次函数的图象开口向下,且经过(2,﹣3)点.符合条件的一个二次函数的解析式为.15.关于x的方程(m﹣5)x2+4x﹣1=0有实数根,则m应满足的条件是.16.一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.17.如图,在正方形ABCD内有一折线段,其中AE丄EF,EF丄FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为.18.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格解不等式组请结合题意填空,完成本题的解答(1)解不等式①,得(2)解不等式②,得(3)把不等式①和②的解集在数轴上表示出来(4)原不等式组的解集为.20.随着人民生活水平不断提高,我市“初中生带手机”现象也越来越多,为了了解家长对此现象的态度,某校数学课外活动小组随机调查了若干名学生家长,并将调查结果进行统计,得出如下所示的条形统计图和扇形统计图.问:(1)这次调查的学生家长总人数为.(2)请补全条形统计图,并求出持“很赞同”态度的学生家长占被调查总人数的百分比.(3)求扇形统计图中表示学生家长持“无所谓”态度的扇形圆心角的度数.21.如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.(1)如图(1),若点P是的中点,求PA的长;(2)如图(2),若点P是的中点,求PA的长.22.如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.23.某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)根据图象求y与x的函数关系式;(2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?24.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),连接PP′,P′A,P′C.设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若点P′的坐标是(﹣1,m),求m的值;(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求a的值;(3)是否同时存在a,b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.25.如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以A,B,D,P为顶点的四边形是平行四边形?2016年天津市南开区中考数学一模试卷参考答案与试题解析一、选择题1.﹣10+3的结果是()A.﹣7 B.7 C.﹣13 D.13【考点】有理数的加法.【分析】根据有理数的加法法则,即可解答.【解答】解:﹣10+3=﹣(10﹣3)=﹣7,故选:A.【点评】本题考查了有理数的加法,解决本题的关键是熟记有理数的加法法则.2.3tan60°的值为()A.B.C. D.3【考点】特殊角的三角函数值.【分析】把tan60的数值代入即可求解.【解答】解:3tan60°=3×=3.故选D.【点评】本题考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是关键.3.下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为()A.B.C. D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,是中心对称图形,故本选项错误.故选A.【点评】本题考查了中心对称及轴对称的知识,判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.4.据海关统计,2015年前两个月,我国进出口总值为37900亿元人民币,将37900用科学记数法表示为()A.3.79×102B.0.379×105C.3.79×104D.379×102【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将37900用科学记数法表示为:3.79×104.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.由六个小正方体搭成的几何体如图所示,则它的主视图是()A.B.C. D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.估计的值()A.在4和5之间 B.在3和4之间 C.在2和3之间 D.在1和2之间【考点】估算无理数的大小.【专题】存在型.【分析】先估算出的大小,进而可得出结论.【解答】解:∵25<31<36,∴5<<6,∴3<﹣2<4.故选B.【点评】本题考查的是估算无理数的大小,先根据题意估算出的取值范围是解答此题的关键.7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为()A.(1,﹣2)B.(﹣2,1)C.()D.(1,﹣1)【考点】位似变换;坐标与图形性质.【分析】首先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似,若两个图形△ABC 和△A′B′C′以原点为位似中心,相似比是k,△A BC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,ky),进而求出即可.【解答】解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,﹣),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,﹣1).故选:D.【点评】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.8.化简的结果()A.x﹣1 B.x C.D.【考点】分式的乘除法.【专题】计算题;分式.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=•=x﹣1,故选A.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.9.若点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数y=的图象上的点,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y3<y2B.y2<y3<y1C.y3<y2<y1D.y1<y2<y3【考点】反比例函数图象上点的坐标特征.【分析】首先确定反比例函数的系数与0的大小关系,然后根据题意画出图形,再根据其增减性解答即可.【解答】解:∵﹣a2﹣1<0,∴反比例函数图象位于二、四象限,如图在每个象限内,y随x的增大而增大,∵x1<0<x2<x3,∴y2<y3<y1.故选B.【点评】本题考查了由反比例函数图象的性质判断函数图象上点的函数值的大小,同学们要灵活掌握.10.正六边形的边心距与边长之比为()A.1:2 B.:2 C.:1 D.:2【考点】正多边形和圆.【分析】首先根据题意画出图形,然后设六边形的边长是a,由勾股定理即可求得OC的长,继而求得答案.【解答】解:如图:设正六边形的边长是a,则半径长也是a;经过正六边形的中心O作边AB的垂线段OC,则AC=AB=a,于是OC==a,所以正六边形的边心距与边长之比为: a:a=:2.故选:D.【点评】此题考查了正多边形和圆的关系.此题难度不大,注意掌握数形结合思想的应用.11.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则的值为()A.B.C.D.【考点】旋转的性质.【专题】压轴题.【分析】先根据直角三角形斜边上的中线性质得CD=AD=DB,则∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根据旋转的性质得∠PDM=∠CDN=α,于是可判断△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定义得到tan∠PCD=tan30°=,于是可得=.【解答】解:∵点D为斜边AB的中点,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF绕点D顺时针方向旋转α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△P CD中,∵tan∠PCD=tan30°=,∴=tan30°=.故选C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.12.如图,是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1,给出四个结论:①b2>4ac;②2a﹣b=0;③a+b+c=0;④5a<b.其中正确结论的个数是()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上得到c>0,由对称轴为x=﹣=﹣1可以判定②;由图象与x轴有交点,对称轴为x=﹣=﹣1,与y轴的交点在y轴的正半轴上,可以推出b2﹣4ac>0,即b2>4ac,即可判定①;由x=1时y=0,即可判定③.把x=1,x=﹣3代入解析式得a+b+c=0,9a﹣3b+c=0,两边相加整理即可判定④.【解答】解:①∵图象与x轴有交点,对称轴为x=﹣=﹣1,与y轴的交点在y轴的正半轴上,又∵二次函数的图象是抛物线,∴与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,正确;②∵对称轴为x=﹣=﹣1,∴2a=b,∴2a﹣b=0,正确;③∵抛物线的一个交点为(﹣3,))对称轴为x=﹣1,∴另一个交点为(1,0),∴当x=1时,y=a+b+c=0,正确;④把x=1,x=﹣3代入解析式得a+b+c=0,9a﹣3b+c=0,两边相加整理得5a﹣b=﹣c<0,即5a<b,正确.故正确的为①②③④,故选D.【点评】解答本题关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.二、填空题13.已知a+b=3,a﹣b=﹣1,则a2﹣b2的值为﹣3 .【考点】平方差公式.【专题】计算题.【分析】原式利用平方差公式化简,将已知等式代入计算即可求出值.【解答】解:∵a+b=3,a﹣b=﹣1,∴原式=(a+b)(a﹣b)=﹣3,故答案为:﹣3.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.14.若二次函数的图象开口向下,且经过(2,﹣3)点.符合条件的一个二次函数的解析式为y=﹣x2﹣2x+5 .【考点】二次函数的性质.【专题】开放型.【分析】由于二次函数的图象开口向下,所以二次项系数是负数,而图象还经过(2,﹣3)点,由此即可确定这样的函数解析式不唯一.【解答】解:∵若二次函数的图象开口向下,且经过(2,﹣3)点,∴y=﹣x2﹣2x+5符合要求.答案不唯一.例如:y=﹣x2﹣2x+5.【点评】此题主要考查了二次函数的性质,解题的关键根据图象的性质确定解析式的各项系数.15.关于x的方程(m﹣5)x2+4x﹣1=0有实数根,则m应满足的条件是m≥1.【考点】根的判别式;一元一次方程的解.【分析】需要分类讨论:①当该方程是一元一次方程时,二次项系数m﹣5=0;②当该方程是一元二次方程时,二次项系数m﹣5≠0,△≥0;综合①②即可求得m满足的条件.【解答】解:①当关于x的方程(m﹣5)x2+4x﹣1=0是一元一次方程时,m﹣5=0,解得,m=5;②当(m﹣5)x2+4x﹣1=0是一元二次方程时,△=16﹣4×(m﹣5)×(﹣1)≥0,且m﹣5≠0,解得,m≥1且m≠5;综合①②知,m满足的条件是m≥1.故答案是:m≥1.【点评】本题考查了一元二次方程根的判别式的应用,解答本题要注意分类讨论,切记不要忽略一元二次方程二次项系数不为零这一隐含条件.16.一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.【解答】解:如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,所有两次摸出的小球标号的和等于4的概率=.故答案为:.【点评】本题考查了列表法或树状图法:利用列表法或树状图法展示所有等可能的结果数n,再找出某事件所占有的结果数m,然后利用概率的概念求得这个事件的概率=.17.如图,在正方形ABCD内有一折线段,其中AE丄EF,EF丄FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为80π﹣160 .【考点】相似三角形的判定与性质;勾股定理;正方形的性质.【专题】压轴题.【分析】首先连接AC,则可证得△AEM∽△CFM,根据相似三角形的对应边成比例,即可求得EM与FM的长,然后由勾股定理求得AM与CM的长,则可求得正方形与圆的面积,则问题得解.【解答】解:连接AC,∵AE丄EF,EF丄FC,∴∠E=∠F=90°,∵∠AME=∠CMF,∴△AEM∽△CFM,∴,∵AE=6,EF=8,FC=10,∴,∴EM=3,FM=5,在Rt△AEM中,AM==3,在Rt△FCM中,CM==5,∴AC=8,在Rt△ABC中,AB=AC•sin45°=8•=4,∴S正方形ABCD=AB2=160,圆的面积为:π•()2=80π,∴正方形与其外接圆之间形成的阴影部分的面积为80π﹣160.故答案为:80π﹣160.【点评】此题考查了相似三角形的判定与性质,正方形与圆的面积的求解方法,以及勾股定理的应用.此题综合性较强,解题时要注意数形结合思想的应用.18.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格解不等式组请结合题意填空,完成本题的解答(1)解不等式①,得x≥﹣2(2)解不等式②,得x<1(3)把不等式①和②的解集在数轴上表示出来(4)原不等式组的解集为﹣2≤x<1 .【考点】解一元一次不等式组;在数轴上表示不等式的解集.【专题】计算题.【分析】(1)通过移项可得到x的范围;(2)去分母,再移项可得到x的范围;(3)利用数轴表示解集;(4)利用大小小大中间找;【解答】解:(1)解不等式①,得x≥﹣2,(2)解不等式②,得x<1,(3)把不等式①和②的解集在数轴上表示为:(4)原不等式组的解集为﹣2≤x<1.故答案为x≥﹣2,x<1,﹣2≤x<1.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.随着人民生活水平不断提高,我市“初中生带手机”现象也越来越多,为了了解家长对此现象的态度,某校数学课外活动小组随机调查了若干名学生家长,并将调查结果进行统计,得出如下所示的条形统计图和扇形统计图.问:(1)这次调查的学生家长总人数为200 .(2)请补全条形统计图,并求出持“很赞同”态度的学生家长占被调查总人数的百分比.(3)求扇形统计图中表示学生家长持“无所谓”态度的扇形圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)利用持反对态度的人数和所占百分比进而求出总人数;(2)利用(1)中所求得出持很赞同态度的人数没进而求出所占百分比;(3)利用(1)中所求得出学生家长持“无所谓”态度的扇形圆心角的度数.【解答】解:(1)这次调查的家长总人数为:60÷30%=200(人);故答案为:200;(2)如图所示:持“很赞同”态度的学生家长占被调查总人数的百分比为:(200﹣80﹣20﹣60)÷200×100%=20%;(3)学生家长持“无所谓”态度的扇形圆心角的度数为:×360°=36°.【点评】此题主要考查了扇形统计图和条形统计图的综合应用,利用图形得出正确信息是解题关键.21.如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.(1)如图(1),若点P是的中点,求PA的长;(2)如图(2),若点P是的中点,求PA的长.【考点】相似三角形的判定与性质;勾股定理;等腰直角三角形;圆心角、弧、弦的关系;圆周角定理.【专题】几何综合题.【分析】(1)根据圆周角的定理,∠APB=90°,P是弧AB的中点,所以三角形APB是等腰三角形,利用勾股定理即可求得.(2)根据垂径定理得出OP垂直平分BC,得出OP∥AC,从而得出△ACB∽△0NP,根据对应边成比例求得ON、AN的长,利用勾股定理求得NP的长,进而求得PA.【解答】解:(1)如图(1)所示,连接PB,∵AB是⊙O的直径且P是的中点,∴∠PAB=∠PBA=45°,∠APB=90°,又∵在等腰三角形△APB中有AB=13,∴PA===.(2)如图(2)所示:连接BC.OP相交于M点,作PN⊥AB于点N,∵P点为弧BC的中点,∴OP⊥BC,∠OMB=90°,又因为AB为直径∴∠ACB=90°,∴∠ACB=∠OMB,∴OP∥AC,∴∠CAB=∠POB,又因为∠ACB=∠ONP=90°,∴△ACB∽△0NP∴=,又∵AB=13 AC=5 OP=,代入得 ON=,∴AN=OA+ON=9∴在Rt△OPN中,有NP2=0P2﹣ON2=36在Rt△ANP中有PA===3∴PA=3.【点评】本题考查了圆周角的定理,垂径定理,勾股定理,等腰三角形判定和性质,相似三角形的判定和性质,作出辅助线是本题的关键.22.如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.【考点】解直角三角形的应用-方向角问题.【专题】几何图形问题.【分析】过A作AD⊥BC于D,先由△ACD是等腰直角三角形,设AD=x,得出CD=AD=x,再解Rt△ABD,得出BD==x,再由BD+CD=4,得出方程x+x=4,解方程求出x的值,即为A到岸边BC 的最短距离.【解答】解:过A作AD⊥BC于D,则AD的长度就是A到岸边BC的最短距离.在Rt△ACD中,∠ACD=45°,设AD=x,则CD=AD=x,在Rt△ABD中,∠ABD=60°,由tan∠ABD=,即tan60°=,所以BD==x,又BC=4,即BD+CD=4,所以x+x=4,解得x=6﹣2.答:这个标志性建筑物底部A到岸边BC的最短距离为(6﹣2)公里.【点评】本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.23.某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)根据图象求y与x的函数关系式;(2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?【考点】一次函数的应用;一元二次方程的应用.【分析】(1)根据图象可设y=kx+b,将(40,160),(120,0)代入,得到关于k、b的二元一次方程组,解方程组即可;(2)根据每千克的利润×销售量=2400元列出方程,解方程求出销售单价,从而计算销售量,进而求出销售成本,与3000元比较即可得出结论.【解答】解:(1)设y与x的函数关系式为y=kx+b,将(40,160),(120,0)代入,得,解得,所以y与x的函数关系式为y=﹣2x+240(40≤x≤120);(2)由题意得(x﹣40)(﹣2x+240)=2400,整理得,x2﹣160x+6000=0,解得x1=60,x2=100.当x=60时,销售单价为60元,销售量为120千克,则成本价为40×120=4800(元),超过了3000元,不合题意,舍去;当x=100时,销售单价为100元,销售量为40千克,则成本价为40×40=1600(元),低于3000元,符合题意.所以销售单价为100元.答:销售单价应定为100元.【点评】本题考查了一次函数的应用以及一元二次方程的应用,利用待定系数法求出y与x的函数关系式是解题的关键.24.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),连接PP′,P′A,P′C.设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若点P′的坐标是(﹣1,m),求m的值;(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求a的值;(3)是否同时存在a,b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.【考点】相似三角形的判定与性质;待定系数法求一次函数解析式;等腰直角三角形.【专题】压轴题.【分析】(1)①利用待定系数法即可求得函数的解析式;②把(﹣1,m)代入函数解析式即可求得m的值;(2)可以证明△PP′D∽△ACD,根据相似三角形的对应边的比相等,即可求解;(3)分P在第一,二,三象限,三种情况进行讨论.利用相似三角形的性质即可求解.【解答】解:(1)①设直线AB的解析式为y=kx+3,把x=﹣4,y=0代入得:﹣4k+3=0,∴k=,∴直线的解析式是:y=x+3,②P′(﹣1,m),∴点P的坐标是(1,m),∵点P在直线AB上,∴m=×1+3=;(2)∵PP′∥AC,△PP′D∽△ACD,∴=,即=,∴a=;(3)以下分三种情况讨论.①当点P在第一象限时,1)若∠AP′C=90°,P′A=P′C(如图1)过点P′作P′H⊥x轴于点H.∴PP′=CH=AH=P′H=AC.∴2a=(a+4)∴a=∵P′H=PC=AC,△ACP∽△AOB∴==,即=,∴b=22)若∠P′AC=90°,(如图2),则四边形P′ACP是矩形,则PP′=AC.若△P´CA为等腰直角三角形,则:P′A=CA,∴2a=a+4∴a=4∵P′A=PC=AC,△ACP∽△AOB∴==1,即=1∴b=43)若∠P′CA=90°,则点P′,P都在第一象限内,这与条件矛盾.∴△P′CA不可能是以C为直角顶点的等腰直角三角形.②当点P在第二象限时,∠P′CA为钝角(如图3),此时△P′CA不可能是等腰直角三角形;③当P在第三象限时,∠P′AC为钝角(如图4),此时△P′CA不可能是等腰直角三角形.所有满足条件的a,b的值为:,.【点评】本题主要考查了梯形的性质,相似三角形的判定和性质以及一次函数的综合应用,要注意的是(3)中,要根据P点的不同位置进行分类求解.25.如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以A,B,D,P为顶点的四边形是平行四边形?【考点】二次函数综合题.【专题】压轴题;数形结合.【分析】(1)将m=2代入原式,得到二次函数的顶点式,据此即可求出B点的坐标;(2)延长EA,交y轴于点F,证出△AFC≌△AED,进而证出△ABF∽△DAE,利用相似三角形的性质,求出DE=4;(3)①根据点A和点B的坐标,得到x=2m,y=﹣m2+m+4,将m=代入y=﹣m2+m+4,即可求出二次函数的表达式;②作PQ⊥DE于点Q,则△DPQ≌△BAF,然后分(如图1)和(图2)两种情况解答.【解答】解:(1)当m=2时,y=(x﹣2)2+1,把x=0代入y=(x﹣2)2+1,得:y=2,∴点B的坐标为(0,2).(2)延长EA,交y轴于点F,∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,∴△AFC≌△AED,∴AF=AE,∵点A(m,﹣ m2+m),点B(0,m),∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,∴△ABF∽△DAE,∴=,即: =,∴DE=4.(3)①∵点A的坐标为(m,﹣ m2+m),∴点D的坐标为(2m,﹣ m2+m+4),∴x=2m,y=﹣m2+m+4,∴y=﹣•++4,∴所求函数的解析式为:y=﹣x2+x+4,②作PQ⊥DE于点Q,则△DPQ≌△BAF,(Ⅰ)当四边形ABDP为平行四边形时(如图1),点P的横坐标为3m,点P的纵坐标为:(﹣ m2+m+4)﹣(m2)=﹣m2+m+4,把P(3m,﹣ m2+m+4)的坐标代入y=﹣x2+x+4得:﹣m2+m+4=﹣×(3m)2+×(3m)+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅱ)当四边形ABPD为平行四边形时(如图2),点P的横坐标为m,点P的纵坐标为:(﹣ m2+m+4)+(m2)=m+4,把P(m,m+4)的坐标代入y=﹣x2+x+4得:m+4=﹣m2+m+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.【点评】本题是二次函数综合题,涉及四边形的知识,同时也是存在性问题,解答时要注意数形结合及分类讨论.。
2016年天津市中考数学试卷(含详细答案)

绝密★启用前天津市2016年初中毕业生会考学业考试数学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(2)5--的结果等于()A.7-B.3-C.3D.72.sin60的值等于()A .12B .22C.32D.33.下列图形中,可以看作是中心对称图形的是 ()A B C D4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6 120 000株.将6120000用科学记数法表示应为 ( )A.70.61210⨯B.66.1210⨯C.561.210⨯D.461210⨯5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A B C D6.估计19的值在 ()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.计算11xx x+-的结果为 ()A.1B.xC.1xD.2xx+8.方程2120x x+-=的两个根为 ()A.12x=-,26x=B.16x=-,22x=C.13x=-,24x=D.14x=-,23x=9.实数a,b在数轴上的对应点的位置如图所示.把a-,b-,0按照从小到大的顺序排列,正确的是 ( )A.0a b--<<B.0a b--<<C.0b a--<<D.0b a--<<10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B',AB'与DC相交于点E,则下列结论一定正确的是( )A.DA CB BA∠=∠''B.ACD CB D∠=∠'C.AD AE=D.AE CE=11.若点1()5,A y-,2()3,B y-,3(2,)C y在反比例函数3yx=的图象上,则1y,2y,3y的大小关系是()A.132y y y<<B.123y y y<<C.321y y y<<D.213y y y<<12.已知二次函数2()1y x h=-+(h为常数),在自变量x的值满足13x≤≤的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或5-B.1-或5C.1或3-D.1或3第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填写在题中的横线上)13.计算3(2)a的结果等于.14.计算(53)(53)+-的结果等于.15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共28页)数学试卷第2页(共28页)数学试卷第4页(共28页)16.若一次函数2y x b=-+(b为常数)的图象经过第二、三、四象限,则b的值可以是(写出一个即可).17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则MNPQAEFGSS正方形正方形的值等于.18.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP PQ PB==,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分8分)解不等式组26,322,xx x+⎧⎨-⎩≥①②≤请结合题意填空,完成本题的解答.(1)解不等式①得;(2)解不等式②得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.20.(本小题满分8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人能进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.21.(本小题满分10分)在O中,AB为直径,C为O上一点.(1)如图①,过点C作O的切线,与AB的延长线相交于点P,若27CAB∠=,求P∠的大小;(2)如图②,D为AC上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若10CAB∠=,求P∠的大小.数学试卷第3页(共28页)数学试卷 第5页(共28页) 数学试卷 第6页(共28页)22.(本小题满分10分)小明上学途中要经过A ,B 两地,由于A ,B 两地之间有一片草坪,所以需要走路线AC ,CB .如图,在ABC △中,63m AB =,45A ∠=,37B ∠=,求AC ,CB 的长(结果保留小数点后一位).参考数据:sin370.60≈,cos370.80≈,tan370.75≈取1.414.23.(本小题满分10分)公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆.已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元.(1)设租用甲种货车x 辆(x 为非负整数),试填写下表.(2)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.24.(本小题满分10分)在平面直角坐标系中,O 为原点,点()4,0A ,点()0,3B 把ABO △绕点B 逆时针旋转,得A BO ''△,点A ,O 旋转后的对应点为A ',O '.记旋转角为α.(1)如图1,若90α=,求AA '的长; (2)如图2,若120α=,求点O '的坐标;(3)在(2)的条件下,边OA 上的一点P 旋转后的对应点为P ',当O P BP ''+取得最小值时,求点P '的坐标(直接写出结果即可).25.(本小题满分10分)已知抛物线C :221y x x =-+的顶点为P ,与y 轴的交点为Q ,点1(1,)2F . (1)求点P ,Q 的坐标;(2)将抛物线C 向上平移得抛物线C ',点Q 平移后的对应点为Q ',且FQ OQ ''=. ①求抛物线C '的解析式;②若点P 关于直线Q F '的对称点为K ,射线FK 与抛物线C '相交于点A ,求点A 的坐标.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第7页(共28页)数学试卷第8页(共28页)333=a a.8+53)(55/ 14PQ即为所求.数学试卷第11页(共28页)数学试卷第12页(共28页)(Ⅲ)(Ⅲ)把不等式①和②的解集在数轴上表示为:;7/ 14数学试卷 第15页(共28页)数学试卷 第16页(共28页)54.+∠COP 36︒. (Ⅱ)∵E 为AC 的中点,【解析】如图,过点C 作⊥CD AB ,垂足为D .9 / 1445, tan37︒tan37tan363631+7≈︒︒141427.00⨯=的长约等于38.2cm 【考点】解直角三角形数学试卷 第19页(共28页)数学试卷 第20页(共28页)90得到的, (Ⅱ)如图,根据题意,3cos cos602∠'='︒=B O BC O B ,92+=BC ,点的坐标为339(,)22.。
2016年天津市五区县初中毕业生学业考试第一次模拟练习
2016年天津市五区县初中毕业生学业考试第一次模拟练习化学试卷物理和化学合场考试,合计用时120分钟。
本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。
第Ⅰ卷为第1至第3页,第Ⅱ卷为第4至第8页。
试卷满分100分。
答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回。
祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共15题,共30分。
3.可能用到的相对原子质量:H 1 C 12 O 16 Na 23 Mg 24 Al 27 S 32Mn 55 Cu 64一、选择题(本大题共10小题,每小题2分,共20分。
每小题给出的四个选项中只有一个最符合题意)1.下列变化中属于化学变化的是A.酒精挥发 B.干冰升华C.粮食酿酒 D.蜡烛熔化2.右图为按体积计算的空气成分示意图,其中“C”代表的是A.氧气B.氮气C.二氧化碳D.稀有气体3.有关水分子的叙述正确的是A.水在固态时分子是静止不动的B.保持水的化学性质的最小粒子是水分子C.水由液态变成气态时水分子质量变小D.水结冰后体积变大是水分子体积增大造成的4.分类法是化学学习的重要方法。
下列说法不正确的是A.烧碱和浓硫酸都可用作干燥剂 B.铁和碘都是人体必需微量元素C.甲烷和葡萄糖都属于有机物 D.硝酸钾和碳酸氢铵都属于复合肥料5.媒体报道,不法商贩用焦亚硫酸钠(化学式为Na 2S 2O 5)处理生姜,使生姜变得又黄又亮,从而谋取利益。
过量的焦亚硫酸钠会严重危害人体健康。
Na 2S 2O 5 中硫元素的化合价为A .–2B .+2C .+4D .+66.下列实验操作错误的是A .给液体加热B .倾倒液体C .稀释浓硫酸D .蒸发食盐水7.同样是清洁剂,炉具清洁剂有强碱性,而厕所清洁剂则有强酸性,用这两种清洁剂进行实验得到的结果错误的是A .测得炉具清洁剂pH=13B .测得厕所清洁剂pH=8C .炉具清洁剂使无色酚酞溶液变红D .厕所清洁剂使紫色石蕊溶液变红 8.水是重要的资源。
2016年天津市中考数学试卷含答案
()
A.1 或 5
B. 1或 5
C.1 或 3
D.1 或 3
第Ⅱ卷(非选择题 共 84 分)
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分.请把答案填写在题中的横线上)
13.计算 (2a)3 的结果等于
.
14.计算 ( 5 3)( 5 3) 的结果等于
.
15.不透明袋子中装有 6 个球,其中有 1 个红球、2 个绿球和 3 个黑球,这些球除颜色外无
P 的大小; (2)如图②, D 为 AC 上一点,且 OD 经过 AC 的中点 E ,连接 DC 并延长,与 AB 的延 长线相交于点 P ,若 CAB 10 ,求 P 的大小.
毕业学校_____________姓名________________ 考生号________________ ________________ _____________
()
D. x 2 x ()
9. 实 数 a , b 在 数 轴 上 的 对 应 点 的 位 置 如 图 所 示 . 把
a , b ,0 按 照 从 小 到 大 的 顺 序 排 列 , 正 确 的 是
a0
b
()
A. a<0< b C. b<0< a
B. 0< a< b D. 0< b< a
其他差别.从袋子中随机取出 1 个球,则它是绿球的概率
是
.
16.若一次函数 y 2x b ( b 为常数)的图象经过第二、三、
四象限,则 b 的值可以是
(写出一个即可).
17. 如 图 , 在 正 方 形 ABCD 中 , 点 E , N , P , G 分 别 在 边 AB , BC , CD , DA 上,点 M , F , Q 都在对角线 BD 上,且
2016年天津市河西区中考数学一模试卷及答案详解
河西区2016 年中考数学一模试题一、选择题(本大题共 12 题,每小题 3 分,共 36 分,在每小题给出的 4 个选项中只有一项是符合题目要求的)1. 计算(-16)÷8 的结果等于( )A. B. -2 C. 3 D. -12. tan60°等于( )A. B. C. D.3. 下列 logo 标志中,既是中心对称图形又是轴对称图形的是( )4.据 2015 年 1 月 16 日的渤海早报报道,2014 年天津市公共交通客运量达到 1510000000人次,较 2013 年增长 10.6%,将 1510000000 用科学计数法表示应为( )A.151×107B. 15.1×108C.15×107D.1.51×1095.如图,根据三视图,判断组成这个物体的块数是( )A. 6B. 7C. 8D. 96. 如图,要拧开一个边长为 a(a=6mm)的正六边形,扳手张开的开口 b 至少为( )A. mmB.mmC.mmD. 12mm7.如图,PA、PB 分别切⊙O 于点 A、B,若∠P=70°,则∠C 的大小为( )A. 45°B. 50°C. 55°D. 60°8. 一只蚂蚁在如图所示的树枝上寻找食物,假定蚂蚁在每个岔口都会随机地选择一条路径,则它获得食物的概率是( )A. B. C. D.9. 一天,小亮看到家中的塑料桶中有一个竖直的玻璃杯,桶子和玻璃杯的形状都是圆柱形,桶口的半径是杯口半径的 2 倍,其主视图如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位 h 与注水时间 t 之间关系的大致图像是( )10.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了 45 份合同.设共有 x 家公司参加商品交易会,则 x 满足的关系式为( )A. B. C. x(x + 1) = 45 D. x(x - 1) = 4511. 如图,在 Rt△ABC 中,CD 是边 AB 上的高,若 AC=4,AB=10,则 AD 的长为( )A. B. 2 C. D. 312.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象经过(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当 x>-1 时,y 的值随x 值的增大而增大.其中,正确结论的个数是( )A. 1B. 2C. 3D. 4二、填空题:13.若 ,则的值为14.抛物线y=-2x2+x-4的对称轴为 .15. 新华中学规定学生的学期体育成绩满分为 100 分,其中早操及体育课外活动占 20%,期中考试成绩占 30%.期末考试成绩占 50%.小惠的三项成绩依次是 95,90 分,85 分,小惠这学期的体育成绩为 分.16. 已知反比例函数,则有:①它的图象在一、三象限;②点(-2,4)在它的图像上③当 1<x<2 时,y 的取值范围是是-8<y<-4;④若该函数的图像上有两个点 A(x1,y1),B(x2,y2)那么当 x1<x2 时,y1<y2.以上叙述正确的是 .17.如图,△ABC 是边长为的等边三角形,点 P、Q 分别是射线 AB、BC 上两个动点,且 AP=CQ,PQ 交 AC 与 D,作 PE⊥AC 于 E,那么 DE 的长度为 .18.如图,有一张长为 7 宽为 5的矩形纸片 ABCD,要通过适当的简拼,得到一个与之面积相等的正方形。
天津市2016 年中考一模河西区数学
3 2016 河西一模数学试卷一、选择题1. 计算23 34 3的结果等于 A. -18B. -72C. -24D. -66 2. tan30°的值等于A. 1B. 2 3C. D. 2 3. 我们知道,中式窗户的图案非常多样,美轮美奂,在下面几个比较简单的窗户图案中,可以看作是轴对称图形的是A. 1 个B. 2 个C. 3 个D. 4 个4. 据 2016 年 4 月 3 日的《人民日报》图文数据库报道,清明假期第一天,全国铁路迎来客流高峰,预计发送旅客 1180 万人次,将 1180 万用科学计数法表示应为A. 0.118 107B. 1.18 106C. 11.8 106D. 1.18 1075. 右图是一根钢管的直观图,则它的三视图为A. B. C. D.6. 已知反比例函数y1 ,下列结论中不正确的是 x 1 A. 图像经过点 ,-2 2B. 图像位于第一、三象限C. y 随着x 的增大而减小D. 当 1<x<3 时,y 的取值范围是1y13 7. 如图,在△ABC 中,AC=BC ,点 D 、E 分别是边 AB 、AC 的中点,将△ADE 绕点 E 旋转 180°,得△CFE,则四边形ADCF 一定是A. 正方形B. 菱形C. 矩形D. 梯 形8. 如图,将正六边形 ABCDEF 放在直角坐标系中,中心与坐标原点重合,若D 点的坐标为(2,0),则点 F 的坐标为A. 1,3B. 3,1C. 3,3D. 1,13 39.如图,已知直线 l 与⊙O 相交于点 E、F,AB 是⊙O 的直径,AD⊥l于点D,若∠DAE=22°,则∠BAF的大小为A. 12°B. 18°C. 22°D. 30°10.匀速地向一个容器内注水,最后把容器注满。
在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线),则对应的这个容器的形状为A. B. C. D.11.如图,在矩形 ABCD 中,AF⊥BD于 E,AF 交 BC 于点 F,连接 DF,则图中面积相等但不全等的三角形共有A.2 对B. 3 对C. 4 对D. 5 对12.如图是抛物线y 1ax2b x c(a≠0)图像的一部分,抛物线的顶点坐标 A(1,3),与 x 轴的一个交点 B(4,0),直线y2m x n (m≠0)与抛物线交于 A,B 两点,下列结论:①2a+b=0;②abc>0;③方程ax 2bxc3 有两个相等的实数根;④抛物线与 x 的另一个交点时(-1,0);⑤当1<x<4 时,有y2<y1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年天津市五区县中考数学一模试卷一、选择题(本题共12小题,每小题3分,共36分,)1.计算(﹣3)×|﹣2|的结果等于( )A .6B .5C .﹣6D .﹣52.2cos45°的值等于( )A .B .C .D .3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为( )A .608×108B .60.8×109C .6.08×1010D .6.08×10115.如图所示的几何体是由4个相同的小正方体组成.其主视图为( )A .B .C .D .6.如图,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是( )A . cmB . cmC . cmD .1cm7.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D=35°,则∠OAC 的度数是( )A.35°B.55°C.65°D.70°8.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A.B.C.D.9.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八,九月份平均每月的增长率为x,那么x满足的方程是()A.50+50(1+x2)=196 B.50+50(1+x)+50(1+x)2=196C.50(1+x2)=196 D.50+50(1+x)+50(1+2x)=19610.如图,菱形ABCD的对角线AC、BD相交于点O,AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH等于()A.2 B.C.D.11.如图,反比例函数y1=的图象与正比例函数y2=k2x的图象交于点(2,1),则使y1>y2的x 的取值范围是()A.0<x<2 B.x>2 C.x>2或﹣2<x<0 D.x<﹣2或0<x<212.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac>0;②a+b+c<0;③a=c﹣2;④方程ax2+bx+c=0的根为﹣1.其中正确的结论为()A.①②③ B.①②④ C.①③④ D.①②③④二、填空题(本题共6小题,每小题3分,共18分)13.计算:=.14.已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是.15.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).16.实验中学规定学生学期的数学成绩满分为120分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,王玲的三项成绩依次是100分,90分,106分,那么王玲这学期的数学成绩为分.17.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为.18.将△ABC放在每个小正方形的边长为1的网格中,点B、C落在格点上,点A在BC的垂直平分线上,∠ABC=30°,点P为平面内一点.(1)∠ACB=度;(2)如图,将△APC绕点C顺时针旋转60°,画出旋转后的图形(尺规作图,保留痕迹);(3)AP+BP+CP的最小值为.三、解答题(本题共7小题,共66分)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.学习完统计知识后,小兵就本班同学的上学方式进行调查统计、他通过收集数据后绘制的两幅不完整的统计图如下图所示.请你根据图中提供的信息解答下列问题:(1)求该班共有多少名学生;(2)请将表示“步行”部分的条形统计图补充完整;(3)在扇形统计图中,“骑车”部分扇形所对应的圆心角是多少度;(4)若全年级共1000名学生,估计全年级步行上学的学生有多少名?21.如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC 平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.22.如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A 处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°,CD⊥AB与点E,E、B、A在一条直线上.请你帮李明同学计算出信号塔CD的高度(结果保留整数,≈1.7,≈1.4 )23.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?24.在平面直角坐标系中,一张矩形纸片OBCD按图1所示放置,已知OB=10,BC=6,将这张纸片折叠,使点O落在边CD上,记作点A,折痕与边OD(含端点)交于点E,与边OB(含端点)或其延长线交于点F.请回答:(Ⅰ)如图1,若点E的坐标为(0,4),求点A的坐标;(Ⅱ)将矩形沿直线y=﹣x+n折叠,求点A的坐标;(Ⅲ)将矩形沿直线y=kx+n折叠,点F在边OB上(含端点),直接写出k的取值范围.25.如图,二次函数y=x2+bx+c的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B 向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t 秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由.2016年天津市五区县中考数学一模试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分,)1.计算(﹣3)×|﹣2|的结果等于()A.6 B.5 C.﹣6 D.﹣5【考点】有理数的乘法;绝对值.【分析】原式先计算绝对值,再计算乘法运算即可得到结果.【解答】解:原式=(﹣3)×2=﹣6.故选C.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.2.2cos45°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】将45°角的余弦值代入计算即可.【解答】解:∵cos45°=,∴2cos45°=.故选B.【点评】本题考查特殊角的三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、不是轴对称图形,不是中心对称图形,不符合题意;C、既是中心对称图形又是轴对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选:C.【点评】本题考查了轴对称图形与中心对称图形的概念.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.4.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为()A.608×108B.60.8×109C.6.08×1010 D.6.08×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:60 800 000 000=6.08×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图所示的几何体是由4个相同的小正方体组成.其主视图为()A. B. C. D.【考点】简单组合体的三视图.【分析】根据主视图定义,得到从几何体正面看得到的平面图形即可.【解答】解:从正面看得到2列正方形的个数依次为2,1,故选:D.【点评】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.6.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.cm B.cm C.cm D.1cm【考点】正多边形和圆.【专题】应用题;压轴题.【分析】连接AC,作BD⊥AC于D;根据正六边形的特点求出∠ABC的度数,再由等腰三角形的性质求出∠BAD的度数,由特殊角的三角函数值求出AD的长,进而可求出AC的长.【解答】解:连接AC,过B作BD⊥AC于D;∵AB=BC,∴△ABC是等腰三角形,∴AD=CD;∵此多边形为正六边形,∴∠ABC==120°,∴∠ABD==60°,∴∠BAD=30°,AD=AB•cos30°=2×=,∴a=2cm.故选A.【点评】此题比较简单,解答此题的关键是作出辅助线,根据等腰三角形及正六边形的性质求解.7.如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是()A.35°B.55°C.65°D.70°【考点】圆周角定理.【分析】在同圆和等圆中,同弧所对的圆心角是圆周角的2倍,所以∠AOC=2∠D=70°,而△AOC 中,AO=CO,所以∠OAC=∠OCA,而180°﹣∠AOC=110°,所以∠OAC=55°.【解答】解:∵∠D=35°,∴∠AOC=2∠D=70°,∴∠OAC=(180°﹣∠AOC)÷2=110°÷2=55°.故选:B.【点评】本题考查同弧所对的圆周角和圆心角的关系.规律总结:解决与圆有关的角度的相关计算时,一般先判断角是圆周角还是圆心角,再转化成同弧所对的圆周角或圆心角,利用同弧所对的圆周角相等,同弧所对的圆周角是圆心角的一半等关系求解,特别地,当有一直径这一条件时,往往要用到直径所对的圆周角是直角这一条件.8.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】先列举出同时掷两枚质地均匀的硬币一次所有四种等可能的结果,然后根据概率的概念即可得到两枚硬币都是正面朝上的概率.【解答】解:同时掷两枚质地均匀的硬币一次,共有正正、反反、正反、反正四种等可能的结果,两枚硬币都是正面朝上的占一种,所以两枚硬币都是正面朝上的概率=.故选D.【点评】本题考查了用列表法与树状图法求概率的方法:先利用列表法与树状图法表示所有等可能的结果n,然后找出某事件出现的结果数m,最后计算P=.9.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八,九月份平均每月的增长率为x,那么x满足的方程是()A.50+50(1+x2)=196 B.50+50(1+x)+50(1+x)2=196C.50(1+x2)=196 D.50+50(1+x)+50(1+2x)=196【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】根据7月份的表示出8月和九月的产量即可列出方程.【解答】解:∵七月份生产零件50万个,设该厂八九月份平均每月的增长率为x,∴八月份的产量为50(1+x)万个,九月份的产量为50(1+x)2万个,∴50+50(1+x)+50(1+x)2=196.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,解题的关键是能分别将8、9月份的产量表示出来,难度不大.10.如图,菱形ABCD的对角线AC、BD相交于点O,AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH等于()A.2 B.C.D.【考点】菱形的性质.【分析】因为菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出OH的长.【解答】解:∵四边形ABCD是菱形,AC=8,BD=6,∴BO=3,AO=4,AO⊥BO,∴AB==5.∵OH⊥AB,∴AO•BO=AB•OH,∴OH=,故选D.【点评】本题考查菱形的基本性质,菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出AB边上的高OH.11.如图,反比例函数y1=的图象与正比例函数y2=k2x的图象交于点(2,1),则使y1>y2的x 的取值范围是()A.0<x<2 B.x>2 C.x>2或﹣2<x<0 D.x<﹣2或0<x<2【考点】反比例函数与一次函数的交点问题.【专题】压轴题;探究型.【分析】先根据反比例函数与正比例函数的性质求出B点坐标,由函数图象即可得出结论.【解答】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵A(2,1),∴B(﹣2,﹣1),∵由函数图象可知,当0<x<2或x<﹣2时函数y1的图象在y2的上方,∴使y1>y2的x的取值范围是x<﹣2或0<x<2.故选D.【点评】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y2时x的取值范围是解答此题的关键.12.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac>0;②a+b+c<0;③a=c﹣2;④方程ax2+bx+c=0的根为﹣1.其中正确的结论为()A.①②③ B.①②④ C.①③④ D.①②③④【考点】二次函数图象与系数的关系.【分析】①根据二次函数y=ax2+bc+c的图象与x轴有两个交点,可得△>0,即b2﹣4ac>0,据此判断即可.②根据二次函数y=ax2+bc+c的图象的对称轴是x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,可得与x轴的另一个交点A在点(0,0)和(1,0)之间,所以x=1时,y<0,据此判断即可.③首先根据x=﹣,可得b=2a,所以顶点的纵坐标是=2,据此判断即可.④根据x=﹣1时,y≠0,所以方程ax2+bx+c=0的根为﹣1这种说法不正确,据此判断即可.【解答】解:∵二次函数y=ax2+bc+c的图象与x轴有两个交点,∴△>0,即b2﹣4ac>0,∴结论①正确;∵二次函数y=ax2+bc+c的图象的对称轴是x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴与x轴的另一个交点A在点(0,0)和(1,0)之间,∴x=1时,y<0,∴a+b+c<0,∴结论②正确;∵x=﹣,∴b=2a,∴顶点的纵坐标是=2,∴a=c﹣2,∴结论③正确;∵x=﹣1时,y≠0,∴方程ax2+bx+c=0的根为﹣1这种说法不正确,∴结论④不正确.∴正确的结论为:①②③.故选:A.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ).二、填空题(本题共6小题,每小题3分,共18分)13.计算: = 0 .【考点】二次根式的加减法.【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=3﹣4+=0.【点评】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.14.已知关于x 的一元二次方程x 2+bx+b ﹣1=0有两个相等的实数根,则b 的值是 2 .【考点】根的判别式.【专题】计算题.【分析】根据方程有两个相等的实数根,得到根的判别式的值等于0,即可求出b 的值.【解答】解:根据题意得:△=b 2﹣4(b ﹣1)=(b ﹣2)2=0,则b 的值为2.故答案为:2【点评】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.15.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是 ∠B=∠C 或AE=AD (添加一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS来判定其全等,或添加一个角从而利用AAS来判定其全等.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.16.实验中学规定学生学期的数学成绩满分为120分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,王玲的三项成绩依次是100分,90分,106分,那么王玲这学期的数学成绩为100分.【考点】加权平均数.【分析】利用加权平均数公式即可求解.【解答】解:该生这学期的数学成绩是:,故答案为:100.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.17.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为1.【考点】三角形中位线定理.【专题】压轴题;规律型.【分析】由三角形的中位线定理得:A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,所以△A2B2C2的周长等于△A1B1C1的周长的一半,以此类推可求出△A5B5C5的周长为△A1B1C1的周长的.【解答】解:∵A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,∴以此类推:△A5B5C5的周长为△A1B1C1的周长的,∴则△A5B5C5的周长为(7+4+5)÷16=1.故答案为:1【点评】本题主要考查了三角形的中位线定理,关键是根据三角形的中位线定理得:A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,所以△A2B2C2的周长等于△A1B1C1的周长的一半.18.将△ABC放在每个小正方形的边长为1的网格中,点B、C落在格点上,点A在BC的垂直平分线上,∠ABC=30°,点P为平面内一点.(1)∠ACB=30度;(2)如图,将△APC绕点C顺时针旋转60°,画出旋转后的图形(尺规作图,保留痕迹);(3)AP+BP+CP的最小值为.【考点】作图-旋转变换.【分析】(1)根据垂直平分线的性质即可解决问题.(2)根据中心旋转的定义即可画出图形.(3)根据两点之间线段最短即可解决问题.【解答】解(1)∵点A在BC的垂直平分线上,∴AB=AC,∴∠ABC=∠ACB,∵∠ABC=30°,∴∠ACB=30°.故答案为30°.(2)如图△CA ′P ′就是所求的三角形.(3)如图当B 、P 、P ′、A ′共线时,PA+PB+PC=PB+PP ′+P ′A 的值最小,此时BC=5,AC=CA ′=,BA ′==.故答案为.【点评】本题考查旋转变换、垂直平分线的性质、等腰三角形的性质等知识,解决问题的关键是灵活应用两点之间线段最短,属于中考常考题型.三、解答题(本题共7小题,共66分)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得 x <2 ;(Ⅱ)解不等式②,得 x ≥﹣1 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 ﹣1≤x <2 .【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,将不等式的解集表示在数轴上,即可确定不等式组的解集.【解答】解:解不等式①,得:x <2,解不等式②,得:x ≥﹣1,把不等式①和②的解集表示在数轴上如下:故不等式组的解集为:﹣1≤x<2,故答案为:(Ⅰ)x<2;(Ⅱ)x≥﹣1;(Ⅳ)﹣1≤x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,正确将不等式解集表示在数轴上是解答此题的关键.20.学习完统计知识后,小兵就本班同学的上学方式进行调查统计、他通过收集数据后绘制的两幅不完整的统计图如下图所示.请你根据图中提供的信息解答下列问题:(1)求该班共有多少名学生;(2)请将表示“步行”部分的条形统计图补充完整;(3)在扇形统计图中,“骑车”部分扇形所对应的圆心角是多少度;(4)若全年级共1000名学生,估计全年级步行上学的学生有多少名?【考点】扇形统计图;条形统计图.【专题】图表型.【分析】(1)乘车的有20人,所占百分比为50%,即可求出该班总人数;(2)根据统计图中的数据求出“步行”学生人数,再补充条形统计图;(3)骑车部分所占百分比为1﹣50%﹣20%,则其对应的圆心角度数可求;(4)总人数×步行上学所占百分比即可求得结果.【解答】解:(1)20÷50%=40名;(2)“步行”学生人数:40×20%=8名;(3)“骑车”部分扇形所对应的圆心角的度数:360°×(1﹣50%﹣20%)=108°;(4)1000×20%=200名.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC 平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分线的性质可以证明∠DAC=∠OCA,接着利用平行线的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可证明直线CD与⊙O相切于C点;(2)连接BC,根据圆周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性质即可解决问题.【解答】(1)证明:连接OC∵OA=OC∴∠OAC=∠OCA∵AC平分∠DAB∴∠DAC=∠OAC∴∠DAC=∠OCA∴OC∥AD∵AD⊥CD∴OC⊥CD∴直线CD与⊙O相切于点C;(2)解:连接BC,则∠ACB=90°.∵∠DAC=∠OAC,∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD•AB,∵⊙O的半径为3,AD=4,∴AB=6,∴AC=2.【点评】此题主要考查了切线的性质与判定,解题时首先利用切线的判定证明切线,然后利用切线的想这已知条件证明三角形相似即可解决问题.22.如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A 处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°,CD⊥AB与点E,E、B、A在一条直线上.请你帮李明同学计算出信号塔CD的高度(结果保留整数,≈1.7,≈1.4 )【考点】解直角三角形的应用-仰角俯角问题.【分析】利用30°的正切值即可求得AE长,进而可求得CE长.CE减去DE长即为信号塔CD的高度.【解答】解:根据题意得:AB=18,DE=18,∠A=30°,∠EBC=60°,在R t△ADE中,AE===18∴BE=AE﹣AB=18﹣18,在R t△BCE中,CE=BE•tan60°=(18﹣18)=54﹣18,∴CD=CE﹣DE=54﹣18﹣18≈5米.【点评】本题考查了解直角三角形﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形;难点是充分找到并运用题中相等的线段.23.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?【考点】二次函数的应用.【专题】压轴题.【分析】(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于kb的关系式,求出k、b的值即可;(2)把每天的利润W与销售单价x之间的函数关系式化为二次函数顶点式的形式,由此关系式即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图象可知,,解得.故y与x的函数关系式为y=﹣x+180;(2)∵y=﹣x+180,∴W=(x﹣100)y=(x﹣100)(﹣x+180)=﹣x2+280x﹣18000=﹣(x﹣140)2+1600,∵a=﹣1<0,=1600,∴当x=140时,W最大∴售价定为140元/件时,每天最大利润W=1600元.【点评】本题考查的是二次函数的应用,根据题意列出关于k、b的关系式是解答此题的关键.24.在平面直角坐标系中,一张矩形纸片OBCD按图1所示放置,已知OB=10,BC=6,将这张纸片折叠,使点O落在边CD上,记作点A,折痕与边OD(含端点)交于点E,与边OB(含端点)或其延长线交于点F.请回答:(Ⅰ)如图1,若点E的坐标为(0,4),求点A的坐标;(Ⅱ)将矩形沿直线y=﹣x+n折叠,求点A的坐标;(Ⅲ)将矩形沿直线y=kx+n折叠,点F在边OB上(含端点),直接写出k的取值范围.【考点】一次函数综合题.【分析】(Ⅰ)根据已知条件得到OE=AE=4,求得DE=2,根据勾股定理即可得到结论;(Ⅱ)如图,设直线y=﹣x+n,得到OE=n,OF=2n,根据全等三角形的性质得到OE=AE=n,AF=OF=2n,根据相似三角形的性质得到,代入数据即可得到结论;(Ⅲ)根据图象和矩形的边长可直接得出k的取值范围,【解答】解:(Ⅰ)∵点E的坐标为(0,4),∴OE=AE=4,∵四边形OBCD是矩形,∴OD=BC=6,∴DE=2,∴AD==2,∴点A的坐标为(2,6);(Ⅱ)如图2,过点F作FG⊥DC于G∵EF解析式为y=﹣x+n,∴E点的坐标为(0,n),∴OE=n∴F点的坐标为(2n,0),∴OF=2n∵△AEF与△OEF全等,∴OE=AE=n ,AF=OF=2n∵点A 在DC 上,且∠EAF=90°∴∠1+∠3=90°又∵∠3+∠2=90°∴∠1=∠2在△DEA 与△GAF 中,∴△DEA ∽△GAF (AA )∴,∵FG=CB=6∴=∴DA=3∴A 点的坐标为(3,6).(Ⅲ)如图3,﹣1≤k ≤﹣.∵矩形沿直线y=kx+n 折叠,点F 在边OB 上,①当E 点和D 点重合时,k 的值为﹣1,②当F 点和B 点重合时,k 的值为﹣;∴﹣1≤k ≤﹣.【点评】本题主要考查一次函数的性质,矩形的性质,折叠的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.25.如图,二次函数y=x2+bx+c的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B 向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t 秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)根据二次函数y=x2+bx+c的图象经过A(﹣1,0)、B(3,0)两点,应用待定系数法,求出二次函数的解析式即可.(2)首先根据待定系数法,求出BC所在的直线的解析式,再分别求出点P、点Q的坐标各是多少;然后分两种情况:①当∠QPB=90°时;②当∠PQB=90°时;根据等腰直角三角形的性质,求出t的值各是多少即可.(3)首先延长MQ交抛物线于点N,H是PQ的中点,再用待定系数法,求出PQ所在的直线的解析式,然后根据PQ的中点恰为MN的中点,判断出是否存在满足题意的点N即可.【解答】解:(1)∵二次函数y=x2+bx+c的图象经过A(﹣1,0)、B(3,0)两点,∴,解得.∴二次函数的解析式是:y=x2﹣2x﹣3.(2)∵y=x2﹣2x﹣3,∴点C的坐标是(0,﹣3),∴BC==3,设BC所在的直线的解析式是:y=mx+n,则,解得.∴BC所在的直线的解析式是:y=x﹣3,∵经过t秒,AP=t,BQ=t,∴点P的坐标是(t﹣1,0),设点Q的坐标是(x,x﹣3),∵OB=OC=3,∴∠OBC=∠OCB=45°,则y=×sin45°=×=t,则Q点纵坐标为﹣t,∴x=3﹣t,∴点Q的坐标是(3﹣t,﹣t),,当∠QPB=90°时,点P和点Q的横坐标相同,∵点P的坐标是(t﹣1,0),点Q的坐标是(3﹣t,﹣t),∴t﹣1=3﹣t,解得t=2,即当t=2时,△BPQ为直角三角形.②如图2,,当∠PQB=90°时,∵∠PBQ=45°,∴BP=,∵BP=3﹣(t﹣1)=4﹣t,BQ=,∴4﹣t=解得t=,即当t=时,△BPQ为直角三角形.综上,可得当△BPQ为直角三角形,t=或2.(3)如图3,延长MQ交抛物线于点N,H是PQ的中点,,设PQ所在的直线的解析式是y=px+q,∵点P的坐标是(t﹣1,0),点Q的坐标是(3﹣t,﹣t),∴,解得.∴PQ所在的直线的解析式是y=x+,∴点M的坐标是(0,),∵,=﹣,∴PQ的中点H的坐标是(1,﹣),假设PQ的中点恰为MN的中点,∵1×2﹣0=2,﹣=,∴点N的坐标是(2,),又∵点N在抛物线上,∴=22﹣2×2﹣3=﹣3,∴点N的坐标是(2,﹣3),解得t=或t=,∵t<2,∴t=,∴当t<2时,延长QP交y轴于点M,当t=时在抛物线上存在一点N(2,﹣3),使得PQ 的中点恰为MN的中点.【点评】(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力.(2)此题还考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(3)此题还考查了待定系数法求函数解析式的方法,要熟练掌握.。