数学中几何辅助线的常规作法集锦

合集下载

全等三角形几何证明常用辅助线

全等三角形几何证明常用辅助线

几何证明-常用辅助线(一)中线倍长法:例1 、求证:三角形一边上的中线小于其他两边和的一半。

已知:如图,△ABC 中,AD 是BC 边上的中线,求证:AD ﹤21(AB+AC) 分析:要证明AD ﹤21(AB+AC),就是证明AB+AC>2AD ,也就是证明两条线段之和大于第三条线段,而我们只能用“三角形两边之和大于第三边”,但题中的三条线段共点,没有构成一个三角形,不能用三角形三边关系定理,因此应该进行转化。

待证结论AB+AC>2AD 中,出现了2AD ,即中线AD 应该加倍。

证明:延长AD 至E ,使DE=AD ,连CE ,则AE=2AD 。

在△ADB 和△EDC 中,AD =DE ∠ADB =∠EDC BD =DC∴△ADB ≌△EDC(SAS) ∴AB=CE又 在△ACE 中,AC+CE >AE∴AC+AB >2AD ,即AD ﹤21(AB+AC)小结:(1)涉及三角形中线问题时,常采用延长中线一倍的办法,即中线倍长法。

它可以将分居中线两旁的两条边AB 、AC 和两个角∠BAD 和∠CAD 集中于同一个三角形中,以利于问题的获解。

课题练习:ABC ∆中,AD 是BAC ∠的平分线,且BD=CD ,求证AB=AC 例2:中线一倍辅助线作法 △ABC 中方式 AD 是BC 边中线方式2:间接倍长作CF ⊥AD 于F ,延长MD 到N , 作BE ⊥AD 使DN=MD , 连接BE 连接CD 例3:△ABC 中,AB=5,AC=3,求中线例4:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE 课堂练习:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 交AC 于F ,求证:AF=EF例5:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC.求证:AE 平分BAC ∠C 第 1 题图A DBCE图2-1课堂练习:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE 作业:1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。

中考数学几何辅助线大全及常考题型解析

中考数学几何辅助线大全及常考题型解析

中考数学几何辅助线大全及常考题型解析中考数学几何辅助线作法及常考题型解析第一部分常见辅助线做法等腰三角形:1.作底边上的高,构成两个全等的直角三角形2.作一腰上的高; 3.过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。

梯形1.垂直于平行边2.垂直于下底,延长上底作一腰的平行线3.平行于两条斜边4.作两条垂直于下底的垂线5.延长两条斜边做成一个三角形菱形1.连接两对角2.做高平行四边形1.垂直于平行边2.作对角线——把一个平行四边形分成两个三角形3.做高——形内形外都要注意矩形1.对角线2.作垂线很简单。

无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。

还有一些关于平方的考虑勾股,A字形等。

三角形图中有角平分线,可向两边作垂线(垂线段相等)。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

解几何题时如何画辅助线①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。

②在比例线段证明中,常作平行线。

③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

初中几何常用辅助线做法

初中几何常用辅助线做法

常用辅助线做法➢考点考向1. 与角平分线有关的辅助线2. 与线段长度相关的辅助线3. 与等腰、等边三角形相关的辅助线4. 与中点相关的辅助线5. 构造一线三垂直(等角)6. 等面积法常见辅助线的作法总结1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。

5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.6)构造等腰三角形或作等腰三角形的高利用“三线合一”性质。

7)作三角形的中位线。

8)引平行线构造全等三角形。

9)特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.(等面积法)10)构造三垂直模型。

✧考点一:与角平分线有关的辅助线(1)可向两边作垂线。

(2)可构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形【例1】已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM上滑动,两直角边分别与OA、OB交于C、D,PC和PD有怎样的数量关系,请说明理由.✧考点二:与线段长度有关的辅助线(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等证明余下的等于另一条线段即可(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

全等三角形辅助线系列之三---截长补短类辅助线作法大全

全等三角形辅助线系列之三---截长补短类辅助线作法大全

全等三角形辅助线系列之三---截长补短类辅助线作法大全-CAL-FENGHAI.-(YICAI)-Company One1全等三角形辅助线系列之三 与截长补短有关的辅助线作法大全一、截长补短法构造全等三角形截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想.所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段等于已知的两条较短线段中的一条,然后证明其中的另一段与已知的另一条线段相等;所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等,然后求出延长后的线段与最长的已知线段的关系.有的是采取截长补短后,使之构成某种特定的三角形进行求解.截长补短法作辅助线,适合于证明线段的和、差、倍、分等类的题目.典型例题精讲【例1】 如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.【解析】法一:如图所示,延长AB 至E 使BE BD =,连接ED 、EC .由AC AB BD =+知AE AC =,而60BAC ∠=︒,则AEC ∆为等边三角形.注意到EAD CAD ∠=∠,AD AD =,AE AC =, 故AED ACD ∆∆≌.从而有DE DC =,DEC DCE ∠=∠,故2BED BDE DCE DEC DEC ∠=∠=∠+∠=∠.所以20DEC DCE ∠=∠=︒,602080ABC BEC BCE ∠=∠+∠=︒+︒=︒. 法二:在AC 上取点E ,使得AE AB =,则由题意可知CE BD =. 在ABD ∆和AED ∆中,AB AE =,BAD EAD ∠=∠,AD AD =, 则ABD AED ∆∆≌,从而BD DE =, 进而有DE CE =,ECD EDC ∠=∠, AED ECD EDC ∠=∠+∠=2ECD ∠. 注意到ABD AED ∠=∠,则:1318012022ABC ACB ABC ABC ABC BAC ∠+∠=∠+∠=∠=︒-∠=︒,故80ABC ∠=︒.【答案】见解析.【例2】 已知ABC ∆中,60A ∠=︒,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【解析】BE CD BC +=,理由是:在BC 上截取BF BE =,连结OF , 利用SAS 证得BEO ∆≌BFO ∆,∴12∠=∠,∵60A ∠=︒,∴1901202BOC A ∠=︒+∠=︒,∴120DOE ∠=︒,∴180A DOE ∠+∠=︒,∴180AEO ADO ∠+∠=︒, ∴13180∠+∠=︒,∵24180∠+∠=︒,∴12∠=∠,∴34∠=∠, 利用AAS 证得CDO ∆≌CFO ∆,∴CD CF =, ∴BC BF CF BE CD =+=+.【答案】见解析.【例3】 如图,已知在△ABC 内,60BAC ∠=︒,40C ∠=︒,P 、Q 分别在BC 、CA 上,并且AP 、BQ 分别是∠BAC 、∠ABC 的角平分线,求证:BQ AQ AB BP +=+.DOECB A4321FDOE CB A【解析】延长AB 至D ,使BD BP =,连DP .在等腰△BPD 中,可得40BDP ∠=︒, 从而40BDP ACP ∠=︒=∠,△ADP ≌△ACP (ASA ),故AD AC =又40QBC QCB ∠=︒=∠,故 BQ QC =,BD BP =. 从而BQ AQ AB BP +=+.【答案】见解析.【例4】 如图,在四边形ABCD 中,BC BA >,AD CD =,BD 平分∠ABC ,求证:180A C ∠+∠=︒.【解析】延长BA 至F ,使BF BC =,连FD△BDF ≌△BDC (SAS ), 故DFB DCB ∠=∠,FD DC =又AD CD =,故在等腰△BFD 中,DFB DAF ∠=∠ 故有180BAD BCD ∠+∠=︒【答案】见解析.【例5】 点M ,N 在等边三角形ABC 的AB 边上运动,BD DC =,120BDC ∠=︒,60MDN ∠=︒,求证:MN MB NC =+.QPCBACDB A【解析】延长NC 至E ,使得CE MB =∵ BDC ∆是等腰三角形,且120BDC ∠=︒,∴30DBC DCB ∠=∠=︒ ∵ ABC ∆是等边三角形. ∴60ABC ACB BAC ∠=∠=∠=︒∴90MBD ABC DBC ACB DCB DCN DCE ∠=∠+∠=∠+∠=∠=∠=︒ 在DBM ∆和DCE ∆中,BD DC =,MB CE =, ∴ DBM DCE ∆∆≌. ∴DE DM =, 12∠=∠.又∵ 160NDC ∠+∠=︒,∴ 2+60NDC END ∠∠=∠=︒. 在MDN ∆与EDN ∆中,ND ND =,60MDN EDN ∠=∠=︒,DE DM = ∴ MND END ∆∆≌∴ MN EN NC MB ==+【答案】见解析.【例6】 如图在△ABC 中,AB AC >,12∠=∠,P 为AD 上任意一点,求证:AB AC PB PC ->-.【解析】延长AC 至F ,使AF AB =,连PD△ABP ≌△AFP (SAS ) 故BP PF =由三角形性质知1BMNM CBA21EABCDMN< PB PC PF PC CF AF AC AB AC -=-=-=-【答案】见解析.【例7】 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上.求证:BC AB DC =+.【解析】在BC 上截取BF AB =,连接EF∵BE 平分∠ABC ,∴ABE FBE ∠=∠又∵BE BE =,∴△ABE ≌△FBE (SAS ),∴A BFE ∠=∠.∵AB 180A D ∠+∠=︒180BFE CFE ∠+∠=︒D CFE ∠=∠DCE FCE ∠=∠CE CE =CD CF=BC BF CF AB CD =+=+M ABCD AB MN DM ⊥ABC ∠N MD MNDM MN =AD 上截取AG AM =,∴DG MB =,∴45AGM =︒∠∴135DGM MBN ==︒∠∠,∴ADM NMB =∠∠, ∴DGM MBN ∆∆≌,∴DM MN =.【答案】见解析.【例8】 已知:如图,ABCD 是正方形,FAD FAE ∠=∠,求证:BE DF AE +=.DEC BAN CDE B M A NCDEB M A FE DCBAM F EDCB A【解析】延长CB 至M ,使得BM DF =,连接AM .∵AB AD =,AD CD ⊥,AB BM ⊥,BM DF = ∴ABM ADF ∆∆≌∴AFD AMB ∠=∠,DAF BAM ∠=∠ ∵AB CD ∥∴AFD BAF EAF BAE BAE BAM EAM ∠=∠=∠+∠=∠+∠=∠ ∴AMB EAM ∠=∠,AE EM BE BM BE DF ==+=+【答案】见解析.【例9】 如图所示,已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且2BAE DAM ∠=∠.求证:AE BC CE =+.【解析】分析证明一条线段等于两条线段和的基本方法有两种:(1)通过添辅助线“构造”一条线段使其为求证中的两条线段之和,再证所构造的线段与求证中那一条线段相等.(2)通过添辅助线先在求证中长线段上截取与线段中的某一段相等的线段,再证明截剩的部分与线段中的另一段相等.我们用(1)法来证明.【答案】延长AB 到F ,使BF CE =,则由正方形性质知AF AB BF BC CE =+=+下面我们利用全等三角形来证明AE AF =.为此,连接EF 交边BC 于G .由于对顶角BGF CGE ∠=∠,所以()Rt ΔBGF CGE AAS ∆≌,从而12BG GC BC FG EG ===,,BG DM =于是()Rt ΔRt ΔABG ADM SAS ≌,所以12BAG DAM BAE EAG ∠=∠=∠=∠,AG 是EAF ∠的平分线【例10】 五边形ABCDE 中,AB AE =,BC DE CD +=,180ABC AED ∠+∠=︒,求证:AD 平分∠CDE .M EDCBAF【解析】延长DE 至F ,使得EF BC =,连接AC .∵180ABC AED ∠+∠=︒,180AEF AED ∠+∠=︒,∴ABC AEF ∠=∠ ∵AB AE =,BC EF =,∴△ABC ≌△AEF . ∴EF BC =,AC AF =∵BC DE CD +=,∴CD DE EF DF =+= ∴△ADC ≌△ADF ,∴ADC ADF ∠=∠ 即AD 平分∠CDE .【答案】见解析.【例11】 若P 为ABC ∆所在平面上一点,且120APB BPC CPA ∠=∠=∠=︒,则点P 叫做ABC ∆的费马点.(1)若点P 为锐角ABC ∆的费马点,且60ABC ∠=︒,34PA PC ==,,则PB 的值为_____;(2)如图,在锐角ABC ∆外侧作等边ACB ∆′,连结BB ′. 求证:BB ′过ABC ∆的费马点P ,且BB PA PB PC =++′.【解析】(1)(2)证明:在BB ′上取点P ,使120BPC ∠=︒, 连结AP ,再在PB ′上截取PE PC =,连结CE .∵120BPC ∠=︒,∴60EPC ∠=︒,∴PCE ∆为正三角形, ∴PC CE =,60PCE ∠=︒,120CEB ∠=︒′, ∵ACB ∆′为正三角形,∴AC B C =′,60ACB ∠=︒′, ∴60PCA ACE ACE ECB ∠+∠=∠+∠=︒′,∴PCA ECB ∠=∠′, ∴ACP B CE ∆∆≌′,∴120APC B CE ∠=∠=︒′,PA EB =′, ∴120APB APC BPC ∠=∠=∠=︒,CEDB AABDEFC B'CBA∴P为ABC∆的费马点,P∴BB′过ABC∆的费马点,且BB EB PB PE PA PB PC′′.=++=++【答案】见解析.AB'EPB课后复习【作业1】已知,AD 平分∠BAC ,AC AB BD =+,求证:2B C ∠=∠.【解析】延长AB 至点E ,使AE AC =,连接DE∵AD 平分∠BAC ,∴EAD CAD ∠=∠ ∵AE AC =,AD AD =,∴△AED ≌△ACD (SAS ),∴E C ∠=∠ ∵AC AB BD =+,∴AE AB BD =+∵AE AB BE =+,∴BD BE =,∴BDE E ∠=∠ ∵ABC E BDE ∠=∠+∠,∴2ABC E ∠=∠,∴2ABC C ∠=∠.【答案】见解析.【作业2】如图,△ABC 中,2AB AC =,AD 平分∠BAC ,且AD BD =,求证:CD ⊥AC .【解析】在AB 上取中点F ,连接FD .则△ADB 是等腰三角形,F 是底AB 的中点,由三线合一知 DF ⊥AB ,故90AFD ∠=︒ △ADF ≌△ADC (SAS )90ACD AFD ∠=∠=︒,即:CD ⊥AC【答案】见解析.DCBAECBADCDBA【作业3】如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.【解析】如图所示,延长AC 到E 使CE BM =.在BDM ∆与CDE ∆中,因为BD CD =,90MBD ECD ∠=∠=︒,BM CE =, 所以BDM CDE ∆∆≌,故MD ED =.因为120BDC ∠=︒,60MDN ∠=,所以60BDM NDC ∠+∠=︒. 又因为BDM CDE ∠=∠,所以60MDN EDN ∠=∠=︒. 在MND ∆与END ∆中,DN DN =,60MDN EDN ∠=∠=︒,DM DE =, 所以MND END ∆∆≌,则NE MN =,所以AMN ∆的周长为2.【答案】见解析.【作业4】已知:AC 平分∠BAD ,CE ⊥AB ,180B D ∠+∠=︒,求证:AE AD BE =+.【解析】在AE 上取F ,使EF EB =,连接CF∵CE ⊥ABE D CBA∴90∠=∠=︒CEB CEF∵EB EF=,CE CE=,∴△CEB≌△CEF∴B CFE∠=∠∵180+,180∠+∠=︒CFE CFA∠∠=︒B D∴D CFA∠=∠∵AC平分∠BAD∴DAC FAC∠=∠∵AC AC=∴△ADC≌△AFC(SAS)∴AD AF=∴AE AF FE AD BE=+=+【答案】见解析.。

初中几何全等三角形常见辅助线作法

初中几何全等三角形常见辅助线作法

全等三角形常见辅助线作法【例1】.已知:如图6, 4BCE、△ACO分别是以8E、为斜边的直角三角形,且= ACDE是等边三角形.求证:△ A3c是等边三角形.【例2】、如图,已知BC>AB, AD=DCo BD 平分NABC。

求证:ZA+ZC=180°.线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。

1、倍长中线法【例.3]如图,己知在△ABC中,ZC = 90°, ZB = 30°, A。

平分NB4C,交BC于点D.求证:BD = 2CD证明:延长DC到E,使得CE=CD,联结AEZC=90°A AC ± CDVCD=CEAD=AEVZB=30° ZC=90°ZBAC=60°YAD 平分NBACJ ZBAD=30°A DB=DA ZADE=60°VDB=DA:.BD=DE/. BD=2DC4B D笫3题•/ ZADE=60° AD=AEA △ ADE为等边三角形,AD=DE【例4.】如图,。

是AABC的边上的点,且CD = AB, ZADB = ZBAD, AE是AARD的中线。

求证:AC = 2AEo 证明:延长AE至IJ点F,使得EF=AE联结DF在4ABE和4FDE中BE=DEZAEB=ZFEDAE=FE/.△ABE 也AFDE (SAS) A AB=FD ZABE=ZFDE VAB=DCJ FD = DCZADC=ZABD+ZBAD ZADB = ZBAD,ZADC=ZABD+ZBDA VZABE=ZFDE・・・NADONADB+NFDE即ZADC= ZADF ffiAADF 和AADC 中AD=AD< ZADF= ZADC、DF =DC・•・△ ADF也ADC(SAS) AAF=ACAC=2AE【变式练习】、如图,AABC中,BD二DOAC, E是DC的中点,求证:AD平分NBAE.【小结】熟悉法一、法三“倍长中线”的辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法, 倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。

初中几何,辅助线的常见做法.

初中几何,辅助线的常见做法.

初中数学辅助线的添加人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。

一.添辅助线有二种情况:1按定义添辅助线如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线。

(2)等腰三角形是个简单的基本图形当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

(完整版)全等三角形常用辅助线做法

(完整版)全等三角形常用辅助线做法

五种辅助线助你证全等姚全刚在证明三角形全等时有时需增加辅助线,对学习几何证明不久的学生而言常常是难点.下面介绍证明全等常常有的五种辅助线,供同学们学习时参照.一、截长补短一般地,当所证结论为线段的和、差关系,且这两条线段不在同素来线上时,平时能够考虑用截长补短的方法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.例 1.如图 1,在△ ABC 中,∠ ABC=60 °, AD 、CE 分别均分∠ BAC 、∠ ACB .求证:AC=AE+CD .解析:要证AC=AE+CD ,AE 、CD 不在同素来线上.故在AC 上截取 AF=AE ,则只要证明 CF=CD .证明:在 AC 上截取 AF=AE ,连接 OF.∵ AD 、 CE 分别均分∠ BAC 、∠ ACB ,∠ ABC=60 °∴∠ 1+∠ 2=60 °,∴∠ 4=∠ 6=∠ 1+∠ 2=60 °.显然,△ AEO ≌△ AFO ,∴∠ 5=∠4=60°,∴∠ 7=180°-(∠ 4+ ∠ 5) =60 °在△ DOC 与△ FOC 中,∠ 6=∠ 7=60°,∠ 2=∠ 3, OC=OC∴△ DOC ≌△ FOC, CF=CD∴ AC=AF+CF=AE+CD.截长法与补短法,详尽作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲, AD∥BC,点 E 在线段 AB上,∠ ADE=∠CDE,∠ DCE=∠ECB。

求证: CD=AD+BC。

思路解析:1)题意解析:此题观察全等三角形常有辅助线的知识:截长法或补短法。

2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在 CD上截取 CF=CB,只要再证 DF=DA即可,这就转变成证明两线段相等的问题,进而达到简化问题的目的。

初中常用几何辅助线作法大全

初中常用几何辅助线作法大全

初中数学辅助线的添加浅谈人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。

一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90 °;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1 )平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5 )三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(8)基本辅助线;( 9)截取和延长变换;( 10)对称变换;( 11)平移变换;( 12)旋转
变换。下面通过近年全国各地中考的实例探讨其应用。
一、构造基本图形: 每个几何定理都有与它相对应的几何图形, 我们把它叫做基本图形,
添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形。
如平行线, 垂直
AB=1时,△ AME的面积记为 S1;当 AB=2时,△ AME的面积记为 S2;当 AB=3时,△ AME的面
积记为 S3;…;当 AB=n时,△ AME的面积记为 Sn.当 n≥2时, Sn﹣ Sn﹣1= ▲ .
【答案】 2n 1 。 2
【考点】 正方形的性质,平行的判定和性质,同底等高的三角形面积,整式的混合运算。 【分析】 连接 BE,
在 Rt△OEF中, OE=2,∠ AED=30°,∴ OF
23 。∴ FG=2OF
43

3
3
【考点】 翻折变换(折叠问题),折叠对称的性质,菱形的判定,梯形中位线性质,锐角三
角函数定义,特殊角的三角函数值。
【分析】 ( 1)根据折叠的性质判断出 AG=G,E ∠AGF=∠EGF, 再由 CD∥AB 得出∠ EFG=∠AGF,
线,直角三角形斜边上中线, 三角形、 四边形的中位线等。 等腰(边) 三角形、 直角三角形、
全等三角形、 相似三角形、 特殊四边形和圆的特殊图形也都是基本图形, 但我们后面把它们
单独表述。
典型例题:
例 1. ( 2012 湖北襄阳 3 分) 如图,直线 l ∥m,将含有 45°角的三角板 ABC的直角顶点 C
2
2
∴四边形 EFGH是平行四边形。
由于四边形 EFGH是平行四边形,它就不可能是梯形;同时由于是任意四边形,所
以 AC=BD或 AC⊥BD 不一定成立,从而得不到矩形或菱形的判断。
故选 A。
例 5. ( 2012 江苏宿迁 3 分) 已知点 E, F, G, H 分别是四边形 ABCD的边 AB, BC,CD, DA
中求
出 FO,从而可得出 FG的长度。
-6-
练习题: 1. ( 2012 宁夏区 3 分) 如图, C 岛在 A 岛的北偏东 45°方向,在 B 岛的北偏西 25°方向, 则从 C 岛看 A、 B 两岛的视角∠ ACB= ▲ 度.
2. ( 2012 浙江嘉兴、舟山 5 分) 在直角△ ABC 中,∠ C=90°, AD平分∠ BAC交 BC于点 D, 若 CD=4,则点 D 到斜边 AB 的距离为 ▲ .
(2)连接 EG,判断 EG与 DF的位置关系,并说明理由。
【答案】 解:( 1)证明:∵ AD∥BC,∴∠ ADE=∠BFE(两直线平行,内错角相等)。 ∵E是 AB 的中点,∴ AE=BE。 又∵∠ AED=∠BEF,∴△ ADE≌△ BFE( AAS)。
( 2) EG与 DF的位置关系是 EG⊥DF。理由如下: ∵∠ ADE=∠BFE,∠ GDF=∠ADF, ∴∠ GDF=∠BFE(等量代换)。∴ GD=G(F 等角对等边)。 又∵△ ADE≌△ BFE,∴ DE=EF(全等三角形对应边相等)。 ∴EG⊥DF(等腰三角形三线合一)。
1 n2 2
1
21
2n 1
n 1 = n+n 1 n n+1 =

2
2
2
例 7. ( 2012 江苏镇江 6 分) 如图,在四边形 ABCD中, AD∥BC, E 是 AB的中点,连接 DE并
延长交 CB的延长线于点 F,点 G在 BC边上,且∠ GDF=∠ADF。
(1)求证:△ ADE≌△ BFE;
例 2.( 2012 四川内江 3 分)如图, a // b , 1 65 0 , 2 140 0 , 则 3 【 】
-2-
A. 1000 B. 1050 C. 1100 D. 1150
【答案】 B。
【考点】 平行的性质,三角形外角性质。
【分析】 如图,反向延长 b ,形成∠ 4。 ∵ a / /b ,∴∠ 3=180 0-∠ 4。
辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。
-1-
在几何题的证明或求解时, 需要构成一些基本图形来求证 (解) 时往往要通过添加辅助
∴四边形 EFGH是矩形。
且∵ AC≠BD,∴四边形 EFGH邻边不相等。
∴四边形 EFGH不可能是菱形。
例 6.( 2012 湖北天门、 仙桃、 潜江、 江汉油田 3 分)如图, 线段 AC=n+1(其中 n 为正整数),
点 B在线段 AC上,在线段 AC同侧作正方形 ABMN及正方形 BCEF,连接 AM、ME、EA得到△ AME.当

A .平行四边形
B.矩形
C.菱形
D.梯形
【答案】 A 。
【考点】 三角形中位线定理,平行四边形的判定。
【分析】 根据题意画出图形,如右图所示:
连接 AC,
∵四边形 ABCD各边中点是 E、F、 G,EF∥AC, EF= 1 AC。∴ EF=GH,EF∥GH。
∵在线段 AC同侧作正方形 ABMN及正方形 BCEF,
-4-
∴BE∥AM。∴△ AME 与△ AMB同底等高。
∴△ AME的面积 =△AMB的面积。
∴当 AB=n时,△ AME的面积为 Sn 1 n2 ,当 AB=n-1 时,△ AME的面积为 2
1
2
Sn
n1。 2
∴当 n≥2时, Sn
Sn 1
-5-
(3)如图 2,在( 2)的条件下,求折痕 FG的长.
【答案】 解:( 1)由折叠的性质可得, GA=G,E ∠ AGF=∠EGF, ∵DC∥AB,∴∠ EFG=∠AGF。∴∠ EFG=∠EGF。∴ EF=EG=A。G ∴四边形 AGEF是平行四边形( EF∥AG, EF=AG)。 又∵ AG=G,E ∴四边形 AGEF是菱形。
线(图)来形成,添加辅助线(图),构成的基本图形是结果,构造的手段是方法。
笔者从作辅助线的结果和方法两方面将几何辅助线(图)作法归纳为结果―――(
1)
构造基本图形;( 2)构造等腰(边)三角形:( 3)构造直角三角形;( 4)构造全等三角
形;( 5)构造相似三角形;( 6)构造特殊四边形;( 7)构造圆的特殊图形;方法―――
从而
判断出 EF=AG,得出四边形 AGEF是平行四边形,从而结合 AG=G,E 可得出结论。
(2)连接 ON,则 ON⊥BC, 从而判断出 ON是梯形 ABCE的中位线,从而可得出结论。
( 3)根据( 1)可得出 AE=AB,从而在 Rt△ADE中,可判断出∠ AED 为 30°,在 Rt△EFO
4. ( 2011 湖南怀化 3 分)如图, 已知直线 a ∥ b ,∠1=40°, ∠2=60°. 则∠3等于 【 】 A、100° B 、60° C 、40° D 、20°
5. ( 2011 湖北恩施 3 分)将一个直角三角板和一把直尺如图放置,
专题 7:几何辅助线(图)作法探讨 一些几何题的证明或求解, 由原图形分析探究, 有时显得十分复杂, 若通过适当的变换, 即添加适当的辅助线(图),将原图形转换成一个完整的、特殊的、简单的新图形,则能使 原问题的本质得到充分的显示, 通过对新图形的分析, 原问题顺利获解。 网络上有许多初中 几何常见辅助线作法歌诀,下面这一套是很好的: 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内切圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。
3. ( 2012 江苏南京 8 分) 如图,梯形 ABCD中, AD//BC ,AB=CD,对角线 AC、 BD交于点 O, AC BD, E、 F、 G、 H分别为 AB、 BC、 CD、 DA的中点 (1)求证:四边形 EFGH为正方形; (2)若 AD=2, BC=4,求四边形 EFGH的面积。
又∵∠ 2=∠1+∠ 4,即∠ 4=∠2—∠ 1。
∴ 3 1800
2 1 1800 1400 650 1050 。故选 B。
例 3. ( 2012 广东梅州 3 分) 如图,∠ AOE=∠BOE=1°5 , EF∥OB,EC⊥OB,若 EC=1,则 EF= ▲.
【答案】 2。
【考点】 角平分线的性质,平行的性质,三角形外角性质, 含 30 度角的直角三角形的性质。
【考点】 平行的性质,全等三角形的判定和性质,等腰三角形的判定和性质。 【分析】 ( 1)由已知,应用 AAS即可证明△ ADE≌△ BFE。
相关文档
最新文档