2020-2021下海民办新竹园中学七年级数学下期中模拟试题(及答案)

合集下载

2020—2021学年度七年级第二学期期中考试数学试卷(附答案)

2020—2021学年度七年级第二学期期中考试数学试卷(附答案)

第 8 题图
()
A.1 组
B.2 组
C.3 组
D.4 组
9.用一个乒乓球垂直向上抛出,则下列描述乒乓球的运动速是
()
A.
B.
C.
D.
A.
B.
C.
D.
4. 若一个三角形的两边长分别为 4 和 8,则第三边长可以是 ()
A.4
B.12
C. 8
5.用直尺和圆规作一个角等于已知角的示意图如图,
16.如图,AD 为△ABC 的中线,E 为 AD 的中点, 若△ABE 的面积为 15,则△ABC 的面积为 ______ .
第1页(共 2 页)
第 16 题图
考前保密
第二学期初一年级期中考试数学试卷
17.若(– x + m)(x – 8)中不含 x 的一次项,则 m 的值为 ______ .
18.如图 1,在边长为 a 的正方形中 剪去一个边长为 b 的小正形(a>b), 把剩下部分拼成一个梯形(如图 2), 利用这两幅图形面积,可以验证的 公式是 ______ .
第 22 题图
第2页(共 2 页)
第 25 题图
考前保密
第二学期初一年级期中考试数学试卷
(2)
选择题:
答案
1. B 2. C 3. B 4. C 5. A 6. B 7. D 8. C 9. B 10. A 填空题:
11. 4×10-6
12.
28
13.
18
14.
60
15.
0.25 或
18. 解答题:
C. 30°
D. 50°
2. 一个角的补角是 135°,则这个角的度数是
b 2
第1题

2020-2021学年度七年级下册期中考试数学试卷及答案

2020-2021学年度七年级下册期中考试数学试卷及答案

2020-2021学年度第二学期期中考试试卷七年级数学满分:120分 时间:90分钟一、选择题(本大题共10分,每小题3分,共30分) 1.下列图中,∠1和∠2是对顶角的有( )个.A .1个B .2个C .3个D .4个 2.在平面直角坐标系中,点(-2,3)所在的象限是( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 3.已知点A (4,-3)到y 轴的距离为( )A 、4B 、-4C 、3D 、-3 4.下列说法错误的是( )A 、1)1(2=-B 、113-=-C 、2的平方根是2±D 、81-的平方根是9±5.在实数,,,0,﹣1.414,,中,无理数有( )A .2个B .3个C .4个D .5个6.下列命题是真命题的是( )A 、邻补角相等B 、对顶角相等C 、内错角相等D 、同位角相等 7.如题7图,能够判断AD ∥BC 的条件是( ) A .∠1=∠2 B .∠1=∠4C .∠B=∠DD .∠3=∠4 题7图8.将点P (2,1)向左平移2个单位后得到P ’,则P ’的坐标是( ) A 、(2,3) B 、(2,-1) C 、(4,1) D 、(0,1)9.如题9图,已知直线AB ,CD 相交于点O ,OE ⊥AB ,∠EOC=28°,则∠BOD 的度数为( ) A .28° B .52°C .62°D .118°题9图10.如题10图,原来是完全重叠的两个直角三角形,将其中一个直角三角形沿着BC 方向平移BE 的距离,就得到此图形,则阴影部分面积是( )平方厘米 A 、24 B 、20 C 、32.5 D 、60题10图 二、填空题(本大题共7小题,每小题4分,共28分) 11.如题11图,AB 、CD 相交于点O ,射线OE 在∠DOB 的内部, 则∠AOD 的邻补角是________________.12.9的平方根是_______,4的算术平方根是_________,13.如题13图,直线a 与直线b 、c 分别相交于点A 、B ,将直线b 绕点A 转动,当∠1=∠ 时,c ∥b ;14.5的相反数是______,绝对值是_______. 15.已知|x+1|+=0,则P (x,y )在第_____________象限.16.1+x 的算术平方根是3,则x =________. 题13图 17.在y 轴上且到点A (0,-3)的线段长度是4的点B 的坐标为_______________. 三、解答题(一)(本大题共3小题,每小题6分,共18分) 18.计算:2252383+--+19.如图题19图,将△ABC 向右平移5个单位长度,再向下平移2个单位长度,得到△A'B'C',请画出平移后的图形,并写出△A'B'C'各顶点的坐标。

【3套打包】上海民办新竹园中学最新七年级下册数学期中考试题

【3套打包】上海民办新竹园中学最新七年级下册数学期中考试题

人教版七年级(下)期中模拟数学试卷及答案一、选择题(共36分,每小题3分)1.(3分)方程﹣3x=6的解是()A.x=2B.x=﹣3C.x=﹣2D.x=﹣182.(3分)若a>b,则下列不等式中,不成立的是()A.a+5>b+5B.a﹣5>b﹣5C.5a>5b D.﹣5a>﹣5b 3.(3分)方程3x+y=6的一个解与方程组的解相同,则k的值为()A.B.C.2D.﹣24.(3分)若代数式﹣2x+3的值大于﹣2,则x的取值范围是()A.x<B.x>C.x<D.x<5.(3分)不等式1﹣2x<5﹣x的负整数解有()A.1个B.2个C.3个D.4个6.(3分)不等式组的解集在数轴上表示为()A.B.C.D.7.(3分)在等式y=kx+b中,当x=2时,y=﹣4;当x=﹣2时,y=8,则这个等式是()A.y=3x+2B.y=﹣3x+2C.y=3x﹣2D.y=﹣3x﹣2 8.(3分)已知是方程组的解,则a、b的值为()A.a=﹣1,b=3B.a=1,b=3C.a=3,b=1D.a=3,b=﹣1 9.(3分)在等式y=ax2+bx+c中,当x=0时,y=2;当x=﹣1时,y=0;当x=2时,y =12,则a+b+c=()A.4B.5C.6D.810.(3分)若不等式组无解,则m的取值范围是()A.m>3B.m<3C.m≥3D.m≤311.(3分)如果不等式(m﹣2)x>m﹣2的解集为x<1,那么()A.m≠2B.m>2C.m<2D.m为任意有理数12.(3分)因受季节影响,某种商品打九折后,又降a元/件,现在的售价为b元/件,那么该商品的原售价为()A.90%(b﹣a)元/件B.90%(a+b)元/件C.元/件D.元/件二、填空题(共18分,每小题3分)13.(3分)若7x3a y4b与﹣2x3y3b+a是同类项,则a=,b=.14.(3分)已知是二元一次方程组的解,则a﹣b的值为.15.(3分)已知方程x﹣8=2y,用含y的代数式表示x,那么x=.16.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.17.(3分)不等式组的解集是.18.(3分)已知关于x的不等式组的整数解共有5个,则a的取值范围是.三、解答题(每题6分,共12分)19.(6分)解方程:x+=20.(6分)解不等式:3(x﹣1)<4(x﹣)﹣321.(8分)解方程组.22.(8分)解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.23.(8分)如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=20°,∠C=30°,求∠DAE的度数.24.(10分)如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)25.(10分)已知:实数a、b满足条件+(ab﹣2)2=0.试求的值.26.(10分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.2018-2019学年湖北省武汉市武昌区七年级(下)期中数学试卷参考答案与试题解析一、选择题(共36分,每小题3分)1.(3分)方程﹣3x=6的解是()A.x=2B.x=﹣3C.x=﹣2D.x=﹣18【分析】直接将原方程系数化1,即可求得答案.【解答】解:﹣3x=6,系数化1得:x=﹣2.故选:C.【点评】此题考查了一元二次方程的解.注意使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.2.(3分)若a>b,则下列不等式中,不成立的是()A.a+5>b+5B.a﹣5>b﹣5C.5a>5b D.﹣5a>﹣5b 【分析】根据不等式的性质1,可判断A、B,根据不等式的性质2,可判断C,根据不等式的性质3,可判断D.【解答】解:A、B、不等式的两边都加或都减同一个整式,不等号的方向不变,故A、B 正确;C、不等式的两边都乘以同一个正数不等号的方向不变,故C正确;D、不等式的两边都乘以同一个负数不等号的方向改变,故D错误;故选:D.【点评】本题考查了不等式的性质,不等式的两边都乘以同一个负数不等号的方向改变.3.(3分)方程3x+y=6的一个解与方程组的解相同,则k的值为()A.B.C.2D.﹣2【分析】将k看做已知数求出方程组的解得到x与y,代入已知方程计算即可求出k的值.【解答】解:,①+②×2得,,代入①得,y=﹣,∴,代入方程3x+y=6,∴,解得,k=,故选:A.【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.4.(3分)若代数式﹣2x+3的值大于﹣2,则x的取值范围是()A.x<B.x>C.x<D.x<【分析】先根据题意列出关于x的不等式,求出x的取值范围即可.【解答】解:∵代数式﹣2x+3的值大于﹣2,∴﹣2x+3>﹣2,解得x<.故选:A.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.5.(3分)不等式1﹣2x<5﹣x的负整数解有()A.1个B.2个C.3个D.4个【分析】根据解不等式的步骤解出不等式的解集,再找出符合条件的整数即可.【解答】解:1﹣2x<5﹣x﹣2x+x<5﹣1﹣x<4x>﹣.所以不等式1﹣2x<5﹣x的负整数解有﹣2,﹣1共2个.故选:B.【点评】此题主要考查了一元一次不等式的解法,掌握解一元一次不等式得步骤是本题的关键.6.(3分)不等式组的解集在数轴上表示为()A.B.C.D.【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:,解得:1<x≤2,表示在数轴上,如图所示:故选:C.【点评】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.7.(3分)在等式y=kx+b中,当x=2时,y=﹣4;当x=﹣2时,y=8,则这个等式是()A.y=3x+2B.y=﹣3x+2C.y=3x﹣2D.y=﹣3x﹣2【分析】分别把当x=2时,y=﹣4,当x=﹣2时,y=8代入等式,得到关于k、b的二元一次方程组,求出k、b的值即可.【解答】解:分别把当x=2时,y=﹣4,当x=﹣2时,y=8代入等式y=kx+b得,,①﹣②得,4k=﹣12,解得k=﹣3,把k=﹣3代入①得,﹣4=﹣3×2+b,解得b=2,分别把k=﹣3,b=2的值代入等式y=kx+b得,y=﹣3x+2,故选:B.【点评】本题主要考查的是解二元一次方程组的加减消元法和代入消元法,难度适中.8.(3分)已知是方程组的解,则a、b的值为()A.a=﹣1,b=3B.a=1,b=3C.a=3,b=1D.a=3,b=﹣1【分析】所谓“方程组”的解,指的是该数值满足方程组中的每一方程.本题将解代回方程组,即可求出a,b.【解答】解:∵是方程的解,∴把代入方程组,得,∴.故选:B.【点评】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法.9.(3分)在等式y=ax2+bx+c中,当x=0时,y=2;当x=﹣1时,y=0;当x=2时,y =12,则a+b+c=()A.4B.5C.6D.8【分析】先把x=0时,y=2;x=﹣1时,y=0;x=2时,y=12分别代入y=ax2+bx+c,得到一个三元一次方程组解这个方程组即可求出a,b,c的值,进而求得结果.【解答】解:把x=0时,y=2;x=﹣1时,y=0;x=2时,y=12分别代入y=ax2+bx+c,得,解得,,∴a+b+c=1+3+2=6,故选:C.【点评】此题考查了三元一次方程组的解法,掌握三元一次方程组解的步骤是本题的关键,把三元一次方程组通过消元转化成二元一次方程组再进行求解.10.(3分)若不等式组无解,则m的取值范围是()A.m>3B.m<3C.m≥3D.m≤3【分析】解出不等式组的解集(含m的式子),与不等式组无解比较,求出m的取值范围.【解答】解:∵不等式组无解.∴m≤3.故选D.【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.11.(3分)如果不等式(m﹣2)x>m﹣2的解集为x<1,那么()A.m≠2B.m>2C.m<2D.m为任意有理数【分析】这是一个含有字母系数的不等式,仔细观察(m﹣2)x>m﹣2,要想求得解集,需把(m﹣2)这个整体看作x的系数,然后运用不等式的性质求出,给出的解集是x<1,不等号的方向已改变,说明运用的是不等式的性质3,运用性质3的前提是两边都乘以(•或除以)同一个负数,说明m﹣2<0,从而求出m的范围.【解答】解:由不等式(m﹣2)x>m﹣2,当m≠2时,两边除以m﹣2,∵不等式(m﹣2)x>m﹣2的解集为x<1,∴m﹣2<0,m<2,故选:C.【点评】含有字母系数的不等式是近年来中考的热点问题,解题的关键是根据原不等式和给出的解集的情况确定字母系数的取值范围,•为此需熟练掌握不等式的基本性质,它是正确解一元一次不等式的基础.12.(3分)因受季节影响,某种商品打九折后,又降a元/件,现在的售价为b元/件,那么该商品的原售价为()A.90%(b﹣a)元/件B.90%(a+b)元/件C.元/件D.元/件【分析】等量关系为:原售价的9折﹣a=b.【解答】解:设原售价为x,则0.9x﹣a=b,即x=元/件.故选D.【点评】列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系列出式子.必要时可借助一元一次方程模型求解.二、填空题(共18分,每小题3分)13.(3分)若7x3a y4b与﹣2x3y3b+a是同类项,则a=1,b=1.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得3a=3,3b+a=4b,解得a=1,b=1,故答案为:1,1.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.14.(3分)已知是二元一次方程组的解,则a﹣b的值为﹣1.【分析】已知方程组的解,求系数,可把解代入原方程组,得到关于a、b的新方程组,进行解答,求出a、b的值即可.【解答】解:∵把代入二元一次方程组,得:,①+②得:4a=8,解得:a=2,把a=2代入①得:b=3,∴a﹣b=2﹣3=﹣1;故答案为:﹣1.【点评】此题考查了二元一次方程组的解的定义及二元一次方程组的解法,是基础知识,需熟练掌握,注意掌握二元一次方程组的两种解法.15.(3分)已知方程x﹣8=2y,用含y的代数式表示x,那么x=10y+40.【分析】要用含y的代数式表示x,就要把方程中含有x的项移到方程的左边,其它的项移到方程的右边,再进一步合并同类型、系数化为1即可.【解答】解:移项,得x=2y+8,系数化1,得x=10y+40.故答案为:10y+40.【点评】此题考查了方程的变形,能够熟练运用移项、合并同类型、系数化为1的步骤进行变形.16.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距504千米.【分析】轮船航行问题中的基本关系为:(1)船的顺水速度=船的静水速度+水流速度;(2)船的逆水速度=船的静水速度一水流速度.若设A港和B港相距x千米,则从A 港顺流行驶到B港所用时间为小时,从B港返回A港用小时,根据题意列方程求解.【解答】解:设A港和B港相距x千米.根据题意,得,解之得x=504.故填504.【点评】本题的相等关系,逆流航行时间﹣顺流航行时间=3.注意:船的顺水速度、逆水速度、静水速度、水流速度之间的关系.17.(3分)不等式组的解集是1<x<2.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>1,解不等式②得,x<2,所以,不等式组的解集是1<x<2.故答案为:1<x<2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).18.(3分)已知关于x的不等式组的整数解共有5个,则a的取值范围是4≤a<5.【分析】求出不等式组的解集,根据不等式组的解集和已知不等式组的整数解有5个即可得出a的取值范围是4≤a<5.【解答】解:解不等式x﹣a≥0,得:x≥a,解不等式3﹣2x<4,得:x>﹣,∵不等式组的整数解有5个,∴4≤a<5,故答案为:4≤a<5.【点评】本题考查了解一元一次不等式(组),在数轴上表示不等式(组)的解集的应用,能求出不等式(或组)的解集是解此题的关键.三、解答题(每题6分,共12分)19.(6分)解方程:x+=【分析】依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:方程两边同时乘以6得:6x+3=2(2﹣x),去括号得:6x+3=4﹣2x,移项得:6x+2x=4﹣3,合并同类项得:8x=1,系数化为1得:x=.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.20.(6分)解不等式:3(x﹣1)<4(x﹣)﹣3【分析】去括号,移项,合并同类项,系数化成1即可得.【解答】解:3x﹣3<4x﹣2﹣3,3x﹣4x<﹣2﹣3+3,﹣x<﹣2,x>2.【点评】本题考查了解一元一次不等式(组),能求出不等式(或组)的解集是解此题的关键.21.(8分)解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:5x﹣y=7④;②×2+③得:8x+5y=﹣2⑤,④×5+⑤得:33x=33,即x=1,把x=1代入④得:y=﹣2,把x=1,y=﹣2代入①得:z=﹣4,则方程组的解为.【点评】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(8分)解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.【解答】解:,由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.【点评】此题主要考查了解一元一次不等式组,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.23.(8分)如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=20°,∠C=30°,求∠DAE的度数.【分析】根据∠DAE=∠EAC﹣∠DAC,求出∠EAC,∠DAC即可.【解答】解:∵AE平分∠BAC,∴∠EAC=∠BAC,∵∠BAC=180°﹣∠B﹣∠C=130°,∴∠EAC=65°,∵AD⊥BC,∴∠ADC=90°,∵∠C=30°,∴∠DAC=60°,∴∠DAE=∠EAC﹣∠DAC=5°【点评】本题考查三角形的内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(10分)如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)【分析】关键过转折点作出平行线,根据两直线平行,内错角相等,或结合三角形的外角性质求证即可.【解答】解:如图:(1)∠APC=∠PAB+∠PCD;证明:过点P作PF∥AB,则AB∥CD∥PF,∴∠APC=∠PAB+∠PCD(两直线平行,内错角相等).(2)∠APC+∠PAB+∠PCD=360°;(3)∠APC=∠PAB﹣∠PCD;(4)∵AB∥CD,∴∠POB=∠PCD,∵∠POB是△AOP的外角,∴∠APC+∠PAB=∠POB,∴∠APC=∠POB﹣∠PAB,∴∠APC=∠PCD﹣∠PAB.【点评】两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.25.(10分)已知:实数a、b满足条件+(ab﹣2)2=0.试求的值.【分析】根据+(ab﹣2)2=0,可以求得a、b的值,从而可以求得+++…+的值,本题得以解决.【解答】解:∵+(ab﹣2)2=0,∴a﹣1=0,ab﹣1=0,解得,a=1,b=2,∴+++…+=++…+=1﹣+﹣+…+=1﹣=.【点评】本题考查分式的化简求值、偶次方、算术平方根,解题的关键是明确分式化简求值的方法.26.(10分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.【分析】(1)设通道的宽度为x米.由题意(60﹣2x)(40﹣2x)=1500,解方程即可;(2)设种植“四季青”的面积为y平方米.【解答】解:(1)设通道的宽度为x米.由题意(60﹣2x)(40﹣2x)=1500,解得x=5或45(舍弃),答:通道的宽度为5米.(2)设种植“四季青”的面积为y平方米.由题意:y(30﹣)=2000,解得y=100,答:种植“四季青”的面积为100平方米.【点评】本题考查一元二次方程的应用,解题的关键是正确寻找等量关系,构建方程解决问题,属于中考常考题型.最新人教版七年级(下)期中模拟数学试卷(含答案)人教版七年级下学期期中考试数学试题(完卷时间:120分钟 满分:100分)一、选择题(共10小题,每小题2分,满分20分)1. 观察下面图案在A 、B 、C 、D 四幅图案中,能通过图案平移得到的是( )A. B. C. D.2. 下列四个数中,无理数是( )A.41.0 B.711 C.2- D.1.0- 3. 如图,在阴影区域内的点可以是( )A.()21,B.()23-,C.()23,-D.()23--, 4. 若b a <,则下列不等式中成立的是( )A.55+>+b aB.b a 55->-C.b a 33>D.33ba > 5. 下列台题中是假命题的是( )A.同旁内角互补,两直线平行B.在同一平面内,若直线b a ⊥,则a 与b 相交所成的角为直角C.如果两个角互补,那么这两个角是一个锐角,一个钝角D.平行于同一条直线的两条直线平行 6. 满足02019>+x 的最小整数解是( )A. 2020-B. 2019-C. 2018-D. 20207. 已知a ,b 满足方程组⎩⎨⎧=-=+43125b a b a ,则b a +的值为( )第1题图第3题图A. 4-B. 4C. 2-D. 28. 如图,半径为1的圆从表示3的点开始沿着数轴向左滚动一周,圆上的点A 与表示3的点重合,滚动一周后到达点B ,点B 表示的数是( )A.π2-B. π23-C. π23--D.π23+-9. 平面直角坐标系中,点()32,-A ,()41-,B ,经过点A 的直线y L //轴,若点C 为直线L 上的个动点,则当线段BC 的长度最小时,点C 的坐标为( )A.()41,B.()32--,C.()31,D.()42--, 10. 把m 12长的彩绳截成m 2或m 3的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A.1种B.2种C.3种D.4种二、填空题(共8小题,每小题3分,满分24分)11. 41的算术平方根为 .12. 命题“对顶角相等”,写成“如果……,那么……”是 .13. 已知⎩⎨⎧=-=21y x 是二元一次方程1=+ky x 的一组解,则=k .14. 如图,CD AB //,DE BC //,若 40=∠B ,则D ∠的度数是 .已知点()183--a a P ,,若点P 在y人教版七年级数学下册期中考试试题及答案一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分) 1.(3分)如图,与∠4是同旁内角的是( )A .∠1B .∠2C .∠3D .∠52.(3分)如列所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是( )A .B .C .D .3.(3分)下列说法正确的是( ) A .﹣5是25的平方根 B .25的平方根是﹣5C .﹣5是(﹣5)2的算术平方根D .±5是(﹣5)2的算术平方根第14题图4.(3分)如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)5.(3分)估算的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间6.(3分)如图所示,能判定直线AB∥CD的条件是()A.∠1=∠2B.∠3=∠4C.∠1+∠4=180°D.∠3+∠4=90°7.(3分)一根直尺和一块含有30°角的直角三角板如图所示放置,已知直尺的两条长边互相平行,若∠1=25°,则∠2等于()A.25°B.35°C.45°D.65°8.(3分)一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()A.第一次右拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐130°C.第一次左拐50°,第二次左拐130°D.第一次右拐50°,第二次左拐50°9.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b 的值为()A.2B.3C.4D.510.(3分)如图,在平面直角坐标系中,有若干个整数点(横、纵坐标均为整数),其顺序按图中方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0)……根据这个规律探索可得,第50个点的坐标为()A.(10,﹣5)B.(10,﹣1)C.(10,0)D.(10,1)二、仔细填一填,你一定很棒!(每小题3分,共18分)11.(3分)的平方根是,的算术平方根是.12.(3分)如图,不添加辅助线,请写出一个能判定AB∥CD的条件.13.(3分)=10.1,则±=.14.(3分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为.15.(3分)把命题“等角的补角相等”改写成“如果…那么…”的形式是.16.(3分)在平面直角坐标系中,y轴的左侧有一点P(x,y),且满足|x|=2,y2=9,则点P的坐标是.17.(3分)如图,将一个长方形条折成如图所示的形状,若已知∠1=100°,则∠2=°.18.(3分)如图,把直角梯形ABCD沿AD方向平移到梯形EFGH,GH=30cm,OG=10cm,OC=6cm,求阴影部分面积为cm2.三、精心答一答,你一定能超越!19.计算:(1)﹣﹣﹣|﹣3|(2)求27x3+125=0中x的值.20.已知3既是x﹣1的平方根,也是x﹣2y+1的立方根,求x2﹣y2的平方根.21.完成下面的证明(1)如图,FG∥CD,∠1=∠3,∠B=50°,求∠BDE的度数.解:∵FG∥CD(已知)∴∠2=又∵∠1=∠3,∴∠3=∠2(等量代换)∴BC∥∴∠B+=180°又∵∠B=50°∴∠BDE=.22.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请把△ABC先向右移动5个单位,再向下移动3个单位得到△A′B′C′,在图中画出△A′B′C′;(3)求△ABC的面积.23.(12分)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB =∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.2018-2019学年安徽省淮南市大通区七年级(下)期中数学试卷参考答案与试题解析一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.(3分)如图,与∠4是同旁内角的是()A.∠1B.∠2C.∠3D.∠5【分析】根据同位角、内错角、同旁内角、对顶角的定义逐个判断即可.【解答】解:A、∠1和∠4是内错角,不是同旁内角,故本选项错误;B、∠2和∠4是同位角,不是同旁内角,故本选项错误;C、∠3和∠4是同旁内角,故本选项正确;D、∠4和∠5是邻补角,不是同旁内角,故本选项错误;故选:C.【点评】本题考查了同位角、内错角、同旁内角、对顶角的定义的应用,能熟记同位角、内错角、同旁内角、对顶角的定义是解此题的关键,注意:数形结合思想的应用.2.(3分)如列所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.【解答】解:观察图形可知,图案B可以看作由“基本图案”经过平移得到.故选:B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选A、C、D.3.(3分)下列说法正确的是()A.﹣5是25的平方根B.25的平方根是﹣5C.﹣5是(﹣5)2的算术平方根D.±5是(﹣5)2的算术平方根【分析】根据正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,数a的正的平方根,叫做a的算术平方根进行分析即可.【解答】解:A、﹣5是25的平方根,说法正确;B、25的平方根是﹣5,说法错误;C、﹣5是(﹣5)2的算术平方根,说法错误;D、±5是(﹣5)2的算术平方根,说法错误;故选:A.【点评】此题主要考查了算术平方根和平方根,关键是掌握平方根的性质.4.(3分)如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【解答】解:根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选:D.【点评】解决本题解决的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3分)估算的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间【分析】估算确定出范围即可.【解答】解:∵4<5<9,∴2<<3,则<<1,故选:A.【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.6.(3分)如图所示,能判定直线AB∥CD的条件是()A.∠1=∠2B.∠3=∠4C.∠1+∠4=180°D.∠3+∠4=90°【分析】依据平行线的三条判定定理,进行判断.【解答】解:A、B、∠1与∠2,∠3与∠4都不是直线AB与CD形成的同位角,所以不能判断直线AB∥CD,故错误;C、根据对顶角相等,可得∠1=∠5,∠4=∠6,又∠1+∠4=180°,∴∠5+∠6=180°,根据同旁内角互补,两直线平行可得AB∥CD,故正确;D、∠3+∠4=90°,不符合平行线的判断条件,所以不能判断直线AB∥CD,故错误;故选:C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.(3分)一根直尺和一块含有30°角的直角三角板如图所示放置,已知直尺的两条长边互相平行,若∠1=25°,则∠2等于()A.25°B.35°C.45°D.65°【分析】根据平行线性质得出∠1=∠NFE=25°,∠2=∠NFG,求出∠EFG,即可求出答案.【解答】解:过F作FN∥AD,∵BC∥AD,∴BC∥AD∥FN,∴∠1=∠NFE=35°,∠2=∠NFG,∵∠G=90°,∠E=30°,∴∠EFG=60°,∴∠2=60°﹣25°=35°,故选:B.【点评】本题考查了平行线性质,三角形内角和定理的应用,关键是根据平行线性质得出∠1=∠NFE=25°,∠2=∠NFG.8.(3分)一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()A.第一次右拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐130°C.第一次左拐50°,第二次左拐130°D.第一次右拐50°,第二次左拐50°【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等.【解答】解:如图,第一次拐的角是∠1,第二次拐的角是∠2,由于平行前进,也可以得到∠1=∠2.故选:D.【点评】注意要想两次拐弯后,仍在原来的方向上平行前进,则拐的方向应相反,角度应相等.9.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b 的值为()A.2B.3C.4D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.(3分)如图,在平面直角坐标系中,有若干个整数点(横、纵坐标均为整数),其顺序按图中方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0)……根据这个规律探索可得,第50个点的坐标为()。

2020-2021七年级数学下期中一模试卷含答案 (3)

2020-2021七年级数学下期中一模试卷含答案 (3)
A.0个B.1个C.2个D.3个
7.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是( )
A.(2,﹣1)B.(4,﹣2)C.(4,2)D.(2,0)
8.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于( )
14.对于 定义一种新运算“☆”, ,其中 是常数,等式右边是通常的加法和乘法运算.已知 , ,则 的值为____.
15.若一个正数x的平方根是2a+1和4a-13,则a=____,x=____.
16.已知M是满足不等式 的所有整数的和,N是满足不等式x≤ 的最大整数,则M+N的平方根为________.
A.40°B.50°C.60°D.70°
12.如图,在 中, ,把 沿着直线BC的方向平移 后得到 ,连接AE,AD,有以下结论:① ;② ;③ ;④ .其中正确的结论有()
A.1个B.2个C.3个D.4个
二、填空题
13.如图,直线AB、CD相交OD,则AOF的度数为______.
9.B
解析:B
【解析】
【分析】
直接化简二次根式,得出 的取值范围,进而得出答案.
【详解】
∵m= =2+ ,
1< <2,
∴3<m<4,
故选B.
【点睛】
此题主要考查了估算无理数的大小,正确得出 的取值范围是解题关键.
10.A
解析:A
【解析】
【分析】
平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;
3.B
解析:B
【解析】
【分析】
根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,∠ABC=100º,进而求出∠CBE的度数.

【3套打包】上海民办新竹园中学七年级下册数学期中考试题

【3套打包】上海民办新竹园中学七年级下册数学期中考试题

七年级下学期期中考试数学试题(答案)一、选择题(共10小题,每小题3分,满分30分)1.4的算术平方根是 ( ) A.± 2 B. 2 C.±2 D.2 2.在平面直角坐标系中,点A(-2,a)位于x轴的上方,则a的值可以是( ) A.0 B.-1 C. 3 D.±33.下列实数:3,0,12,- 2 ,0.35,其中最小的实数是 ( )A.3 B.0 C.- 2 D.0.354.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上.若∠1=25°,则∠2的度数是 ( )A.25°B.30°C.35°D.60°5.下列命题中,假命题是 ( )A.若A(a,b)在x轴上,则B(b,a)在y轴上B.如果直线a,b,c满足a∥b,b∥c,那么a∥cC.两直线平行,同旁内角互补D.相等的两个角是对顶角6.如图是围棋棋盘的一部分,将它放置在某个平面直角坐标系中,若白棋②的坐标为(-3,-1),白棋④的坐标为(-2,-5),则黑棋①的坐标为 ( )A.(-1,-4) B.(1,-4) C.(3,1) D.(-3,-1) 7.如图,数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与5-11最接近的点是 ( )A.A B.B C.C D.D8.如图,点E在BC的延长线上,下列条件不能判定AB∥CD 的是 ( )A.∠3=∠4. B.∠B=∠DCE.C.∠1=∠2. D.∠D+∠DAB=180°.9.下列命题中,是真命题的是 ( )A.同位角相等 B.邻补角一定互补.C.相等的角是对顶角. D.有且只有一条直线与已知直线垂直.10.在平面直角坐标系中,点A( 1 , 1 )关于原点对称的点是 ( )A.( 1,-1)B.( -1 , 1)C.(-1 ,-1)D.( 1 , 1 )二、填空题(共6小题,每小题4分,满分24分)11.在实数:8,0,364,1.010 010 001,4.2·1·,π,247中,无理数有______个. 12.计算 ; .13.命题“平行于同一条直线的两条直线互相平行”的题设是__________________________,结论是____________________.14.如图,直线a ∥b ,AC ⊥AB ,∠1=60°,则∠2的度数是________.15.若(2a +3)2+b -2=0,则a b=________.16.已知点M(3,2)与点N(x ,y)在同一条垂直于x 轴的直线上,且点N 到x 轴的距离为5,那么点N 的坐标是______________.三、解答题(共3小题,每小题6分,满分18分)17.(1)16+38-(-5)2; (2)(-2)3+|1-2|×(-1)2 019-3125.18.(1)(x+5)2+16=80 (2)(x-1)2-9=019.如图,已知EF ∥AD ,∠1=∠2.求证∠DGA +∠BAC =180°.请将下列证明过程填写完整: 证明:∵EF ∥AD(已知),∴∠2=________(________________________________).又∵∠1=∠2(已知),∴∠1=∠3(________________).∴AB ∥________(________________________________).∴∠DGA +∠BAC =180°(________________________________).四、解答题(共3小题,每小题7分,满分21分) =9=|2-1|20.如图,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOD,且∠BOE=50°.求∠COF的度数.21.如图,将△ABC向右平移5个单位长度,再向下平移2个单位长度,得到△A′B′C′,请画出平移后的图形,并写出△A′B′C′各顶点的坐标.22.我们知道2是无理数,其整数部分是1,于是小明用2-1来表示2的小数部分.请解答下列问题:(1)如果5的小数部分为a,13的整数部分为b,求a+七年级下学期期中考试数学试题(答案)一、选择题(共10小题,每小题3分,满分30分)1.4的算术平方根是 ( )A.± 2 B. 2 C.±2 D.22.在平面直角坐标系中,点A(-2,a)位于x轴的上方,则a的值可以是( )A.0 B.-1 C. 3 D.±33.下列实数:3,0,12,- 2 ,0.35,其中最小的实数是 ( )A.3 B.0 C.- 2 D.0.354.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上.若∠1=25°,则∠2的度数是 ( )A.25°B.30°C.35°D.60°5.下列命题中,假命题是 ( )A .若A(a ,b)在x 轴上,则B(b ,a)在y 轴上B .如果直线a ,b ,c 满足a ∥b ,b ∥c ,那么a ∥cC .两直线平行,同旁内角互补D .相等的两个角是对顶角6.如图是围棋棋盘的一部分,将它放置在某个平面直角坐标系中,若白棋②的坐标为(-3,-1),白棋④的坐标为(-2,-5),则黑棋①的坐标为 ( )A .(-1,-4)B .(1,-4)C .(3,1)D .(-3,-1)7.如图,数轴上有A ,B ,C ,D 四点,根据图中各点的位置,所表示的数与5-11最接近的点是 ( )A .AB .BC .CD .D8.如图,点E 在BC 的延长线上,下列条件不能判定AB ∥CD 的是 ( )A .∠3=∠4.B .∠B =∠DCE .C .∠1=∠2.D .∠D+∠DAB =180°.9.下列命题中,是真命题的是 ( )A .同位角相等B .邻补角一定互补.C .相等的角是对顶角.D .有且只有一条直线与已知直线垂直.10.在平面直角坐标系中,点A ( 1 , 1 )关于原点对称的点是 ( )A.( 1,-1)B.( -1 , 1)C.(-1 ,-1)D.( 1 , 1 )五、填空题(共6小题,每小题4分,满分24分)11.在实数:8,0,364,1.010 010 001,4.2·1·,π,247中,无理数有______个. 12.计算 ; .13.命题“平行于同一条直线的两条直线互相平行”的题设是__________________________,结论是____________________.14.如图,直线a ∥b ,AC ⊥AB ,∠1=60°,则∠2的度数是________.15.若(2a +3)2+b -2=0,则a b=________.16.已知点M(3,2)与点N(x ,y)在同一条垂直于x 轴的直线上,且点N 到x 轴的距离为5,=9=|2-1|那么点N的坐标是______________.六、解答题(共3小题,每小题6分,满分18分)17.(1)16+38-(-5)2;(2)(-2)3+|1-2|×(-1)2 019-3125.18.(1)(x+5)2+16=80 (2)(x-1)2-9=019.如图,已知EF∥AD,∠1=∠2.求证∠DGA+∠BAC=180°.请将下列证明过程填写完整:证明:∵EF∥AD(已知),∴∠2=________(________________________________).又∵∠1=∠2(已知),∴∠1=∠3(________________).∴AB∥________(________________________________).∴∠DGA+∠BAC=180°(________________________________).七、解答题(共3小题,每小题7分,满分21分)20.如图,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOD,且∠BOE=50°.求∠COF的度数.21.如图,将△ABC向右平移5个单位长度,再向下平移2个单位长度,得到△A′B′C′,请画出平移后的图形,并写出△A′B′C′各顶点的坐标.22.我们知道2是无理数,其整数部分是1,于是小明用2-1来表示2的小数部分.请解答下列问题:(1)如果5的小数部分为a ,13的整数部分为b ,求a +七年级(下)数学期中考试试题【含答案】一、选择题(本大题12个小题,每小题4分,共48分,在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑)1.下面的四个图形中,∠1与∠2是对顶角的是2.点P(-2,-5)在A.第一象限B.第二象限C.第三象限D.第四象限3.估计5的值在A.1到2之间B.2到3之间C.3到4之间D.4到5之间4.下列方程组不是二元一次方程组的是A.⎩⎨⎧=+=+42634y x y xB.⎩⎨⎧=-=+44y x y x B.⎪⎩⎪⎨⎧=-=+141y x y x D.⎩⎨⎧=+=+25102553y x y x 5在,π,,,,27310414.1- 1.1·4·,3.212212221(每两个1之间多一个2),这些数中无理数的个数为A.3B.2C.5D.46.若点P ()13-+m m ,在x 轴上,则点P 的坐标为A.(0,-2)B.(4,0)C.(2,0)D.(0,-4)7.如图所示,由下列条件不能得到AB ∥CD 的是A.∠B+∠BCD=180°B.∠B=∠5C.∠3=∠4D.∠l=∠28.若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是A.(-3,4)B.(4,-3)C.(3,-4)D.(-4,3)9.下列说法中正确的是A.9的平方根是3B.4平方根是2±C.16的算术平方根是4D.-8的立方根是2±10.已知y x 、是二元一次方程组⎩⎨⎧=+=+83123y x y x 的解,那么y x +的值是A.0B.5C.-1D.11l.如图所示,AB ∥DE ,∠ABC=60°,∠CDE=150°,则∠BCD 的度数为A.50°B.60°C.40°D.30°12.如图所示,一只电子跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→>(0,1)→(1,1)→>(1,0)→…]且每秒跳动一个单位,那么第45秒时跳蚤所在位置的坐标是A.(5,6)B.(6,0)C.(6,3)D.(3,6)二、填空题(本大题6个小题,每小题4分,共24分,将答案直接填在答卷屮对应的橫线上)13.把命题“同位角相等,两直线平行”改写成“如果……那么……”的形式是________.14.已知y x 、是实数,且(),0322=-+-y x 则xy 的值是_______. 15.如果,,477.530732.13≈≈那么≈300_____.16.如图所示,△ABC 沿着有点B 到点E 的方向,平移到△DEF ,已知BC=7cm ,EC=4cm ,那么平移的距离为______cm.17.如图所示,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点______.18.永川区某工程公司积极参与“三城同创”建设,该工程公司下属的甲工程队、乙工程队分别承包了三城的A 工程、B 工程,甲工程队睛天需要14天完成,雨天工作效率下降30%;乙工程队晴天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工,两个工程队各工作了______天.三、解答题(本大题2个小题,19题10分,20题6分,共16分,解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上)19.计算(每题5分,共10分) (1)328323++-(2)已知(),1622=-x 求x 的值.四、解答题(本大题4个小题,每小题10分,共40分,解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上)20.(10分)已知,△ABC 三个顶点的坐标分别为:A(-3,-2)、B(-5,0)、C(-2,2).(1)在平面直角坐标系中画出△ABC ;(2)将△ABC 向右平移5个单位长度,再向上移2个单位长度,画出平移后的111C B A △;(3)计算111C B A △的面积。

2020-2021学年度七(下)期中数学参考答案

2020-2021学年度七(下)期中数学参考答案

2020-2021学年度七年级下学期期中数学参考答案一、选择题(每小题3分,共30分)1 2 3 4 5 6 7 8 9 10B BC C B BD C B A二、填空题(每小题3分,共18分)11.±6 12.垂线段最短 13.5 14. 157.5 15. 72 16. ±7 2三、解答下列各题(共8大题,共72分)17.(本题8分)(13258-2=3 …………4分(2()33132=3+ 3 +2- 3 =5 …………8分18.(本题8分)(1)2x3=54 x3=27 x=3 …………4分(2)(x﹣1)2=81 x﹣1=±9x=10 x=-8 …………8分19. (本题8分)解:∵某正数的两个不同的平方根分别是m -12和3m -4∴(m -12)+(3m -4)=0 …………3分∴m=2 ∴3m -4=8 …………5分∴这个数为643644. …………8分20. (本题8分)每空1分证明:∵∵DEH+∵EHG=180°∵ED∵AC(同旁内角互补,两直线平行)∵∵1=∵C(两直线平行,同位角相等)∵2=∵DGC(两直线平行,内错角相等)∵∵1=∵2,∵C=∵A∵∵A=∵DGC∵AB∵DF(同位角相等,两直线平行)∵∵AEH=∵F(两直线平行,内错角相等)21. (本题8分)(1)在所给的网格图中,画出这个平面直角坐标系;…………2分(2)∵画出平移后的三角形A1B1C1,点C1的坐标为(6,4);…………4分∵三角形ABC经过向右平移3个单位,再向上平移2个单位得到三角形A1B1C1……6分∵直接写出四边形BB1C1C的面积为15 .…………8分22.(本题10分)解:(1)设长方形纸片的长为3xcm,宽为2xcm,…………1分得3x·2x=294 …………3分∵x>0,∴x=7 …………4分∴长方形的长为21cm,宽为14cm∴2(21+14)=70cm …………5分答:纸片的周长为70cm。

20202021学年度第二学期期中考试初一年级数学试卷及答案

20202021学年度第二学期期中考试初一年级数学试卷及答案

2020-2021学年度第二学期期中考试初一年级数学试题分值:120分 考试时间:100分钟 命题人:一转眼,七年级下学期已过去一半,大家又获取了许多新的数学知识,提高了多方面的数学能力,现在是展示你的实力的时候,你可要尽情地发挥哦!祝你成功!一、精心选一选:(共8小题,每小题3分,共24分,请把符合要求的答案写在答题纸上.) 1、下列计算正确的是 ·········································································· ( ▲ ) A .a 4+a 3=a 7 B .a 4•a 3=a 12C .(a 4)3=a 7D .a 4÷a 3=a2、四边形的内角和为 ·········································································· ( ▲ )A .180°B .360°C .540°D .90° 3、已知:x m =3,则x 2m = ···································································· ( ▲ ) A .6 B .9 C .12 D .18 4、如图,直线a 、b 被直线c 所截,若b a //,︒=∠401,则2∠的度数为 ···· ( ▲ ) A .140°B .220°C .50°D .40°5、下列由左到右的变形中,因式分解正确的是 ········································· ( ▲ ) A .x 2﹣1=(x +1)(x ﹣1) B .(x +1)2=x 2+2x +1 C .x 2﹣2x +1=x (x ﹣2)+1 D .(x +1)(x ﹣1)=x 2﹣16、下列长度的三根木棒首尾相接,不能做成三角形框架的是 ······················· ( ▲ )A .4cm 、7cm 、3cmB .7cm 、3cm 、8cmC .5cm 、6cm 、7cmD .2cm 、4cm 、5cm7、已知a =0)21(-,b =23-,c =2)2(--,则a 、b 、c 的大小关系为 ··········· ( ▲ ) A .c <b <aB .a <b <cC .b <a <cD .b <c <a8、图①是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是 ···················································································· ( ▲ ) A .ab B .a 2+2ab +b 2C .a 2﹣b 2D .a 2﹣2ab +b 2二、细心填一填:(共10小题,每小题3分,共30分,请把符合要求的答案写在答题纸上.) 9、生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.00000023cm .,这个数用科学记数法可表示为 ▲ . 10、已知:a m =10,a n =2,则a m +n = ▲ .11、在二元一次方程12=-y x 中,当3=x 时,则=y ▲ .12、如图,在五边形ABCDE 中,若∠1+∠2+∠3+∠4=280°,则∠D = ▲ °.13、若x 2+x +m 是一个完全平方式,则m 的值为 ▲ .14、将一张长方形纸片按如图所示折叠, 如果∠1=55°,那么∠2= ▲ . 15、计算:201920182)21(⋅-= ▲ .16、如图,在△ABC 中,已知点D 、E 、F 分别是BC 、AD 、CE 的中点,且S △ABC =10cm 2,则阴影部分的面积为 ▲ cm 2. 17、已知关于x ,y 的方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解是⎩⎨⎧==14y x ,则关于x ,y 的方程组⎩⎨⎧=--=--222111)1()1(c y b x a c y b x a 的解是 ▲ . 18、如图,Rt △AOB 和Rt △COD 中,∠AOB =∠COD =90°,∠B =40°,∠C =60°,点D 在边OA 上,将图中的△COD 绕点O 按每秒70°的速度沿顺时针方向旋转一周,在旋转的过程中,在第 ▲ 秒时,边CD 恰好与边AB 平行.a bc21第4题图第8题图①②第12题图12第14题图第18题图第16题图初一年级数学试题答题纸一、精心选一选:(每题3分,共24分)二、细心填一填:(每空3分,共30分)9. ; 10. ; 11. ; 12. ; 13. ; 14. ; 15. ; 16. ; 17. ; 18. ; 三、解答题(共66分)19、计算:(每题4分,共12分)(1) )2)(2(y x y x -- (2) )32)(32(b a b a -+(3) 3242)2(a a a -+⋅20、把下列各式分解因式:(每题4分,共8分)(1)a 2﹣b 2 (2) 3x 3﹣12x 2y +12xy 221、解方程组:(每题4分,共8分) (1)⎩⎨⎧=+=+82352y x y x (2)⎩⎨⎧=+=-3321123y x y x22、(本题满分6分) 先化简,再求值:)2)(2()32(2y x y x y x -+-+,其中x =31-,y =1.23、(本题满分6分) 已知方程组⎩⎨⎧-=-=+24155by x y ax ,由于甲看错了方程①中的a 得到方程的解为⎩⎨⎧-=-=113y x ,乙看错了方程②中的b 得到方程组的解为⎩⎨⎧==45y x ,求ba 的值.24、(本题满分5分) 如图,在边长为1个单位的正方形网格中,△ABC 经过平移后得到△A ′B ′C ′,图中标出了点B 的对应点B ′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题:座位号(1)画出△A ′B ′C ′;(2)画出△ABC 的高BD ;(3)连接AA ′、CC ′,那么AA ′与CC ′的关系是 ,线段AC 扫过的图形的面积为 .25、(本题满分6分)盐城市为加快新农村建设,建设美丽乡村,对A 、B 两类村庄进行了全面改建.根据预算,建设一个A 类美丽村庄和一个B 类美丽村庄共需资金270万元;建设了2个A 类村庄和5个B 类村庄共投入资金1020万元.(1)建设一个A 类美丽村庄和一个B 类美丽村庄所需的资金分别是多少万元? (2)亭湖区改建3个A 类美丽村庄和7个B 类美丽村庄共需资金多少万元?26、(本题满分7分)阅读下列文字:对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式,例如:由图1可以得到223))(2(b ab a b a b a ++=++.请解答下列问题:(1)写出图2中所表示的数学等式 ;(2)利用(1)中所得到的结论,解决问题:已知6=++c b a ,11=++ca bc ab ,求222c b a ++的值;(3)小明同学用3张边长为a 的正方形,2张边长为b 的正方形,5张边长分别为a ,b 的长方形纸片重新拼出一个长方形,在虚线框内画出示意图,并写出该长方形较长一边的边长为 .(1)若BC 是∠ABN 的平分线,BC 的反方向延长线与∠BAO 的平分线交与点D . ①若∠BAO =60°,则∠D =_______°.②猜想:∠D 的度数是否随A ,B 的移动发生变化?并说明理由.(2)如图2,若∠OAD =53∠OAB ,∠NBC =53∠NBA ,则∠D =_______°. (3)若将∠MON =90°改为∠MON =120°(如图3),∠OAD =n m ∠OAB ,∠NBC =nm∠NBA ,其余条件不变,则∠D =_________(用含m ,n 的代数式表示,其中m <n ).图1 图2A OB NM DC图1A O BNMDC图2AO BNMDC图3。

2020-2021七年级数学下期中模拟试卷(附答案) (5)

2020-2021七年级数学下期中模拟试卷(附答案) (5)

2020-2021七年级数学下期中模拟试卷(附答案) (5)一、选择题1.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是( ) A .1600名学生的体重是总体 B .1600名学生是总体C .每个学生是个体D .100名学生是所抽取的一个样本2.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .93.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为 A .8374x yx y+=⎧⎨+=⎩B .8374y x y x -=-⎧⎨-=-⎩C .8374x y x y -=⎧⎨-=-⎩D .8374x yx y+=⎧⎨-=⎩4.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x x x x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-15.下列图形中,1∠和2∠的位置关系不属于同位角的是( )A .B .C .D .6.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4 D .()8,47.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行8.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y xy =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y ==9.如果a >b ,那么下列各式中正确的是( ) A .a ﹣2<b ﹣2B .22a b p C .﹣2a <﹣2bD .﹣a >﹣b10.如图,下列能判断AB ∥CD 的条件有 ( )①∠B +∠BCD =180° ②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1B .2C .3D .411.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍 B .纵向拉伸为原来的2倍 C .横向压缩为原来的12D .纵向压缩为原来的1212.过一点画已知直线的垂线,可画垂线的条数是( ) A .0B .1C .2D .无数二、填空题13.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a ,则2x y +的值为______.14.已知12x y =⎧⎨=⎩是关于x 、y 的二元一次方程3210mx y --=的解,则m=__________.15.不等式2(1-x )-4<0的解集是____________16.关于 x 的不等式 bx a < 的解集为 2x >-,写出一组满足条件的实数 a ,b 的值:a = _________,b = ___________.17.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.18.比较大小1-52______12-.(填“>”、“<”或“=”)19.已知点P的坐标(3-a,3a-1),且点P到两坐标轴的距离相等,则点P的坐标是_______________.20.不等式组125x ax x->⎧⎨->-⎩有3个整数解,则a的取值范围是_____.三、解答题21.解不等式(组):(1)解不等式5132xx-+>-,并把它的解集表示在数轴上;(2)解不等式组:253(2)1210.35x xx+≥+⎧⎪-⎨+>⎪⎩,22.如图,AD//BC,∠A=∠C.求证:AB//DC.23.在学习了“普查与抽样调查”之后,某校八(1)班数学兴趣小组对该校学生的视力情况进行了抽样调查,并画出了如图所示的条形统计图.请根据图中信息解决下列问题:(1)本次抽查活动中共抽查了名学生;(2)已知该校七年级、八年级、九年级学生数分别为360人、400人、540人.①试估算:该校九年级视力不低于4.8的学生约有名;②请你帮忙估算出该校视力低于4.8的学生数.24.为弘扬中华传统文化,某校组织八年级8000名学生参加汉字听写大赛.为了解学生整体听写能力,从中抽取部分学生的成绩(得分取正整数,满分为100分)进行统计分析,得到如下所示的频数分布表:分数段50.5~60.560.5~70.570.5~80.580.5~90.590.5~100.5频数163050m24n所占百分比8%15%25%40%%请根据尚未完成的表格,解答下列问题:(1)本次抽样调查的样本容量为___ _,表中m=_ ,n= _;(2)补全如图所示的频数分布直方图;(3)若成绩超过80分为优秀,则该校八年级学生中汉字听写能力优秀的约有多少人?25.某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)在这次抽样调查中,共抽查了多少名学生?(2)请在图②中把条形统计图补充完整;(3)求出扇形统计图中“D级”部分所对应的扇形圆心角的大小;(4)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、1600名学生的体重是总体,故A正确;B、1600名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.3.C解析:C【解析】【分析】设有x人,物品价值y钱,根据题意相等关系:(1)8×人数-3=物品价值;(2)7×人数+4=物品价值,据此可列方程组.【详解】解:设有x人,物品价格为y钱,根据题意:8374x y x y -=⎧⎨-=-⎩故选C . 【点睛】此题主要考查列方程组解应用题,找出题目中的等量关系,列出相应的方程组是解题的关键.4.D解析:D 【解析】 【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可. 【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=, 去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=,去分母得:2210x x --=,代入公式得:1x ==解得:3411x x ==经检验1x =综上,所求方程的解为1+-1. 故选D. 【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.5.D解析:D 【解析】 【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可. 【详解】解:A .根据根据同位角的特征得,∠1和∠2是同位角. B .根据根据同位角的特征得,∠1和∠2是同位角. C .根据根据同位角的特征得,∠1和∠2是同位角.D.由图可得,∠1和∠2不是同位角.故选:D.【点睛】本题主要考查了同位角,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.6.C解析:C【解析】【分析】根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.【详解】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.7.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可.详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确.故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.8.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.9.C解析:C【解析】A.不等式的两边都减2,不等号的方向不变,故A错误;B.不等式的两边都除以2,不等号的方向不变,故B错误;C.不等式的两边都乘以−2,不等号的方向改变,故C正确;D.不等式的两边都乘以−1,不等号的方向改变,故D错误.故选C.10.C解析:C【解析】【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD 这两条直线,故是错误的.11.B解析:B【解析】【分析】根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y轴变长,即可得出结论.【详解】如果将一个图形上各点的横坐标不变,纵坐标乘以2,则这个图形发生的变化是:纵向拉伸为原来的2倍.故选:B.【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.12.B解析:B 【解析】 【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答. 【详解】在平面内,过一点有且只有一条直线与已知直线垂直, 故选:B 【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.二、填空题13.3【解析】【分析】利用平方根立方根的定义求出x 与y 的值即可确定的值【详解】解:根据题意的2a+1+3-4a=0解得a=2∴故答案为:3【点睛】本题考查了平方根和立方根熟练掌握相关的定义是解题的关键解析:3 【解析】 【分析】利用平方根、立方根的定义求出x 与y 的值. 【详解】解:根据题意的2a+1+3-4a=0, 解得a=2,∴25,8x y ==-,∴=,故答案为:3. 【点睛】本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.14.【解析】【分析】把与的值代入方程计算即可求出的值【详解】解:把代入二元一次方程得:解得:故答案为:【点睛】此题考查了二元一次方程的解方程的解即为能使方程左右两边相等的未知数的值解析:53【解析】 【分析】把x 与y 的值代入方程计算即可求出m 的值. 【详解】解:把12x y =⎧⎨=⎩代入二元一次方程3210mx y --=,得:32210m -?=,解得:53m =. 故答案为:53【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.x>-1【解析】【分析】先将不等式左边去括号进行整理再利用不等式的基本性质将两边不等式同时加2再除以-2不等号的方向改变【详解】解:2(1-x)-4<02-2x-4<0-2x-2<0-2x<2x>-解析:x >-1 【解析】 【分析】先将不等式左边去括号进行整理,再利用不等式的基本性质,将两边不等式同时加2再除以-2,不等号的方向改变. 【详解】 解:2(1-x)-4<0 2-2x-4<0 -2x-2<0 -2x<2 x>-1.故答案为:x>-1. 【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.16.【解析】【分析】通关观察解不等式下一步为化系数为1且解集为说明据此可写出ab 的值【详解】解:解不等式下一步为化系数为1且解集为说明∴可取则故答案为:2(答案不唯一)【点睛】此题考查运用不等式的性质解 解析:1-【解析】 【分析】通关观察解不等式bx a <下一步为化系数为1,且解集为2x >-,说明0b <,2ab=-,据此可写出a ,b 的值. 【详解】解:解不等式bx a <下一步为化系数为1,且解集为2x >-,说明0b <,2a b=-, ∴可取1b =-,则2a =,故答案为: 2,1-.(答案不唯一)【点睛】 此题考查运用不等式的性质解一元一次不等式,不等式的性质为:①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;②不等式性质2::不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变.17.15【解析】【分析】由题意可知阴影部分为长方形根据平移的性质求出阴影部分长方形的长和宽即可求得阴影部分的面积【详解】∵边长为6cm 的正方形ABCD 先向上平移3cm∴阴影部分的宽为6-3=3cm∵向右解析:15【解析】【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm 的正方形ABCD 先向上平移3cm ,∴阴影部分的宽为6-3=3cm ,∵向右平移1cm ,∴阴影部分的长为6-1=5cm ,∴阴影部分的面积为3×5=15cm 2. 故答案为15.【点睛】本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.18.<【解析】【分析】首先比较进而得出答案【详解】解:∵∴∴故答案为:【点睛】此题主要考查了实数比较大小正确比较与是解题关键解析:<【解析】【分析】首先比较11<-,进而得出答案 .【详解】2>,∴2-,∴11<-,∴1122-<-. 故答案为:<.【点睛】此题主要考查了实数比较大小, 正确比较1-1-是解题关键 .19.(22)或(4-4)【解析】【分析】点P 到x 轴的距离表示为点P 到y 轴的距离表示为根据题意得到=然后去绝对值求出x 的值再写出点P 的坐标【详解】解:∵点P 到两坐标轴的距离相等∴=∴3a -1=3-a 或3a解析:(2,2)或(4,-4).【解析】【分析】点P 到x 轴的距离表示为31a -,点P 到y 轴的距离表示为3a -,根据题意得到31a -=3a -,然后去绝对值求出x 的值,再写出点P 的坐标.【详解】解:∵点P 到两坐标轴的距离相等 ∴31a -=3a -∴3a-1=3-a 或3a-1=-(3-a)解得a=1或a=-1当a=1时,3-a=2,3a-1=2;当a=-1时,3-a=4,3a-1=-4∴点P 的坐标为(2,2)或(4,-4).故答案为(2,2)或(4,-4).【点睛】本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系.点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;①到x 轴的距离与纵坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.20.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a 的不等式从而求出a 的范围【详解】解不等式x ﹣a >0得 解析:﹣2≤a <﹣1.【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式x ﹣a >0,得:x >a ,解不等式1﹣x >2x ﹣5,得:x <2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、 0、1,则﹣2≤a <﹣1,故答案为:﹣2≤a <﹣1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题21.(1)3x <,数轴见解析;(2)1x ≤-【解析】【分析】(1)先去分母再移项,再合并同类项,最后系数化为一即可得到答案;(2)对不等式组的第一个不等式先去括号再移项求解即可得到答案,对第二个不等式先去分母再求解即可得到,最后取两个不等式的公共部分解即可得到答案;【详解】解:(1)5132x x -+>- 去分母,得5226x x -+>-移项,得2652x x ->-+-合并同类项,得3x ->-.两边都除以-1,得3x <.这个不等式的解集在数轴上的表示如图所示:(2)解:253(2)121035x x x +≥+⎧⎪-⎨+>⎪⎩ 化解为:23655(12)30x x x -≥-⎧⎨-+>⎩, 即:145x x ≤⎧⎪⎨<⎪⎩在同一数轴上表示不等式组的两个不等式的解集,如图.所以,原不等式组的解集是1x ≤-;【点睛】本题主要考查了解不等式与解不等式组,熟记解不等式的步骤与解不等式组的步骤是解题的关键,解不等式组的时候注意的最后的结果取公共部分.22.证明见解析.【解析】【分析】根据AD ∥BC 得到∠C=∠CDE ,再根据∠A=∠C ,利用等量替换得到∠A=∠CDE 即可判定;【详解】证明:∵AD ∥BC(已知),∴∠C=∠CDE(两直线平行,内错角相等),∵∠A=∠C(已知),∴∠A=∠CDE(等量代换),∴AB ∥CD(同位角相等,两直线平行);【点睛】本题主要考查了平行四边形的性质和判定,掌握直线平行内错角相等的性质和同位角相等两直线平行的判定法则是解题的关键.23.(1)145;(2)①216,②该校视力低于4.8的学生数为604人.【解析】(1)求出各组的人数的和即可;(2)①利用九年级的人数乘以对应的比例即可求解;②利用各班的人数乘以对应的比例求解.详解:(1)本次抽查的人数是:10+35+25+25+30+20=145(人),故答案是:145;(2)①九年级视力不低于4.8的学生约有540×2030+20=216(人), 故答案是:216;②该校视力低于4.8的学生数360×1045+400×2550+540×3050=604(人). 点睛:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.24.(1)200、80、12;(2)见详解(3)该校八年级学生中汉字听写能力优秀的约有4160人.【解析】【分析】(1)根据第一组的频数是16,频率是0.08,即可求得总数,即样本容量;(2)根据(1)的计算结果即可作出直方图;(3)利用总数8000乘以优秀的所占的频率即可.【详解】解:(1)样本容量是:16÷0.08=200;样本中成绩的中位数落在第四组;m=200×0.40=80,% n=24200=0.12,则n=12故答案为:200、80、12;(2)补全频数分布直方图,如下:(3)8000×(0.4+0.12)=4160(人).答:该校八年级学生中汉字听写能力优秀的约有4160人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25.(1)这次抽取的学生数为120人;(2)补图见解析;(3)“D级”部分所对应的扇形圆心角为36°;(4)有450份.【解析】分析:(1)根据A级人数为24人,以及在扇形图中所占比例为20%,24÷20%即可得出抽查了多少名学生;(2)根据C级在扇形图中所占比例为30%,得出C级人数为:120×30%=36人,即可得出D级人数,补全条形图即可;(3)求得“D级”部分所占的百分数,再乘360°即可求出答案;(4)根据A级和B级作品在样本中所占比例为:(24+48)÷120×100%=60%,即可得出该校这次活动共收到参赛作品750份,参赛作品达到B级以上的份数.详解:(1)∵A级人数为24人,在扇形图中所占比例为20%,∴这次抽取的学生数为:24÷20%=120人;(2)根据C级在扇形图中所占比例为30%,得出C级人数为:120×30%=36人,∴D级人数为:120﹣36﹣24﹣48=12人,如图所示:(3)360°×12120=36°答:“D级”部分所对应的扇形圆心角为36°;(4)∵A级和B级作品在样本中所占比例为:(24+48)÷120×100%=60%,∴该校这次活动共收到参赛作品750份,参赛作品达到B级以上有750×60%=450份.点睛:考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
解:∵点A(0,1)的对应点C的坐标为(4,2),
即(0+4,1+1),
∴点B(3,3)的对应点D的坐标为(3+4,3+1),
即D(7,4);
故选:C.
【点睛】
此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.
4.D
解析:D
【解析】
分析:被开方数是从1到n再到1(n≥1的连续自然数),算术平方根就等于几个1.
20.已知点 的坐标(3-a,3a-1),且点 到两坐标轴的距离相等,则点 的坐标是_______________.
三、解答题
21.A,B两种型号的空调,已知购进3台A型号空调和5台B型号空调共用14500元;购进4台A型号空调和10台B型号空调共用25000元.
(1)求A,B两种型号空调的进价;
(2)若超市准备用不超过54000元的资金再购进这两种型号的空调共30台,求最多能购进A种型号的空调多少台?
故选:C
【点睛】
本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD这两条直线,故是错误的.
12.B
解析:B
【解析】
【分析】
把 代入方程组 ,求出m、n的值,再代入要求的代数式求值即可.
【详解】
把 代入 得: ,
解得:m=-1,n=2,
∴n-m=2-(-1)=3.
故选:B.
解析:4
【解析】
【分析】
根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得线段AB向右平移2个单位,向上平移2个单位,进而可得a、b的值.
【详解】
∵A、B两点的坐标分别为(1,0)、(0,2),平移后A1(3,b),B1(a,4),
∴线段AB向右平移2个单位,向上平移2个单位,
∴a=0+2=2,b=0+2=2,
A.a﹣2<b﹣2B. C.﹣2a<﹣2bD.﹣a>﹣b
7.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )
A.20°B.30°C.40°D.50°
8.一个自然数的算术平方根是x,则它后面一个自然数的算术平方根是().
A.x+1B.x2+1C. D.
9.已知关于 的不等式组 恰有3个整数解,则 的取值范围为( )
解:设黑色皮块和白色皮块的块数依次为x,y.
则 ,
解得 ,
即黑色皮块和白色皮块的块数依次为12块、20块.
故选D.
6.C
解析:C
【解析】
A.不等式的两边都减2,不等号的方向不变,故A错误;
B.不等式的两边都除以2,不等号的方向不变,故B错误;
C.不等式的两边都乘以−2,不等号的方向改变,故C正确;
D.不等式的两边都乘以−1,不等号的方向改变,故D错误.
【点睛】
本题考查了二元一次方程组的解,能得出m,n的值是解此题的关键.
二、填空题
13.105°【解析】【分析】先过点作根据同角的余角相等得出根据角平分线的定义得出再设根据可得根据可得最后解方程组即可得到进而得出【详解】解:如图过点作即又平分平分设则中由可得①由可得②由①②联立方程组解
解析:105°
【解析】
故选D.
2.D
解析:D
【解析】
试题解析:∠A比∠B大30°,
则有x=y+30,
∠A,∠B互余,
则有x+y=90.
故选D.
3.C
解析:C
【解析】
【分析】
根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.
①∠B+∠BCD=180°②∠1 =∠2③∠3 =∠4④∠B=∠5
A.1B.2C.3D.4
12.已知关于x,y的二元一次方程组 的解是 ,则n-m的值是( )
A.6B.3C.-2D.1
二、填空题
13.如图,已知AM//CN,点B为平面内一点,ABBC于B,过点B作BDAM于点D,点E、F在DM上,连接BE、BF、CF,BF平分DBC,BE平分ABD,若FCBNCF180,BFC3DBE,则EBC的度数为______.
②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.
③经过直线外一点,有且只有一条直线与这条直线平行,正确.
④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.
故选C.
【点睛】
本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
故选D.
9.A
解析:A
【解析】
【分析】
先根据一元一次不等式组解出x的取值范围,再根据不等式组只有三个整数解,求出实数a的取值范围即可.
【详解】

解不等式①得:x≥-1,
解不等式②得:x<a,
∵不等式组 有解,
∴-1≤x<a,
∵不等式组只有三个整数解,
∴不等式的整数解为:-1、0、1,
∴1<a≤2,
故选:A
故选C.
7.C
解析:C
【解析】
【分析】
由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.
【详解】
∵∠1=50°,
∴∠3=∠1=50°,
∴∠2=90°−50°=40°.
故选C.
【点睛】
本题主要考查平行线的性质,熟悉掌握性质是关键.
8.D
解析:D
【解析】
一个自然数的算术平方根是x,则这个自然数是 则它后面一个数的算术平方根是 .
14.如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠l=58°,则∠2=___________.
15.如图,AB∥CD,∠1=64°,FG平分∠EFD,则∠2=_____度.
16.观察下列各式: , , ,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.
3.在平面直角坐标系中,点 的坐标 ,点 的坐标 ,将线段 平移,使得 到达点 ,点 到达点 ,则点 的坐标是()
A. B. C. D.
4.请你观察、思考下列计算过程:因为112=121,所以 =11:,因为1112=12321所以 =111…,由此猜想 =( )
A.111111B.1111111C.11111111D.111111111
【分析】
先过点 作 ,根据同角的余角相等,得出 ,根据角平分线的定义,得出 ,再设 , ,根据 ,可得 ,根据 ,可得 ,最后解方程组即可得到 ,进而得出 .
【详解】
解:如图,过点 作 ,


即 ,
又 ,


平分 , 平分 ,
, ,

设 , ,
则 , , , ,

, ,

中,由 ,
可得 ,①
由 ,
可得 ,②
11.C
解析:C
【解析】
【分析】
判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.
【详解】
①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;
②∠1 =∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;
③∠3 =∠4,内错角相等,可判断AB∥CD;
④∠B=∠5,同位角相等,可判断AB∥CD
【点睛】
本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
10.C
解析:C
【解析】
【分析】
根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.
【详解】
解:①两点之间,线段最短,正确.
解析:32°
【解析】
【分析】
根据“在同一平面内,垂直于两条平行线中的一条直线,那么必定垂直于另一条直线”推知AM⊥a;然后由平角是180°、∠1=58°来求∠2的度数即可.
【详解】
∵直线a∥b,AM⊥b,
∴AM⊥a;
∴∠2=180°-90°-∠1;
∵∠1=58°,
∴∠2=32°.
故答案是:32°.
15.32°【解析】∵AB//CD∴∠EFD=∠1=64°∵FG平分∠EFD∴∠GFD=∠EFD=32°∵AB//CD∴∠2=∠GFB=32°点睛:本题主要考查平行线的性质角平分线的定义熟记平行线的性质是
22.王老师为学校购买运动会的奖品后,回学校向后勤处赵主任交账说:我买了两种书共105本,单价分别为8元和12元,买书前我领了1600元,现在还余518元.赵主任算了一下说:你肯定搞错了.
(1)赵主任为什么说他搞错了,请你用方程组的知识给予解释;
(2)王老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本,但笔记本的单价已模糊不清,只能辨认出应为小于5元的整数,笔记本的单价可能为多少?
17.如图,点 的坐标分别是 、 ,把线段 平移至 时得到点 、 两点的坐标分别为 , ,则 的值是__________.
18.若一个正数x的平方根是2a+1和4a-13,则a=____,x=____.
19.如图,将边长为6cm的正方形ABCD先向上平移3cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为______cm2.
解析:
【解析】Байду номын сангаас
【分析】
观察分析可得 , , ,则将此规律用含自然数n(n≥1)的等式表示出来是
【详解】
由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是
相关文档
最新文档