【经典压轴题】三角形面积最值问题30题含详细答案
几何难题中考压轴题带答案和详细解析

几何难题精选解答题(共30小题)1.(2015?河南)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,= ;②当α=180°时,= .(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.2.(2015?济南)如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD=,其他条件不变,求线段AM的长.3.(2015?岳阳)已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:.(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA?PB=k?AB.4.(2015?重庆)在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E.DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=AB;(3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,作DN⊥AC于点N,若DN⊥AC于点N,若DN=FN,求证:BE+CF=(BE﹣CF).5.(2015?烟台)【问题提出】如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF【类比探究】(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.6.(2015?莆田)在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.特殊发现:如图1,若点E,F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明).问题探究:把图1中的△AEF绕着点A顺时针旋转.(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)记=k,当k为何值时,△CPE总是等边三角形?(请直接写出k的值,不必说明理由)7.(2015?襄城区模拟)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式;(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.8.(2015?重庆校级一模)已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,DF交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时,若PC=1,计算出DG的长;(2)如图1,当点P与点G分别在线段BC与线段AD上时,证明:四边形DFEP为菱形;(3)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,(2)的结论:四边形DFEP 为菱形是否依然成立?若成立,请给出证明;若不成立,请说明理由.9.(2015?房山区二模)在△ABC中,AB=BC=2,∠ABC=90°,BD为斜边AC上的中线,将△ABD 绕点D顺时针旋转α(0°<α<180°)得到△EFD,其中点A的对应点为点E,点B的对应点为点F.BE 与FC相交于点H.(1)如图1,直接写出BE与FC的数量关系:;(2)如图2,M、N分别为EF、BC的中点.求证:MN=;(3)连接BF,CE,如图3,直接写出在此旋转过程中,线段BF、CE与AC之间的数量关系:.10.(2015?衢州校级模拟)图1是边长分别为4和2的两个等边三角形纸片ABC和ODE叠放在一起(C与O重合).(1)操作:固定△ABC,将△0DE绕点C顺时针旋转30°后得到△ODE,连结AD、BE,CE的延长线交AB于F(图2);探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论.(2)在(1)的条件下将的△ODE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR,当点P与点F重合时停止运动(图3)探究:设△PQR移动的时间为x秒,△PQR与△ABC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.(3)将图1中△0DE固定,把△ABC沿着OE方向平移,使顶点C落在OE的中点G处,设为△ABG,然后将△ABG绕点G顺时针旋转,边BG交边DE于点M,边AG交边DO于点N,设∠BGE=α(30°<α<90°);(图4)探究:在图4中,线段ON?EM的值是否随α的变化而变化?如果没有变化,请你求出ON?EM的值,如果有变化,请你说明理由.11.(2015?武义县模拟)(1)将矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A 分别在x轴和y轴上,OA=8,OC=10,点E为OA边上一点,连结CE,将△EOC沿CE折叠.①如图1,当点O落在AB边上的点D处时,求点E的坐标;②如图2,当点O落在矩形OABC内部的点D处时,过点E作EG∥x轴交CD于点H,交BC于点G,设H(m,n),求m与n之间的关系式;(2)如图3,将矩形OABC变为边长为10的正方形,点E为y轴上一动点,将△EOC沿CE折叠.点O落在点D处,延长CD交直线AB于点T,若=,求AT的长.12.(2015?石家庄校级模拟)如图1,在菱形ABCD中,AC=6,BD=6,AC,BD相交于点O.(1)求边AB的长;(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别于边BC,CD相交于E,F,连接EF与AC相交于点G.①判断△AEF是哪一种特殊三角形,并说明理由;②旋转过程中是否存在线段EF最短,若存在,求出最小值,若不存在,请说明理由.13.(2015春?泰安校级期中)如图,正方形OEFG绕着边长为30的正方形ABCD的对角线的交点O旋转,边OE、OG分别交边AD、AB于点M、N.(1)求证:OM=ON;(2)设正方形OEFG的对角线OF与边AB相交于点P,连结PM.若PM=13,试求AM的长;(3)连接MN,求△AMN周长的最小值,并指出此时线段MN与线段BD的关系.14.(2014?天津)在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F 分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).15.(2014春?青山区期末)已知正方形ABCD和正方形EBGF共顶点B,连AF,H为AF的中点,连EH,正方形EBGF绕点B旋转.(1)如图1,当F点落在BC上时,求证:EH=FC;(2)如图2,当点E落在BC上时,连BH,若AB=5,BG=2,求BH的长;(3)当正方形EBGF绕点B旋转到如图3的位置时,求的值.16.(2013?盐城)阅读材料如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD,则BF=CD.解决问题(1)将图①中的Rt△DEF绕点O旋转得到图②,猜想此时线段BF与CD的数量关系,并证明你的结论;(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中的结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF与CD之间的数量关系;(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为0,且顶角∠ACB=∠EDF=α,请直接写出的值(用含α的式子表示出来)17.(2013?梅州)用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;(2)当点P在运动的过程中出现PA=FC时,求∠PAB的度数.探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.18.(2015?营口)如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=,AC=8,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.19.(2015?永州)问题探究:(一)新知学习:圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).(二)问题解决:已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M.(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程中,证明MN的长为定值,并求其定值;(3)若直径AB与CD相交成120°角.①当点P运动到的中点P1时(如图二),求MN的长;②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.20.(2015?盘锦)如图1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上.(1)请直接写出线段BE与线段CD的关系:;(2)如图2,将图1中的△ABC绕点A顺时针旋转角α(0<α<360°),①(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请说明理由;②当AC=ED时,探究在△ABC旋转的过程中,是否存在这样的角α,使以A、B、C、D四点为顶点的四边形是平行四边形?若存在,请直接写出角α的度数;若不存在,请说明理由.21.(2015?朝阳)问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.[探究发现]小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌,得EH=ED.在Rt△HBE中,由定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是.[实践运用](1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长.22.(2015?自贡)在△ABC中,AB=AC=5,cos∠ABC=,将△ABC绕点C顺时针旋转,得到△A1B1C.(1)如图①,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;(2)如图②,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,求线段EF1长度的最大值与最小值的差.23.(2015?吉林)两个三角板ABC,DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x= cm;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M与点N之间距离的最小值.24.(2015?汕尾)在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于,线段CE1的长等于;(直接填写结果)(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1;(3)求点P到AB所在直线的距离的最大值.(直接写出结果)25.(2015?赤峰)如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF.(1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;(2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF 的数量关系;(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?26.(2015?海南)如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点.(1)求证:△ADP≌△ECP;(2)若BP=n?PK,试求出n的值;(3)作BM丄AE于点M,作KN丄AE于点N,连结MO、NO,如图2所示,请证明△MON是等腰三角形,并直接写出∠MON的度数.27.(2015?丹东)在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN=90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF 的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD=m?BP时,请直接写出PE与PF的数量关系.28.(2015?成都)已知AC,EC分别是四边形ABCD和EFDC的对角线,点E在△ABC内,∠CAE+∠CBE=90°.(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.(i)求证:△CAE∽△CBF;(ii)若BE=1,AE=2,求CE的长;(2)如图②,当四边形ABCD和EFCG均为矩形,且==k时,若BE=1,AE=2,CE=3,求k的值;(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)29.(2015?锦州)如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是;(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.30.(2014?绵阳)如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.几何难题精选(1) 旋转圆四边形参考答案与试题解析一.解答题(共30小题)1.(2015?河南)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,= ;②当α=180°时,= .(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.【考点】几何变换综合题.【专题】压轴题.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E 分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据,判断出△ECA∽△DCB,即可求出的值是多少,进而判断出的大小没有变化即可.(3)根据题意,分两种情况:①点A,D,E所在的直线和BC平行时;②点A,D,E所在的直线和BC相交时;然后分类讨论,求出线段BD的长各是多少即可.【解答】解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=,∵点D、E分别是边BC、AC的中点,∴,∴.②如图1,,当α=180°时,可得AB∥DE,∵,∴=.故答案为:.(2)如图2,,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如图3,,∵AC=4,CD=4,CD⊥AD,∴AD==,∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴.②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,,∵AC=4,CD=4,CD⊥AD,∴AD==,∵点D、E分别是边BC、AC的中点,∴DE==2,∴AE=AD﹣DE=8﹣2=6,由(2),可得,∴BD==.综上所述,BD的长为4或.【点评】(1)此题主要考查了几何变换综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,要熟练掌握.(2)此题还考查了相似三角形、全等三角形的判定和性质的应用,要熟练掌握.(3)此题还考查了线段长度的求法,以及矩形的判定和性质的应用,要熟练掌握.2.(2015?济南)如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD=,其他条件不变,求线段AM的长.【考点】几何变换综合题.【专题】压轴题.【分析】(1)根据题意证明△MAC≌△NBC即可;(2)与(1)的证明方法相似,证明△MAC≌△NBC即可;(3)作GK⊥BC于K,证明AM=AG,根据△MAC≌△NBC,得到∠BDA=90°,根据直角三角形的性质和已知条件求出AG的长,得到答案.【解答】解:(1)∵∠ACB=90°,∠MCN=90°,∴∠ACM=∠BCN,在△MAC和△NBC中,,∴△MAC≌△NBC,∴∠NBC=∠MAC=90°,又∵∠ACB=90°,∠EAC=90°,∴∠NDE=90°;(2)不变,在△MAC≌△NBC中,,∴△MAC≌△NBC,∴∠N=∠AMC,又∵∠MFD=∠NFC,∠MDF=∠FCN=90°,即∠NDE=90°;(3)作GK⊥BC于K,∵∠EAC=15°,∴∠BAD=30°,∵∠ACM=60°,∴∠GCB=30°,∴∠AGC=∠ABC+∠GCB=75°,∠AMG=75°,∴AM=AG,∵△MAC≌△NBC,∴∠MAC=∠NBC,∴∠BDA=∠BCA=90°,∵BD=,∴AB=+,AC=BC=+1,设BK=a,则GK=a,CK=a,∴a+a=+1,∴a=1,∴KB=KG=1,BG=,AG=,∴AM=.【点评】本题考查的是矩形的判定和性质以及三角形全等的判定和性质,正确作出辅助线、利用方程的思想是解题的关键,注意旋转的性质的灵活运用.3.(2015?岳阳)已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:PA=PB .(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA?PB=k?AB.【考点】几何变换综合题.【专题】压轴题.【分析】(1)根据三角形CBD是直角三角形,而且点P为线段CD的中点,应用直角三角形的性质,可得PA=PB,据此解答即可.(2)首先过C作CE⊥n于点E,连接PE,然后分别判断出PC=PE、∠PCA=∠PEB、AC=BE;然后根据全等三角形判定的方法,判断出△PAC∽△PBE,即可判断出PA=PB仍然成立.(3)首先延长AP交直线n于点F,作AE⊥BD于点E,然后根据相似三角形判定的方法,判断出△AEF∽△BPF,即可判断出AF?BP=AE?BF,再个AF=2PA,AE=2k,BF=AB,可得2PA?PB=2k.AB,所以PA?PB=k?AB,据此解答即可.【解答】解:(1)∵l⊥n,∴BC⊥BD,∴三角形CBD是直角三角形,又∵点P为线段CD的中点,∴PA=PB.(2)把直线l向上平移到如图②的位置,PA=PB仍然成立,理由如下:如图②,过C作CE⊥n于点E,连接PE,,∵三角形CED是直角三角形,点P为线段CD的中点,∴PD=PE,又∵点P为线段CD的中点,∴PC=PD,∴PC=PE;∵PD=PE,∴∠CDE=∠PEB,∵直线m∥n,∴∠CDE=∠PCA,∴∠PCA=∠PEB,又∵直线l⊥m,l⊥n,CE⊥m,CE⊥n,∴l∥CE,∴AC=BE,在△PAC和△PBE中,∴△PAC≌△PBE,∴PA=PB.(3)如图③,延长AP交直线n于点F,作AE⊥BD于点E,,∵直线m∥n,∴,∴AP=PF,∵∠APB=90°,∴BP⊥AF,又∵AP=PF,∴BF=AB;在△AEF和△BPF中,∴△AEF∽△BPF,∴,∴AF?BP=AE?BF,∵AF=2PA,AE=2k,BF=AB,∴2PA?PB=2k.AB,∴PA?PB=k?AB.【点评】(1)此题主要考查了几何变换综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,考查了从图象中获取信息,并能利用获取的信息解答相应的问题的能力.(2)此题还考查了直角三角形的性质和应用,要熟练掌握.(3)此题还考查了全等三角形的判定和性质的应用,以及相似三角形的判定和性质的应用,要熟练掌握.4.(2015?重庆)在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E.DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=AB;(3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,作DN⊥AC于点N,若DN⊥AC于点N,若DN=FN,求证:BE+CF=(BE﹣CF).【考点】几何变换综合题;全等三角形的判定与性质;等边三角形的判定与性质;锐角三角函数的定义.【专题】压轴题.【分析】(1)如图1,易求得∠B=60°,∠BED=90°,BD=2,然后运用三角函数的定义就可求出BE 的值;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,易证△MBD≌△NCD,则有BM=CN,DM=DN,进而可证到△EMD≌△FND,则有EM=FN,就可得到BE+CF=BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60°=BD=BC=AB;(3)过点D作DM⊥AB于M,如图3.同(1)可得:∠B=∠ACD=60°,同(2)可得:BM=CN,DM=DN,EM=FN.由DN=FN可得DM=DN=FN=EM,从而可得BE+CF=BM+EM+CF=CN+DM+CF=NF+DM=2DM,BE﹣CF=BM+EM﹣CF=BM+NF﹣CF=BM+NC=2BM.然后在Rt△BMD中,运用三角函数就可得到DM=BM,即BE+CF=(BE ﹣CF).【解答】解:(1)如图1,∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠B=∠C=60°,BC=AC=AB=4.∵点D是线段BC的中点,∴BD=DC=BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴BE=BD×cos∠B=2×cos60°=2×=1;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,,∴△MBD≌△NCD,∴BM=CN,DM=DN.在△EMD和△FND中,,∴△EMD≌△FND,∴EM=FN,∴BE+CF=BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60°=BD=BC=AB;(3)过点D作DM⊥AB于M,如图3.同(1)可得:∠B=∠ACD=60°.同(2)可得:BM=CN,DM=DN,EM=FN.∵DN=FN,∴DM=DN=FN=EM,∴BE+CF=BM+EM+CF=CN+DM+CF=NF+DM=2DM,BE﹣CF=BM+EM﹣CF=BM+NF﹣CF=BM+NC=2BM.在Rt△BMD中,DM=BM?tanB=BM,∴BE+CF=(BE﹣CF).【点评】本题主要考查了等边三角形的判定与性质、四边形的内角和定理、全等三角形的判定与性质、三角函数的定义、特殊角的三角函数值等知识,通过证明三角形全等得到BM=CN,DM=DN,EM=FN 是解决本题的关键.5.(2015?烟台)【问题提出】如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF【类比探究】(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.【考点】几何变换综合题.【专题】压轴题.【分析】首先判断出△CEF是等边三角形,即可判断出EF=EC,再根据ED=EC,可得ED=EF,∠CAF=∠BAC=60°,所以∠EAF=∠BAC+∠CAF=120°,∠DBE=120°,∠EAF=∠DBE;然后根据全等三角形判定的方法,判断出△EDB≌△FEA,即可判断出BD=AE,AB=AE+BF,所以AB=DB+AF.(1)首先判断出△CEF是等边三角形,即可判断出EF=EC,再根据ED=EC,可得ED=EF,∠CAF=∠BAC=60°,所以∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∠FCG=∠FEA,再根据∠FCG=∠EAD,∠D=∠EAD,可得∠D=∠FEA;然后根据全等三角形判定的方法,判断出△EDB≌△FEA,即可判断出BD=AE,EB=AF,进而判断出AB=BD﹣AF即可.(2)首先根据点E在线段BA的延长线上,在图③的基础上将图形补充完整,然后判断出△CEF是等边三角形,即可判断出EF=EC,再根据ED=EC,可得ED=EF,∠CAF=∠BAC=60°,再判断出∠DBE=∠EAF,∠BDE=∠AEF;最后根据全等三角形判定的方法,判断出△EDB≌△FEA,即可判断出BD=AE,EB=AF,进而判断出AF=AB+BD即可.【解答】证明:ED=EC=CF,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,∠BCA=60°,BE=AF,EC=CF,∴△CEF是等边三角形,∴EF=EC,∠CEF=60°,又∵ED=EC,∴ED=EF,∵△ABC是等腰三角形,∠BCA=60°,∴△ABC是等边三角形,∴∠CAF=∠CBA=60°,∴∠EAF=∠BAC+∠CAF=120°,∠DBE=120°,∠EAF=∠DBE,∵∠CAF=∠CEF=60°,∴A、E、C、F四点共圆,∴∠AEF=∠ACF,又∵ED=EC,∴∠D=∠BCE,∠BCE=∠ACF,∴∠D=∠AEF,在△EDB和△FEA中,∴△EDB≌△FEA,∴DB=AE,BE=AF,∵AB=AE+BE,∴AB=DB+AF.(1)AB=BD+AF;延长EF、CA交于点G,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,BE=AF,EC=CF,∴△CEF是等边三角形,∴EF=EC,又∵ED=EC,∴ED=EF,∠EFC=∠BAC=60°,∵∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∴∠FCG=∠FEA,又∵∠FCG=∠ECD,∠D=∠ECD,∴∠D=∠FEA,由旋转的性质,可得∠CBE=∠CAF=120°,∴∠DBE=∠FAE=60°,在△EDB和△FEA中,∴△EDB≌△FEA,∴BD=AE,EB=AF,∴BD=FA+AB,即AB=BD﹣AF.(2)如图③,,ED=EC=CF,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,BE=AF,EC=CF,BC=AC,∴△CEF是等边三角形,∴EF=EC,又∵ED=EC,∴ED=EF,∵AB=AC,BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,又∵∠CBE=∠CAF,∴∠CAF=60°,∴∠EAF=180°﹣∠CAF﹣∠BAC=180°﹣60°﹣60°=60°∴∠DBE=∠EAF;∵ED=EC,∴∠ECD=∠EDC,∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC,又∵∠EDC=∠EBC+∠BED,∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC,∵∠AEF=∠CEF+∠BEC=60°+∠BEC,∴∠BDE=∠AEF,在△EDB和△FEA中,(AAS)∴△EDB≌△FEA,∴BD=AE,EB=AF,∵BE=AB+AE,∴AF=AB+BD,即AB,DB,AF之间的数量关系是:AF=AB+BD.【点评】(1)此题主要考查了几何变换综合题,考查了分析推理能力,考查了空间想象能力,考查了数形结合方法的应用,要熟练掌握.(2)此题还考查了全等三角形的判定和性质的应用,要熟练掌握.6.(2015?莆田)在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.特殊发现:如图1,若点E,F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明).问题探究:把图1中的△AEF绕着点A顺时针旋转.(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)记=k,当k为何值时,△CPE总是等边三角形?(请直接写出k的值,不必说明理由)【考点】几何变换综合题.【专题】压轴题.【分析】(1)首先过点P作PM⊥CE于点M,然后根据EF⊥AE,BC⊥AC,可得EF∥MP∥CB,推得,再根据点P是BF的中点,可得EM=MC,据此推得PC=PE即可.(2)首先过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,然后根据全等三角形判定的方法,判断出△DAF≌△EAF,即可判断出AD=AE;再判断出△DAP≌△EAP,即可判断出PD=PE;最后根据FD⊥AC,BC⊥AC,PM⊥AC,可得FD∥BC∥PM,再根据点P是BF的中点,推得PC=PD,再根据PD=PE,即可推得PC=PE.。
2020年中考数学第三轮冲刺专题复习:三角形 压轴题练习(含答案)

四川省渠县崇德实验学校2020年中考数学第三轮冲刺专题复习:三角形压轴题练习1、如图,等腰直角三角形△ABC中,∠ACB=90°,AC=BC,点D是AC边上一点,∠CBD=30°,点E是BD边上一点,且CE=12 AB.(1)如图①,若AB=,求S△CBE(2)如图②,过点E作EQ⊥BD交BC于点Q,求证:AC=12BD+2EQ.2、如图,等边三角形ABC中,E是线段AC上一点,F是BC延长线上一点.连接BE,AF.点G是线段BE的中点,BN∥AC,BN与AG延长线交于点N.(1)若∠BAN=15°,求∠N;(2)若AE=CF,求证:2AG=AF.3、已知,如图,在Rt△ABC中,∠ACB=90°,点D为AB中点,连接CD.点E为边AC上一点,过点E作EF∥AB,交CD于点F,连接EB,取EB的中点G,连接DG、FG.(1)求证:EF=CF;(2)求证:FG⊥DG.4、△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,连接DH,求证:(1)EH=FH;(2)∠CAB=2∠CDH.5、如图,在△ABC中,AD平分∠CAB交BC于点D,过点C作CE⊥AD于E,CE的延长线交AB于点F,点G是BF的中点,连接EG.(1)求证:EG∥BC;(2)若△ACD∽△AEC,且AE•AD=16,AB=4,求EG的长.6、如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求ACAF的值.7、如图,△ABC中,∠ACB=90°,D是AB上一点,M是CD中点,且∠AMD=∠BMD,AP∥CD交BC延长线于P点,延长BM交P A于N点,且PN=AN.(1)求证:MN=MA;(2)求证:∠CDA=2∠ACD.8、如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC的左侧,连接AE.(1)求证:AE=BD;(2)试探究线段AD、BD与CD之间的数量关系;(3)过点C作CF⊥DE交AB于点F,若BD:AF=1:,CD,求线段AB的长.9、如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.(1)若点D是AC的中点,如图1,求证:AD=CE.(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论:(提示:过点D作DF∥BC,交AB于点F.)(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,给予证明;如果不成立,请说明理由.10、在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.11、如图,在△ABC中,∠ABC=60°,点D,E分别为AB,BC上一点,BD=BE,连接DE,DC,AC=CD.(1)如图1,若AC=DE=EC的长;(2)如图2,连接AE交DC于点F,点M为EC上一点,连接AM交DC于点N,若AE=AM,求证:2DE=MC;(3)在(2)的条件下,若∠ACB=45°,直接写出线段AD,MC,AC的等量关系.12、把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE =4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时AP•CQ的值为.将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,则AP•CQ的值是否会改变?答:.(填“会”或“不会”)此时AP•CQ的值为.(不必说明理由)(2)在(1)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2、图3供解题用)(3)在(1)的条件下,PQ能否与AC平行?若能,求出y的值;若不能,试说明理由.14、已知:△ABC与△ABD中,∠CAB=∠DBA=β,且∠ADB+∠ACB=180°.提出问题:如图1,当∠ADB=∠ACB=90°时,求证:AD=BC;类比探究:如图2,当∠ADB≠∠ACB时,AD=BC是否还成立?并说明理由.综合运用:如图3,当β=18°,BC=1,且AB⊥BC时,求AC的长.15、已知△ABC中,AB=AC.(1)如图1,在△ADE中,AD=AE,连接BD、CE,若∠DAE=∠BAC,求证:BD=CD;(2)如图2,在△ADE中,AD=AE,连接BE、CE,若∠DAE=∠BAC=60°,CE⊥AD于点F,AE=4,AC=7,求BE的长;(3)如图3,在△BCD中,∠CBD=∠CDB=45°,连接AD,若∠CAB=45°,求AD AB的值.16、已知等边△ABC和等腰△CDE,CD=DE,∠CDE=120°.(1)如图1,点D在BC上,点E在AB上,P是BE的中点,连接AD,PD,则线段AD与PD之间的数量关系为;(2)如图2,点D在△ABC内部,点E在△ABC外部,P是BE的中点,连接AD,PD,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若点D在△ABC内部,点E和点B重合,点P在BC下方,且PB+PC为定值,当PD最大时,∠BPC的度数为.参考答案1、【解答】(1)解:如图①中,作CH ⊥BD 于H .∵CA =CB ,∠ACB =90°,AB =∴AC =BC =2,在Rt △BCH 中,∵∠CBH =30°,∴CH =12BC =1,BH ,∵CE =12AB ,∴HE 1,∴BE ﹣1,∴S △CBE =12•BE •CH =12•1)•1=2. (2)证明:如图②中,连接DQ 、作CH ⊥BD 于H .∵=CE CH AB BC =12,∠CHE =∠ACB =90°, ∴△CHE ∽△ACB ,∴∠CEH =∠ABC =45°,∵∠DCQ =∠DEQ =90°,∴∠DCQ +∠DEQ =180°,C 、D 、E 、Q 四点共圆,∴∠CQD =∠CED =45°,∴△CDQ 是等腰直角三角形,∴CD =CQ ,AD =BQ ,∵AC =CD +AD ,CQ =CQ =12BD ,BQ =2EQ , ∴AC =12BD +2EQ . 2、【解答】解:(1)∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,∵AC∥BN,∴∠NBC=∠ACB=60°,∴∠ABN=∠ABC+∠NBC=120°,∴在△ABN中,∠N=180°﹣∠ABN﹣∠BAN=180°﹣120°﹣15°=45°;(2)∵AC∥BN,∴∠N=∠GAE,∠NBG=∠AEG,又∵点G是线段BE的中点,∴BG=EG,∴△NBG≌△AEG(AAS),∴AG=NG,AE=BN,∵AE=CF,∴BN=CF,∵∠ACB=60°,∴∠ACF=180°﹣∠ACB=120°,∴∠ABN=∠ACF,又∵AB=AC,∴△ABN≌△ACF(SAS),∴AF=AN,∵AG=NG=12 AN,∴AF=2AG.3、【解答】证明:(1)如图,∵在Rt △ABC 中,∠ACB =90°,点D 为AB 中点, ∴CD 是斜边AB 上的中线,∴CD =AD =BD =12AB . 又EF ∥AB , ∴=EF CF AD CD, ∴=EF AD CF CD =1, ∴EF =CF ;(2)如图,延长DG 交BC 于点M ,连接GM∴DM 为△BAC 的中位线,GM 为△BEC 的中位线,DG 为△BAE 的中位线; ∴DG =2AE ,GM =2EC , ∴+==1+DM AE EC EC DG AE AE, 又EF ∥AB ,易证得=EC FC AE DF, ∴+=1+=1+==DM EC FC DF FC DF DG AE DF DF FC ,在△DGF 与△DMC 中,有∠FDG=∠CDM ,=DM DC DG DF; 故△DGF ∽△DMC ;所以∠FGD =∠CMD ;又∠CMD =180°﹣∠ACB =90°,∴∠FGD =90°,∴FG ⊥DG .4、【解答】解:(1)∵∠ACB =90°,CD ⊥AB 于D ,∴∠CAE +∠AEC =∠DAF +∠AFD =90°,∴∠AFD =∠AEC ,∵∠AFD =∠CFE ,∴∠CFE =∠CEF ,∴CF =CE ,∵CH ⊥EF ,∴HE =HF ;(2)∵∠ADF =∠CHF =90°,∠AFD =∠CFH ,∴△ADF ∽△CFH , ∴=CF HF AF DF,∵∠AFC =∠DFH ,∴△AFC ∽△DFH ,∴∠CAF =∠CDH ,∵∠CAD =2∠CAF ,∴∠CAB =2∠CDH .5、【解答】证明:(1)∵AD 平分∠CAB ,∴∠CAE =∠F AE .∵CE ⊥AD ,∴∠CEA =∠FEA =90°.在△ACE 和△AFE 中,∠CAE=∠FAE ,AE=AE ,∠CEA=∠FEA=90°, ∴△ACE ≌△AFE .∴CE =FE .又∵G 是BF 的中点,∴EG ∥BC .(2)∵△ACD ∽△AEC ,CE ⊥AD ,∴∠ACD =∠AEC =90°,且=AC AE AD AC. ∴AC 2=AE •AD =16.∴AC=4.在Rt△ABC中,AB=AC=4,由勾股定理得:BC8.∵EG是△FBC的中位线,∴EG=11=8=4 22×BC.6、【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=12AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=12 AB,∴CE=12×6=3,∵AD=4,∴4=3AFCF,∴7=4ACAF.7、【解答】证明:(1)∵AP∥CD,∴∠AMD=∠MAN,∠BMD=∠MNA,∵∠AMD=∠BMD,∴∠MAN=∠MNA,∴MN=MA.(2)如图,连接NC,∵AP∥CD,且PN=AN.∴==,∴MC=MD,∴CN为直角△ACP斜边AP的中线,∴CN=NA,∠NCA=∠NAC,∵AP∥CD,∴∠NCM=2∠ACD,∵∠CMN=∠DMB,∠DMA=∠BMD,∴∠CMD=∠DMA,在△CMN和△DMA中,CM=MD,∠CMN=∠DMA,MN=MA,∴△CMN≌△DMA(SAS),∠ADM=∠NCM=2∠ACD.即:∠CDA=2∠ACD.8、【解答】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE≌△BCD,∴∠CAE=∠CBD,又∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=∠CAE=45°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,且AE=BD,∴BD2+AD2=ED2,∵ED CD,(3)解:连接EF ,设BD =x ,∵BD :AF =1:,则AF =x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △F AE 中,EF =3x ,∵AE 2+AD 2=2CD 2∴222x +=2(), 解得x =1,∴AB =+4.9、【解答】(1)证明:∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,AB =AC =BC ,∵D 为AC 中点,∴∠DBC =30°,AD =DC ,∵BD=DE,∴∠E=∠DBC=30°∵∠ACB=∠E+∠CDE,∴∠CDE=30°=∠E,∴CD=CE,∵AD=DC,∴AD=CE;(2)成立,如图2,过D作DF∥BC,交AB于F,则∠ADF=∠ACB=60°,∵∠A=60°,∴△AFD是等边三角形,∴AD=DF=AF,∠AFD=60°,∴∠BFD=∠DCE=180°﹣60°=120°,∵DF∥BC,∴∠FDB=∠DBE=∠E,在△BFD和△DCE中,∠FDB=∠E,∠BFD=∠DCE,BD=DE,∴△BFD≌△DCE,∴CE=DF=AD,即AD=CE.(3)(2)中的结论仍成立,如图3,过点D作DP∥BC,交AB的延长线于点P,∵△ABC是等边三角形,∴△APD也是等边三角形,∴AP=PD=AD,∠APD=∠ABC=∠ACB=∠PDC=60°,∵DB=DE,∴∠DBC=∠DEC,∵DP∥BC,∴∠PDB=∠CBD,∴∠PDB=∠DEC,在△BPD和△DCE中,∠FDB=∠DEC,∠P=∠DCE=60°,DB=DE,∴△BPD≌△DCE,∴PD=CE,∴AD=CE.10、【解答】(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM,∵AB2+AE2=BE2,∴(2x)2+x2=22,(负根已经舍弃),∴x=2∴AB=AC=(•2∴BC AB.(2)作CQ⊥AC,交AF的延长线于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,FG⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.11、解:(1)如图1,过点C作CG⊥AB于G,∴∠AGC=∠AGB=90°,∵AC=CD,∴AG=DG,设DG=a,∵BD=BE,∠ABC=60°,∴△BDE是等边三角形,∴BD =DE =∴BG =BD +DG =+a ,在Rt △BGC 中,∠BCG =90°﹣∠ABC =30°,∴BC =2BG ,CG =,在Rt △DGC 中,CD =AC =根据勾股定理得,CG 2+DG 2=CD 2,∴()2+a 2=90,∴a =2或a =2(舍), ∴BC =EC +BE =EC +BD ,∴EC +BD =2(BD +DG ),∴EC =BD +2DG =2+2a =2+2×=9﹣;(2)如图2,在MC 上取一点P ,使MP =DE ,连接AP ,∵△BDE 是等边三角形,∴∠BED =60°,BE =DE ,∴∠DEC =120°,BE =PM ,∵AE =AM ,∴∠AEM =∠AME ,∴∠AEB =∠AMP ,∴△ABE ≌△APM (SAS ),∴∠APM=∠ABC=60°,∴∠APC=120°=∠DEC,过点M作AC的平行线交AP的延长线于Q,∴∠MPQ=∠APC=120°=∠DEC,∵AC=CD,∴∠ADC=∠DAC,∴∠CDE=180°﹣∠BDE﹣∠ADC=180°﹣60°﹣∠DAC=120°﹣∠DAC,在△ABC中,∠ACB=180°﹣∠ABC﹣∠DAC=120°﹣∠DAC=∠CDE,∵MQ∥AC,∴∠PMQ=∠ACB,∴∠PMQ=∠EDC,∴△MPQ≌△DEC(ASA),∴MQ=CD,∵AC=MQ,∴△APC≌△QPM(AAS),∴CP=MP,∴CM=MP+CP=2DE;(3)如备用图,在MC上取一点P,使PM=DE,由(2)知,MC=2CP=2DE,由(2)知,△ABE≌△APM,∴AB=AP,∵∠ABC=60°,∴△ABP是等边三角形,∴BP=AB,∵BE=BD,∴PE=AD,∴BC=BE+PE+CP=DE+PE+DE=2DE+AD=MC+AD,过点A作AH⊥BC于H,设BH=m,在Rt△ABH中,AH,在Rt△ACH中,∠ACB=45°,∴∠CAH=90°﹣∠ACB=45°=∠ACB,∴CH=AH,AC AH m,∵MC+AD=BC=BH+CH=m m=(m,∴MC+AD.12、【解答】解:(1)8,不会,8;∵∠A=∠C=45°,∠APD=∠QDC=90°,∴△APD ∽△CDQ .∴AP :CD =AD :CQ .∴即AP ×CQ =AD ×CD ,∵AB =BC =4,∴斜边中点为O ,∴AP =PD =2,∴AP ×CQ =2×4=8;将三角板DEF 由图1所示的位置绕点O 沿逆时针方向旋转,设旋转角为α. ∵在△APD 与△CDQ 中,∠A =∠C =45°,∠APD =180°﹣45°﹣(45°+a )=90°﹣a ,∠CDQ =90°﹣a ,∴∠APD =∠CDQ .∴△APD ∽△CDQ . ∴=AP CD AD CQ, ∴AP •CQ =AD •CD =AD 2=(12AC )2=8. (2)当0°<α≤45°时,如图2,过点D 作DM ⊥AB 于M ,DN ⊥BC 于N , ∵O 是斜边的中点,∴DM =DN =2,∵CQ =x ,则AP =8x,∴S △APD =12•8x •2=8x ,S △DQC =12x ×2=x , ∴y =8﹣8x﹣x (2≤x <4), 当45°<α<90°时,如图3,过点D 作DG ⊥BC 于G ,DG =2∵CQ =x ,∴AP =8x, ∴BP =8x ﹣4 ∵=BP BM DG MG, 即82-x =2MG MG,MG =2x 4-x ∴MQ =2x 4-x +(2﹣x )=2x -4x+84-x∴y =2x -4x+84-x(0<x <2); (3)在图(2)的情况下,∵PQ ∥AC 时,BP =BQ ,∴AP =QC∴x =8x,解得x =, ∴当x =时,y =8﹣=8﹣.14、【解答】提出问题:解:在△DBA和△CAB中,∠ADB=∠ACB,∠CAB=∠DBA,AB=BA ∴△DBA≌△CAB(AAS),∴AD=BC;类比探究:结论仍然成立.理由:作∠BEC=∠BCE,BE交AC于E.∵∠ADB+∠ACB=∠AEB+∠BEC=180°,∴∠ADB=∠AEB.∵∠CAB=∠DBA,AB=BA,∴△DBA≌△EAB(AAS),∴BE=AD,∵∠BEC=∠BCE,∴BC=BE,∴AD =BC .综合运用:作∠BEC =∠BCE ,BE 交AC 于E .由(2)得,AD =BC =BE =1.在Rt △ACB 中,∠CAB =18°,∴∠C =72°,∠BEC =∠C =72°.由∠CFB =∠CAB +∠DBA =36°, ∴∠EBF =∠CEB ﹣∠CFB =36°,∴EF =BE =1.在△BCF 中,∠FBC =180°﹣∠BFC ﹣∠C =72°, ∴∠FBC =∠BEC ,∠C =∠C ,∴△CBE ∽△CFB . ∴=CB CF CE CB,令CE =x , ∴1=x (x +1).解得,x∴CF . 由∠FBC =∠C ,∴BF =CF .又AF =BF ,∴AC =2CF .15、【解答】(1)证明:如图1中,∵∠DAE=∠BAC,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△EAC≌△DAB(SAS),∴EC=BD.(2)解:如图2中,连接BD.∵AE=AD,∠EAD=60°,∴△AED是等边三角形,∴∠DEA=∠CDE=60°,∵EF⊥AD,∴∠FEA=12∠DEA=30°∵∠DAE=∠BAC,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴∠BDA=∠AEC=30°,EC=BD,∴∠EDB=90°,∵AE=4,AF=2,AC,∠EF A=∠AFC=90°,∴EF CF,∴EC=BD=∴BE(3)解:如图3中,作CM⊥CA,使得CM=CA,连接AM,BM.∵CA=CM,∠ACM=90°,∴∠CAM=45°,∵∠CAB=45°,∴∠MAB=45°+45°=90°,设AB=AC=m,则AM m,BMm,∵∠ACM=∠BCD=90°,∴∠BCM=∠ACD,∵CA=CM,CB=CD,∴AD =BM ,∴AD AB . 16、【解答】解:(1)结论:AD =2PD . 理由:如图1中,∵△ABC 是等边三角形,∴∠B =60°,∵∠EDC =120°,∴∠EDB =180°﹣120°=60°, ∴∠B =∠EDB =∠BED =60°, ∴△BDE 是等边三角形,∵BP =PE ,∴DP ⊥AB ,∴∠APD =90°,∵DE =DC ,DE =DB ,∴BD =CD ,∵AB =AC ,∠BAC =60°,∴∠P AD=12∠BAC=30°,∴AD=2PD.(2)结论成立.理由:延长DP到N,使得PN=PD,连接BN,EN,延长ED到M,使得DM=DE,连接BD,BM,CM.∵DE=DC=DM,∠MDC=180°﹣∠EDC=60°,∴△DCM是等边三角形,∵CA=CB,CM=CD,∠DCM=∠ACB=60°,∴∠BCM=∠ACD,∴△BCM≌△ACD(SAS),∴AD=BM,∵PB=PE,PD=PN,∴四边形BNED是平行四边形,∴BN∥DE,BN=DE,∵DE=DM,∴BN=DM,BN∥DM,∴四边形BNDM是平行四边形,∴BM=DN=2PD,∴AD=2PD.(3)如图3中,作∠PDK=∠BDC=120°,且PD=PK,连接PK,CK.∵DB=DC,DP=DK,∠BDC=∠PDK,∴∠BDP=∠CDK,∴△PDB≌△KDC(SAS),∴PB=CK,∵PB+PC=PC+CK=定值,∴P,C,K共线时,PK定值最大,此时PD的值最大,此时,∠DPB=∠DKP=∠DPK=30°,∠PBC=∠DPB+∠DPK=60°.故答案为60°.。
【中考压轴题专项练习】最新中考数学压轴大题冲刺专项训练:《 面积的最值问题 》含答案与解析

中考数学压轴大题冲刺专项训练面积的最值问题1.如图三角形ABC,BC=12,AD是BC边上的高AD=10.P,N分别是AB,AC边上的点,Q,M是BC 上的点,连接PQ,MN,PN交AD于E.求(1)若四边形PQMN是矩形,且PQ:PN=1:2.求PQ、PN的长;(2)若四边形PQMN是矩形,求当矩形PQMN面积最大时,求最大面积和PQ、PN的长.2.如图,四边形ABCD的两条对角线AC、BD互相垂直,10AC BD,当AC、BD的长是多少时,四边形ABCD的面积最大?3.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,AD上,AH=2,连接CF.(1)当四边形EFGH为正方形时,求DG的长;(2)当DG =6时,求△FCG 的面积;(3)求△FCG 的面积的最小值.4.如图,已知点P 是∠AOB 内一点,过点P 的直线MN 分别交射线OA ,OB 于点M ,N ,将直线MN 绕点P 旋转,△MON 的形状与面积都随之变化.(1)请在图1中用尺规作出△MON ,使得△MON 是以OM 为斜边的直角三角形;(2)如图2,在OP 的延长线上截取PC =OP ,过点C 作CM ∥OB 交射线OA 于点M ,连接MP 并延长交OB 于点N .求证:OP 平分△MON 的面积;(3)小亮发现:在直线MN 旋转过程中,(2)中所作的△MON 的面积最小.请利用图2帮助小亮说明理由.5.如图,现有一张矩形纸片ABCD ,2AB =,6BC =,点M ,N 分别在矩形的边AD ,BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .(1)求证:PM PN =;(2)当P ,A 重合时,求MN 的值;(3)若PQM ∆的面积为S ,求S 的取值范围.6.某公司对办公大楼一块墙面进行如图所示的图案设计.这个图案由四个全等的直角三角形和一个小正方形拼接而成的大正方形,设小正方形的边长m ,直角三角形较短边长n ,且n =2m ﹣4,大正方形的面积为S .(1)求S 关于m 的函数关系式.(2)若小正方形边长不大于3,当大正方形面积最大时,求m 的值.7.如图:已知矩形ABCD 中,AB =3cm ,BC =3cm ,点O 在边AD 上,且AO =1cm.将矩形ABCD 绕点O 逆时针旋转α角(0180α<<),得到矩形A ′B ′C ′D ′(1)求证:AC ⊥OB ;(2)如图1, 当B ′落在AC 上时,求AA ′;(3)如图2,求旋转过程中△CC ′D ′的面积的最大值.8.[问题提出](1)如图①,在ABC 中,6,BC D =为BC 上一点,4,AD =则ABC 面积的最大值是(2)如图②,已知矩形ABCD 的周长为12,求矩形ABCD 面积的最大值[实际应用](3)如图③,现有一块四边形的木板余料ABCD ,经测量60.80,70,AB cm BC cm CD cm ===且60,B C ∠=∠=︒木匠师傅从这块余料中裁出了顶点,M N 在边BC 上且面积最大的矩形,PQMN 求该矩形的面积9.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.(1)求x的取值范围;(2)求ABC面积的最大值.10.如图,已知AB为半圆O的直径,P为半圆上的一个动点(不含端点),以OP、OB为一组邻边作▱POBQ,连接OQ、AP,设OQ、AP的中点分别为M、N,连接PM、ON.(1)试判断四边形OMPN的形状,并说明理由.(2)若点P从点B出发,以每秒15°的速度,绕点O在半圆上逆时针方向运动,设运动时间为ts.①试求:当t为何值时,四边形OMPN的面积取得最大值?并判断此时直线PQ与半圆O的位置关系(需说明理由);②是否存在这样的t,使得点Q落在半圆O内?若存在,请直接写出t的取值范围;若不存在,请说明理由.11.如图①,在△ABC中,∠C=90°,AB=10,BC=8.点D,E分别是边AC,BC上的动点,连接DE.设CD=x(x>0),BE=y,y与x之间的函数关系如图②所示.(1)求出图②中线段PQ所在直线的函数表达式;(2)将△DCE沿DE翻折,得△DME.①点M是否可以落在△ABC的某条角平分线上?如果可以,求出相应x的值;如果不可以,说明理由;②直接写出△DME与△ABC重叠部分面积的最大值及相应x的值.12.问题提出(1)如图①,已知线段AB,请以AB为斜边,在图中画出一个直角三角形;(2)如图②,已知点A是直线l外一点,点B、C均在直线l上,AD⊥l且AD=3,∠BAC=60°,求△ABC 面积的最小值;问题解决(3)如图③,某园林单位要设计把四边形花园划分为几个区域种植不同花草,在四边形ABCD中,∠A=45°,∠B=∠D=90°,CB=CD=6m,点E、F分别为AB、AD上的点,若保持CE⊥CF,那么四边形AECF的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由.参考答案与试题解析1.如图三角形ABC,BC=12,AD是BC边上的高AD=10.P,N分别是AB,AC边上的点,Q,M是BC 上的点,连接PQ,MN,PN交AD于E.求(1)若四边形PQMN是矩形,且PQ:PN=1:2.求PQ、PN的长;(2)若四边形PQMN是矩形,求当矩形PQMN面积最大时,求最大面积和PQ、PN的长.【解析】解:(1)设PQ=y,则PN=2y,∵四边形PQMN是矩形,∴PN∥BC,∴△APN∽△ABC,∵AD⊥BC,∴AD⊥PN,∴PNBC=AEAD,即212y=1010y,解得y=154,∴PQ=154,PN=152.(2)设AE=x.∵四边形PQMN是矩形,∴PN∥BC,∴△APN∽△ABC,∵AD⊥BC,∴AD⊥PN,∴PN BC =AE AD, ∴PN =65x ,PQ =DE =10﹣x , ∴S 矩形PQMN =65x (10﹣x )=﹣65(x ﹣5)2+30, ∴当x =5时,S 的最大值为30,∴当AE =5时,矩形PQMN 的面积最大,最大面积是30,此时PQ =5,PN =6.2.如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,10ACBD ,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?【解析】解:设AC=x ,四边形ABCD 面积为S ,则BD=10-x ,则:211125(10)(5)2222S AC BD x x x =⋅=-=--+, ∴当x=5时,S 最大=252, 所以当AC=BD=5时,四边形ABCD 的面积最大.3.已知,如图,矩形ABCD 中,AD =6,DC =7,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD 的边AB,CD,AD上,AH=2,连接CF.(1)当四边形EFGH为正方形时,求DG的长;(2)当DG=6时,求△FCG的面积;(3)求△FCG的面积的最小值.【解析】解:(1)∵四边形EFGH为正方形,∴HG=HE,∠EAH=∠D=90°,∵∠DHG+∠AHE=90°,∠DHG+∠DGH=90°,∴∠DGH=∠AHE,∴△AHE≌△DGH(AAS),∴DG=AH=2;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF,在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG(AAS),∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此S△FCG=12×FM×GC=12×2×(7-6)=1;(3)设DG=x,则由(2)得,S△FCG=7-x,在△AHE中,AE≤AB=7,∴HE2≤53,∴x2+16≤53,∴x≤37,∴S△FCG的最小值为7-37,此时DG=37,∴当DG=37时,△FCG的面积最小为(7-37).4.如图,已知点P是∠AOB内一点,过点P的直线MN分别交射线OA,OB于点M,N,将直线MN绕点P旋转,△MON的形状与面积都随之变化.(1)请在图1中用尺规作出△MON,使得△MON是以OM为斜边的直角三角形;(2)如图2,在OP的延长线上截取PC=OP,过点C作CM∥OB交射线OA于点M,连接MP并延长交OB于点N.求证:OP平分△MON的面积;(3)小亮发现:在直线MN旋转过程中,(2)中所作的△MON的面积最小.请利用图2帮助小亮说明理由.【解析】(1)①在OB下方取一点K,②以P为圆心,PK长为半径画弧,与OB交于C、D两点,③分别以C 、D为圆心,大于12CD 长为半径画弧,两弧交于E 点, ④作直线PE ,分别与OA 、OB 交于点M 、N ,故△OMN 就是所求作的三角形;(2)∵CM ∥OB ,∴∠C =∠PON ,在△PCM 和△PON 中,C PON PC POCPH OPN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PCM ≌△PON (ASA ),∴PM =PN ,∴OP 平分△MON 的面积;(3)过点P 作另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,与MC 交于于G ,∵CM ∥OB ,∴∠GMP =∠FNP ,在△PGM 和△PFM 中,PMG PNF PM PNMPG NPF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PGM ≌△PFN (ASA ),∴S △PGM =S △PFN∴S 四边形MOFG =S △MON .∵S 四边形MOFG <S △EOF ,∴S △MON <S △EOF ,∴当点P 是MN 的中点时S △MON 最小.5.如图,现有一张矩形纸片ABCD ,2AB =,6BC =,点M ,N 分别在矩形的边AD ,BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .=;(1)求证:PM PN(2)当P,A重合时,求MN的值;∆的面积为S,求S的取值范围.(3)若PQM【解析】(1)证明:如图1中,∵四边形ABCD是矩形,∴PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN.(2)解:点P与点A重合时,如图2中,设BN=x ,则AN=NC=6-x ,在Rt △ABN 中,AB 2+BN 2=AN 2,即22+x 2=(6-x )2,解得x=83, ∴CN=6-83=103,222226210AC AB BC =+=+=, ∴1102CQ AC ==, ∴222210()(10)310QN CN CQ =-=-=, ∴10223MN QN ==. (3)解:当MN 过点D 时,如图3所示,此时,CN 最短,四边形CMPN 的面积最小,则S 最小为14S S =菱形CMPN =12214⨯⨯=,当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为11210152102223S=⨯⨯⨯⨯=,∴513S≤≤.6.某公司对办公大楼一块墙面进行如图所示的图案设计.这个图案由四个全等的直角三角形和一个小正方形拼接而成的大正方形,设小正方形的边长m,直角三角形较短边长n,且n=2m﹣4,大正方形的面积为S.(1)求S关于m的函数关系式.(2)若小正方形边长不大于3,当大正方形面积最大时,求m的值.【解析】解:(1)∵小正方形的边长m,直角三角形较短边长n,∴直角三角形较长边长为m+n,∴由勾股定理得:S=(m+n)2+n2,∵n=2m﹣4,∴S=(m+2m﹣4)2+(2m﹣4)2,=13m2﹣40m+32,∵n=2m﹣4>0,∴m>2,∴S关于m的函数关系式为S=13m2﹣40m+32(m>2);(2)∵S=13m2﹣40m+32(2<m≤3),∴S =13(m-2013)2+1613∵m≥2013时,S 随x 的增大而增大, ∴m =3时,S 取最大.∴m =3.7.如图:已知矩形ABCD 中,AB =3cm ,BC =3cm ,点O 在边AD 上,且AO =1cm.将矩形ABCD 绕点O 逆时针旋转α角(0180α<<),得到矩形A ′B ′C ′D ′(1)求证:AC ⊥OB ;(2)如图1, 当B ′落在AC 上时,求AA ′;(3)如图2,求旋转过程中△CC ′D ′的面积的最大值.【解析】解:(1)Rt △OAB 中,tan 3AB AOB OA∠== ∴∠AOB =60° R t △ACD 中,3tan CD CAD AD ∠== ∴∠CAD =30°∴∠OMA =180°-60°-30°=90°即AC ⊥OB(2)Rt △OAM 中,1•sin 1sin 302OM OA CAD =∠=⨯︒= Rt △OAB 中,OB ′=OB =60OA COS ︒=2, Rt △O B ′M 中,B ′M =2215OB OM -=', BM =OB -OM =32, Rt △B B ′M 中,2222153()()622BB B M BM =++''== ,,OA OB AOB A OB AOA BOB OA OB'''=∠=∴∆'∆''∽ ∴1,26AA OA BB OB =='', ∴62AA '=(3)如图,过C 点作CH ⊥于C ′D ′点H ,连结OC ,则CH ≤OC +OD ′只有当D ′在CO 的延长线上时,CH 才最大.又C ′D ′长一定,故此时△CC ′D ′的面积的最大.而2222OC CD OD =+=∴△CC ′D ′的最大面积为1(222)3632+⨯=+ 8.[问题提出](1)如图①,在ABC 中,6,BC D =为BC 上一点,4,AD =则ABC 面积的最大值是(2)如图②,已知矩形ABCD 的周长为12,求矩形ABCD 面积的最大值[实际应用](3)如图③,现有一块四边形的木板余料ABCD ,经测量60.80,70,AB cm BC cm CD cm ===且60,B C ∠=∠=︒木匠师傅从这块余料中裁出了顶点,M N 在边BC 上且面积最大的矩形,PQMN 求该矩形的面积【解析】解:(1)过点A 作AE ⊥BC ,如图所示:∴12ABCS BC AE=⋅,∵D为BC上一点,∴AD AE≥,∴要使△ABC的面积最大,则需满足AD=AE,∵BC=6,AD=4,∴△ABC的面积最大为:16412 2⨯⨯=;故答案为12;(2)∵四边形ABCD是矩形,∴AB=DC,AD=BC,∵矩形ABCD的周长是12,∴设AB=x,则有AD=6-x,矩形ABCD的面积为S,则有:()()226639S x x x x x=-=-+=--+,此函数为二次函数,由10a=-<,二次函数的开口向下,∴当x=3时,矩形ABCD的面积有最大值为:S9=;(3)如图所示:∵四边形PQMN 是矩形,∴QM=PN ,PQ=MN ,∠QMN=∠PNM=90°,∵∠B=∠C=60°,∠QMB=∠PNC=90°,∴△BMQ ≌△CNP ,∴BM=NC ,设BM=NC=x ,则有MN=PQ=80-2x , ∴603QM BM tan x =⋅︒=,∴()()2380223208003PQMN S PQ QM x x x =⋅=⋅-=--+矩形, 此函数关系为二次函数,由230a =-<可得开口向下, ∴当x=20时,矩形PQMN 的面积有最大,即8003PQMN S =矩形. 9.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.(1)求x 的取值范围;(2)求ABC 面积的最大值.【解析】解:(1)∵4MN =,1MA =,AB x =,∴413BN x x =--=-.由旋转的性质,得1MA AC ==,3BN BC x ==-,由三角形的三边关系,得31,31,x x x x --<⎧⎨-+>⎩①② 解不等式①得1x >,解不等式②得2x <,∴x 的取值范围是12x <<.(2)如图,过点C 作CD AB ⊥于点D ,设CD h =,由勾股定理,得2221AD AC CD h -=-=2222(3)BD BC CD x h =-=--∵BD AB AD =-, 222(3)1x h x h --=-2134-=-h x ,两边平方整理,得()222832=x x h x -+-.∵ABC 的面积为1122AB CD xh ⋅=, ∴()2222113183222422S xh x x x ⎛⎫⎛⎫==-⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭,∴当32x 时,ABC面积最大值的平方为12,∴ABC面积的最大值为22.10.如图,已知AB为半圆O的直径,P为半圆上的一个动点(不含端点),以OP、OB为一组邻边作▱POBQ,连接OQ、AP,设OQ、AP的中点分别为M、N,连接PM、ON.(1)试判断四边形OMPN的形状,并说明理由.(2)若点P从点B出发,以每秒15°的速度,绕点O在半圆上逆时针方向运动,设运动时间为ts.①试求:当t为何值时,四边形OMPN的面积取得最大值?并判断此时直线PQ与半圆O的位置关系(需说明理由);②是否存在这样的t,使得点Q落在半圆O内?若存在,请直接写出t的取值范围;若不存在,请说明理由.【解析】(1)四边形OMPN为矩形,理由如下:∵四边形POBQ为平行四边形,∴PQ∥OB,PQ=OB.又∵OB=OA,∴PQ=AO.又∵PQ∥OA,∴四边形PQOA为平行四边形,∴P A∥QO,P A=QO.又∵M、N分别为OQ、AP的中点,∴OM=12OQ,PN=12AP,∴OM=PN,∴四边形OMPN为平行四边形.∵OP=OA,N是AP的中点,∴ON⊥AP,即∠ONP=90°,∴四边形OMPN为矩形;(2)①∵四边形OMPN为矩形,∴S矩形OMPN =ON·NP=ON·12AP,即S矩形OMPN=S△AOP.∵△AOP的底AO为定值,∴当P旋转运动90°(运动至最高点)时,△AOP的AO边上的高取得最大值,此时△AOP的面积取得最大值,∴t=90÷15=6秒,∴当t=6秒时,四边形OMPN面积最大.此时,PQ与半圆O相切.理由如下:∵此时∠POB=90°,PQ//OB,∴∠OPQ=90°,∴PQ与半圆O相切;②当点Q在半圆O上时,∵四边形POBQ为平行四边形,且OB=OP,∴四边形POBQ为菱形,∴OB=BQ=OQ=OP=PQ,∴∠POQ=∠BOQ=60°,即:∠BOP=120°,∴此时,t=120°÷15°=8秒,当点P与点A重合时,t=180°÷15°=12秒,综上所述:当8<t<12时,点Q在半圆O内.11.如图①,在△ABC中,∠C=90°,AB=10,BC=8.点D,E分别是边AC,BC上的动点,连接DE.设CD=x(x>0),BE=y,y与x之间的函数关系如图②所示.(1)求出图②中线段PQ所在直线的函数表达式;(2)将△DCE沿DE翻折,得△DME.①点M是否可以落在△ABC的某条角平分线上?如果可以,求出相应x的值;如果不可以,说明理由;②直接写出△DME与△ABC重叠部分面积的最大值及相应x的值.【解析】解:(1)设线段PQ 所在直线的函数表达式为y =kx +b ,将P (3,4)和Q (6,0)代入得,0306k b k b =+⎧⎨=+⎩,解得438k b ⎧=-⎪⎨⎪=⎩, ∴线段PQ 所在直线的函数表达式为483y x =-+; (2)①如图1,连接CM 并延长CM 交AB 于点F ,∵∠C =90°,AB =10,BC =8,∴AC 22AB BC -=6,由(1)得BE =()2221624248DEKP S x x x =-+-=--+四边形,∴CE =43x ,∴34DC AC CE BC ==, ∵∠DCE =∠ACB ,∴△DCE ∽△ACB ,∴∠DEC =∠ABC ,∴DE//AB,∵点C和点M关于直线DE对称,∴CM⊥DE,∴CF⊥AB,∵1122ABCS AC BC AB CF==△,∴6×8=10×CF,∴CF=24 5,∵∠C=90°,CD=x,CE=43x,∴DE53x =,∴CM=85x,MF=24855x-,过点M作MG⊥AC于点M,过点M作MH⊥BC于点H,则四边形GCHM为矩形,∵∠GCM+∠BCF=∠BCF+∠ABC=90°,∴∠GCM=∠ABC,∵∠MGC=∠ACB=90°,∴△CGM∽△BCA,∴MG CG CM AC BC AB==,即85 6810x MG CG==,∴MG =2425x ,CG =3225x , ∴MH =3225x , (Ⅰ)若点M 落在∠ACB 的平分线上,则有MG =MH ,即24322525x x =,解得x =0(不合题意舍去), (Ⅱ)若点M 落在∠BAC 的平分线上,则有MG =MF ,即242482555x x =-,解得x =158, (Ⅲ)若点M 落在∠ABC 的平分线上,则有MH =MF ,即322482555x x =-,解得x =53. 综合以上可得,当x =158或x =53时,点M 落在△ABC 的某条角平分线上. ②当0<x ≤3时,点M 不在三角形外,△DME 与△ABC 重叠部分面积为△DME 的面积,∴2142233S x x x ==, 当x =3时,S 的最大值为22363⨯=. 当3<x ≤6时,点M 在三角形外,如图2,由①知CM =2CQ =85x , ∴MT =CM ﹣CF =82455x -, ∵PK//DE ,∴△MPK ∽△MDE ,∴()2222824265545MPKMDE x x S MF S MQ x x ⎛⎫- ⎪-⎛⎫=== ⎪ ⎪⎝⎭ ⎪⎝⎭△△ , ∴()2226MPK MDE x S S x -=△△,∵DEKP MDE MPK S S S =-△△四边形,∴()()2222226262113DEKP MDE x x S S x x x ⎡⎤⎡⎤--=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦△四边形, 即:()2221624248DEKP S x x x =-+-=--+四边形,∴当x =4时,△DME 与△ABC 重叠部分面积的最大值为8.综合可得,当x =4时,△DME 与△ABC 重叠部分面积的最大值为8.13.问题提出(1)如图①,已知线段AB ,请以AB 为斜边,在图中画出一个直角三角形;(2)如图②,已知点A 是直线l 外一点,点B 、C 均在直线l 上,AD ⊥l 且AD=3,∠BAC=60°,求△ABC 面积的最小值;问题解决(3)如图③,某园林单位要设计把四边形花园划分为几个区域种植不同花草,在四边形ABCD 中,∠A=45°,∠B=∠D=90°,CB=CD=6m ,点E 、F 分别为AB 、AD 上的点,若保持CE ⊥CF ,那么四边形AECF 的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由.【解析】解:(1)如图,Rt△ACB即为所求.(2)如图,作△ABC的外接圆⊙O,连接OA,OB,OC,过点O作OE⊥BC于点E,则∠BOC=2∠BAC,OA=OB=OC,BE=CE=12 BC,∵∠BAC=60°,∴∠BOC=120°,∠OBC=∠OCB=30°,设OA=OB=OC=r,则OE=12r,3,∵AO+OE≥A D,AD=3,∴r+12r≥3,解得r≥2,∴323∴S△ABC=12BC·AD≥12×33=33∴△ABC 面积的最小值为33.(3)存在;如图,分别延长AB 、DC 交于点M , 则△ADM 、△CBM 均为等腰直角三角形, ∵CB=CD=6m ,∴BM=6m ,CM=62,AD=DM=(6+2m , ∴S 四边形ABCD=S △ADM -S △CBM=12DM 2-12BC 2 =12×(6+622-12×62 =(36+362)m 2.将△CBE 绕点C 顺时针旋转135°得到△CDE′, 则A 、D 、E′三点共线.∴S 四边形AECF =S 四边形ABCD –(S △CBE +S △CDF )=S 四边形ABCD –S △CE ′F ∵S 四边形ABCD 为定值,∴当S △CE ′F 取得最小值时,S 四边形AECF 取得最大值.∵∠E′CF=135°-90°=45°,∴以E′F为斜边作等腰Rt△OE′F,则△CE′F的外接圆是以点O为圆心,OF长为半径的圆,设△CE′F的外接圆半径为rm,∴E′F=2rm,又∵OC+OD≥CD,∴22r+r≥6,∴r≥12-62,当点O在CD上时,E′F最短,此时E′F=2r=(122-12)m,∴S△CE′F最小=12×(122-12)×6=(362-36)m2,∴S四边形AECF最大=S四边形ABCD-S△CE’F最小=36+362-(362-36)=72m2.。
专题24-解三角形中的最值、范围问题(解析版)

专题24 解三角形中的最值、范围问题解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换及解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网例如:(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-=(2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A= 2、余弦定理:2222cos a b c bc A =+-变式:()()2221cos a b c bc A =+-+ 此公式在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值 4、三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:其中由cos cos>⇔>仅在A B A B>⇔<利用的是余弦函数单调性,而sin sinA B A B一个三角形内有效.5、解三角形中处理不等关系的几种方法(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值)(2)利用均值不等式求得最值【经典例题】例1.【2018届百校联盟TOP20高三四月联考全国一卷】已知四边形中,,设及面积分别为,则的最大值为_____.【答案】【解析】分析:利用余弦定理推,求出的表达式,利用二次函数以及余弦函数的值的范围,求的最大值即可.点睛:求解三角函数的最值(或值域)时一定要注意自变量的取值范围,由于三角函数的周期性,正弦函数、余弦函数的最大值和最小值可能不在自变量区间的端点处取得.例2.【2018届普通高等学校招生全国统一考试高三下学期第二次调研】在中,角A,B,C所对的边分别为,则实数a 的取值范围是____________.【答案】.【解析】由,得,所以,则由余弦定理,得,解得,又,所以的范围是.例3.【2018届浙江省杭州市高三第二次检测】在△ABC 中,角A,B,C 所对的边分别为a,b,c.若对任意λ∈R,不等式恒成立,则的最大值为_____.【答案】2例4.【衡水金卷信息卷三】已知的三边分别为,,,所对的角分别为,,,且满足,且的外接圆的面积为,则的最大值的取值范围为__________.【答案】【解析】由的三边分别为,,可得:可知:,例5.【2018届湖南省株洲市高三检测(二)】已知中,角所对的边分别是,且.(1)求角的大小;(2)设向量,边长,当取最大值时,求边的长.【答案】(1)(2).【解析】分析:(1)由题意,根据正弦定理可得,再由余弦定理可得,由此可求角的大小;(2)因为由此可求当取最大值时,求边的长.(2)因为所以当时, 取最大值,此时, 由正弦定理得,例6.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.学/科/*网(Ⅰ)求角;(II )若,当有且只有一解时,求实数的范围及的最大值. 【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A 的值. (II )先根据有且只有一解利用正弦定理和三角函数的图像得到m 的取值范围,再写出S 的函数表达式求其最大值. 详解:(Ⅰ)由己知(Ⅱ)由己知,当有且只有一解时,或,所以;当时,为直角三角形,当 时,由正弦定理 , 所以,当时,综上所述,.例7.【2018届四川省资阳市高三4月(三诊)】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()()sin sin a b A B +- ()sin sin c C B =-.(1)求A .(2)若4a =,求22b c +的取值范围.【答案】(1)3A π=;(2)(]16,32.221616b c bc +=+>,进而可得结果.试题解析:(1)根据正弦定理得()()a b a b +- ()c c b =-,即222a b c bc -=-,则222122b c a bc +-=,即1cos 2A =,由于0πA <<, 【方法点睛】本题主要考查正弦定理及余弦定理的应用,属于中档题.在解及三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.例8.【2018届甘肃省张掖市高三三诊】已知3cos ,cos 44x x m ⎛⎫=⎪⎝⎭,sin ,cos 44x x n ⎛⎫= ⎪⎝⎭,设函数()f x m n =⋅.(1)求函数()f x 的单调增区间;(2)设ABC ∆的内角A , B , C 所对的边分别为a , b , c ,且a , b , c 成等比数列,求()f B 的取值范围.【答案】(1) 424,433k k ππππ⎡⎤-+⎢⎥⎣⎦, k Z ∈.(2) ⎛ ⎝⎦. 【解析】试题分析:(1)由题()13cos ,cos sin ,cos sin 4444262x x x x x f x m n π⎛⎫⎛⎫⎛⎫=⋅=⋅=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,根据正弦函数的性质222262x k k πππππ-≤+≤+可求其单调增区间;(2)由题2b ac =可知2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=, (当且仅当a c =时取等号),所以03B π<≤, 6263B πππ<+≤,由此可求 ()f B 的取值范围.(当且仅当a c =时取等号),所以03B π<≤, 6263B πππ<+≤, ()311f B +<≤,综上, ()f B 的取值范围为311,2⎛⎤⎥⎝⎦. 例9.【2018届吉林省吉林市高三第三次调研】锐角ABC ∆中, ,,A B C 对边为,,a b c , ()()()222sin 3cos b a c B C ac A C --+=+(1)求A 的大小; (2)求代数式b c a+的取值范围.【答案】(1)3π(2)32b ca+≤ 【解析】试题分析:(1)由()()()222sin 3cos b a c B C ac A C --+=+及余弦定理的变形可得2cos sin 3cos B A B -=,因为cos 0B ≠,故得3sin 2A =,从而可得锐角ABC∆中3A π=.(2)利用正弦定理将所求变形为2sin sin 32sin sin 6B B b c B a A ππ⎛⎫++ ⎪+⎛⎫⎝⎭==+ ⎪⎝⎭,然后根据6B π+的取值范围求出代数式b c a+的取值范围即可.试题解析:(1)∵2222cos b a c ac B --=-, ()()()222sin 3cos b a c B C ac A C --+=+, ∵ABC ∆为锐角三角形,且3A π= ∴02{02B C ππ<<<<,即02{ 2032B B πππ<<<-<, 解得62B ππ<<,∴2,363B πππ<+<sin 16B π⎛⎫<+≤ ⎪⎝⎭.2b c a +<≤.故代数式b c a +的取值范围2⎤⎦.点睛:(1)求b c a+的取值范围时,可根据正弦定理将问题转化为形如()sin y A x ωϕ=+的函数的取值范围的问题解决,这是在解三角形问题中常用的一种方法,但在解题中要注意确定角x ωϕ+的范围.(2)解答本题时要注意“锐角三角形”这一条件的运用,根据此条件可的求得6B π+的范围,然后结合函数的图象可得sin 6B π⎛⎫+ ⎪⎝⎭的范围,以达到求解的目的.例10.【2018届衡水金卷信息卷(一)】已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,若向量()()2,cos ,,cos m b c B n a A =-=-,且//m n .(1)求角A 的值;(2)已知ABC ∆的外接圆半径为3,求ABC ∆周长的取值范围.【答案】(1) 3A π= (2) (]4,6【解析】试题分析:(1)由//m n ,得62)0c cosA acosB -+=(,利用正弦定理统一到角上易得1cos 2A =;(2)根据题意,得2sin 2a R A ==,由余弦定理,得()223a b c bc =+-,结合均值不等式可得()216b c +≤,所以b c +的最大值为4,又2b c a +>=,从而得到ABC ∆周长的取值范围.得1cos 2A =.又()0,A π∈,所以3A π=.(2)根据题意,得4332sin 232a R A ==⨯=.由余弦定理,得()22222cos 3a b c bc A b c bc =+-=+-,即()223432b c bc b c +⎛⎫=+-≤ ⎪⎝⎭,整理得()216b c +≤,当且仅当2b c ==时,取等号,所以b c +的最大值为4.又2b c a +>=,所以24b c <+≤,所以46a b c <++≤. 所以ABC ∆的周长的取值范围为(]4,6.【精选精练】1.【2018届东莞市高三第二次考试】在中,若,则的取值范围为( ) A.B.C.D. 【答案】D【解析】因为,所以,即,即,2.【2018届湖南省衡阳市高三二模】在中,已知为的面积),若,则的取值范围是( )A. B.C.D. 【答案】C【解析】,,,,又,,,,故选C.3.【2018届四川省绵阳市高三三诊】四边形ABCD 中, 2AB =,1BC CD DA ===,设ABD ∆、BCD ∆的面积分别为1S 、2S ,则当2212S S +取最大值时, BD =__________.【答案】102【点睛】本小题主要考查三角形的面积公式的应用,考查同角三角函数关系,考查利用余弦定理解三角形,考查二次函数最值的求法.首先根据题目所求,利用三角形面积公式,写出面积的表达式,利用同角三角函数关系转化为余弦值,利用余弦定理化简,再利用配方法求得面积的最值,并求得取得最值时BD 的值.4.【2018届广东省肇庆市高三第三次模拟】已知的角对边分别为,若,且的面积为,则的最小值为________.【答案】5.【2018届辽宁省辽南协作校高三下学期一模】设的内角所对的边分别为且+,则的范围是__________.【答案】【解析】由+得,所以,即,再由余弦定理得,即,解得,又,所以的范围是.点睛:在解三角形问题中,一般需要利用余弦定理结合均值不等式,来求两边和的取值范围或者是三角形的面积的最值,只需运用余弦定理,并变形为两边和及两边积的等式,在利用均值不等式转化为关于两边和或两边积的不等式,解不等式即可求出范围.6.【2018届四川省攀枝花市高三第三次(4月)统考】已知锐角ABC ∆的内角A B C 、、的对边分别为a b c 、、,且2cos 2,2a C c b a +==,则ABC ∆的最大值为__________.即4bc ≤,所以ABC ∆的最大值为max 11sin 422S bc A ==⨯=. 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.7.【2018届宁夏石嘴山市高三4月适应性测试(一模)】已知,,a b c 分别为ABC ∆内角,,A B C 的对边,且sin cos b A B =.(1)求角B ;(2)若b =,求ABC ∆面积的最大值.【答案】(1)3B π=;(2).【解析】试题分析:(1)由正弦定理边化角得到tan B =,从而得解;(2)由余弦定理得2222cos b a c ac B =+-, 2212a c ac =+-结合222a c ac +≥即可得最值. 试题解析: (1)∵sin cos b A B =,∴由正弦定理可得sin sin cos B A A B =,即ABC面积的最大值为33. 8.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.(Ⅰ)求角;(II)若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A的值. (II)先根据有且只有一解利用正弦定理和三角函数的图像得到m的取值范围,再写出S的函数表达式求其最大值.详解:(Ⅰ)由己知由余弦定理得,所以,即,,所以.由正弦定理,,所以,当时,综上所述,.点睛:本题在转化有且只有一解时,容易漏掉m=2这一种情况.此时要通过正弦定理和正弦函数的图像分析,不能死记硬背.先由正弦定理得再画正弦函数的图像得到或.9.【衡水金卷信息卷(二)】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知sin 3cos a C c A =.(1)求角A 的大小;(2)若2b =,且43B ππ≤≤,求边c 的取值范围.【答案】(1) 3A π=;(2) 31⎡⎤⎣⎦. 在ABC ∆中,由正弦定理,得sin sin b cB C=,∴22sin 2sin 3cos 3311sin sin B C B c B B π⎛⎫- ⎪⎝⎭===+=,∵43B ππ≤≤,∴1tan 3B ≤≤231c ≤≤,即c 的取值范围为31⎡⎤⎣⎦.10.【2018届辽宁省沈阳市东北育才学校高三三模】已知ABC ∆三个内角,,A B C 的对边分别为,,a b c , ABC ∆的面积S 满足2223a b c =+-. (1)求角C 的值;(2)求()cos2cos A A B +-的取值范围. 【答案】(1)23π;(2)(3tan 3C =-,又0C π<<, 23C π∴=.(2)()33cos2cos =cos2cos 2cos2322A A B A A A A π⎛⎫+-+-=+ ⎪⎝⎭=3sin 23A π⎛⎫+ ⎪⎝⎭11.【2018届江苏省姜堰、溧阳、前黄中学高三4月联考】在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C =.(1)求b 的值;(2)若4B π=, S 为ABC ∆的面积,求82cos cos S A C +的取值范围.【答案】(1) 4b =(2) (【解析】试题分析:(1)利用正余弦定理, sin cos 3cos sin A C A C =可转化为2222b ac -=,又222a c b -=,从而得到b 的值;(2)由正弦定理1sin sin 2S bc A A C ==,故324S AcosC A π⎛⎫+=-⎪⎝⎭限制角A的范围,求出cos S A C +的取值范围. (2)由正弦定理sin sin b c B C=得114sin 4sin sin sin 22sin4S bc A A C A C π==⋅⋅=在ABC ∆中,由3040{202A A C A Cπππ<<<<<<> 得3,82A ππ⎛⎫∈ ⎪⎝⎭320,44A ππ⎛⎫∴-∈ ⎪⎝⎭,3cos 2,142A π⎛⎫⎛⎫∴-∈ ⎪ ⎪⎪⎝⎭⎝⎭12.【衡水金卷信息卷 (五)】在锐角ABC ∆中,内角A , B , C 的对边分别为a , b , c ,且25sin 2sin 224B C A π+⎛⎫+-=- ⎪⎝⎭. (1)求角A ;(2)若a =ABC ∆周长的取值范围.【答案】(1) 3A π=(2) (3试题解析:(1)∵252224B C sin A sin π+⎛⎫+-=- ⎪⎝⎭,∴()15224cos B C cos A -+-=-, ∴2152124cosA cos A +--=-,整理,得28210cos A cosA --=,∴14cosA =-或12cosA =,∵02A π<<,∴12cosA =,即3A π=.(2)设ABC ∆的外接圆半径为r,则22a r sinA===,∴1r =.∴ABC ∆周长的取值范围是(3+.。
13 三角形面积求最大值问题——铅垂法-【初中数学】120个题型大招!冲刺满分秘籍!

铅垂法求三角形面积最值问题求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法.【问题描述】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样:构造矩形ADEF ,用矩形面积减去三个三角形面积即可得△ABC 面积.这是在“补”,同样可以采用“割”:()111222ABC ACD BCD S S S CD AE CD BF CD AE BF =+=⋅+⋅=+ 此处AE +AF 即为A 、B 两点之间的水平距离.由题意得:AE +BF =6.下求CD :根据A 、B 两点坐标求得直线AB 解析式为:1233y x =+由点C 坐标(4,7)可得D 点横坐标为4,将4代入直线AB 解析式得D 点纵坐标为2,故D 点坐标为(4,2),CD =5,165152ABC S =⨯⨯= .【方法总结】作以下定义:A 、B 两点之间的水平距离称为“水平宽”;过点C 作x 轴的垂线与AB 交点为D ,线段CD 即为AB 边的“铅垂高”.如图可得:=2ABC S ⨯ 水平宽铅垂高【解题步骤】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ;(3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标;(4)根据C 、D 坐标求得铅垂高;(5)利用公式求得三角形面积.【思考】如果第3个点的位置不像上图一般在两定点之间,如何求面积?铅垂法其实就是在割补,重点不在三个点位置,而是取两个点作水平宽之后,能求出其对应的铅垂高!因此,动点若不在两定点之间,方法类似:【铅垂法大全】(1)取AB 作水平宽,过点C 作铅垂高CD .(2)取AC 作水平宽,过点B 作BD ⊥x 轴交直线AC 于点D ,BD 即对应的铅垂高,=2ABC ABD BCD S S S ⨯-= 水平宽铅垂高(3)取BC 作水平宽,过点A 作铅垂高AD .甚至,还可以横竖互换,在竖直方向作水平宽,在水平方向作铅垂高.(4)取BC作水平宽,过点A作铅垂高AD.(5)取AC作水平宽,过点B作铅垂高BD.(6)取AB作水平宽,过点C作铅垂高CD.方法突破例一、如图,已知抛物线25y ax bx =++经过(5,0)A -,(4,3)B --两点,与x 轴的另一个交点为C .(1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为m .当点P 在直线BC 的下方运动时,求PBC ∆的面积的最大值.【分析】(1)265y x x =++,(2)取BC 两点之间的水平距离为水平宽,过点P 作PQ ⊥x 轴交直线BC 于点Q ,则PQ 即为铅垂高.根据B 、C 两点坐标得B 、C 水平距离为4,根据B 、C 两点坐标得直线BC 解析式:y =x +1,设P 点坐标为(m ,m ²+6m +5),则点Q (m ,m +1),得PQ =-m ²-5m -4,考虑到水平宽是定值,故铅垂高最大面积就最大.当52-时,△BCP 面积最大,最大值为278.【小结】选两个定点作水平宽,设另外一个动点坐标来表示铅垂高.例二、在平面直角坐标系中,将二次函数2(0)y ax a =>的图像向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数(0)y kx b k =+≠的图像与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图像下方,求ACE ∆面积的最大值,并求出此时点E 的坐标.【分析】(1)抛物线解析式:21322y x x =--;一次函数解析式:1122y x =+.(2)显然,当△ACE 面积最大时,点E 并不在AC 之间.已知A (-1,0)、10,2C ⎛⎫ ⎪⎝⎭,设点E 坐标为213,22m m m ⎛⎫-- ⎪⎝⎭,过点E 作EF ⊥x 轴交直线AD 于F 点,F 点横坐标为m ,代入一次函数解析式得11,22m m ⎛⎫+ ⎪⎝⎭可得213222EF m m =-++考虑到水平宽是定值,故铅垂高最大面积最大.既然都是固定的算法,那就可以总结一点小小的结论了,对坐标系中已知三点()11,A x y 、()22,B x y 、()33,C x y ,按铅垂法思路,可得:12233121321312ABC S x y x y x y x y x y x y =++--- 如果能记住也不要直接用,可以当做是检验的方法咯.【总结】铅垂法是求三角形面积的一种常用方法,尤其适用于二次函数大题中的三角形面积最值问题,弄明白方法原理,熟练方法步骤,加以练习,面积最值问题轻轻松松.专项训练1.已知二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,且二次函数2y x bx c =-++的图象经过点(0,3)B ,一次函数y mx n =+的图象经过点(0,1)C -.(1)分别求m 、n 和b 、c 的值;(2)点P 是二次函数2y x bx c =-++的图象上一动点,且点P 在x 轴上方,写出ACP ∆的面积S 关于点P 的横坐标x 的函数表达式,并求S 的最大值.【分析】(1)把直线和曲线经过的点代入得到方程组,求解即可得到答案;(2)分两种情况:①当点P 在y 轴左侧时,过点P 作//PD y 轴交AC 于点D ,②当点P 在y 轴右侧时,过点P 作//PD y 轴交AC 的延长线于点D ,分别根据三角形面积公式得到关系式,利用函数式表示三角形PAC 的面积,配方可得答案.【解答】解:(1) 二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,一次函数y mx n =+的图象经过点(0,1)C -,∴301m n n -+=⎧⎨=-⎩,∴131m n ⎧=-⎪⎨⎪=-⎩,二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,二次函数2y x bx c =-++的图象经过点(0,3)B ,∴9303b c c --+=⎧⎨=⎩,∴23b c =-⎧⎨=⎩.(2)由(1)知一次函数与二次函数的解析式分别为:113y x =--或223y x x =--+,①当点P 在y 轴左侧时,过点P 作//PD y 轴交AC 于点D ,则13|3|22PAC S PD PD ∆=⨯⨯-=,②当点P 在y 轴右侧时,过点P 作//PD y 轴交AC 的延长线于点D,则13|3|22PAC S PD x x PD ∆=⨯⨯+-=, 点P 在抛物线上,设2(,23)P x x x --+,则1(,1)3D x x --,2215231433PD x x x x x ∴=--+++=--+,233535169(4)(2232624PAC S PD x x x ∆∴==-++=-++,即当56x =-时,PAC S ∆最大16924=.【点评】本题考查的是二次函数综合运用,涉及一次函数、图形面积的计算等,掌握其性质及运算是解决此题关键,2.如图,抛物线经过(2,0)A -,(4,0)B ,(0,3)C -三点.(1)求抛物线的解析式;(2)在直线BC 下方的抛物线上有一动点P ,使得PBC ∆的面积最大,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【分析】(1)将点A 、B 、C 的坐标代入抛物线表达式,即可求解;(2)由PBC ∆的面积PHB PHC S S ∆∆=+,即可求解;(3)分AC 是边、AC 是对角线两种情况,利用平移的性质和中点公式即可求解.【解答】解:(1)将点A 、B 、C 的坐标代入抛物线表达式得42016403a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得38343a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩,故抛物线的表达式为233384y x x =--;(2)设直线BC 的表达式为y mx n =+,则043m n n =+⎧⎨=-⎩,解得343m n ⎧=⎪⎨⎪=-⎩,故直线BC 的表达式为334y x =-,过点P 作y 轴的平行线交BC 于点H ,设点P 的坐标为233(,3)84x x x --,则点3(,3)4H x x -,则PBC ∆的面积221133334(33)3224844PHB PHC S S PH OB x x x x x ∆∆=+=⋅=⨯⨯--++=-+,304-< ,故该抛物线开口向下,PBC ∆的面积存在最大值,此时2x =,则点P 的坐标为(2,3)-;(3)存在,理由:设点N 的坐标为(,)m n ,则233384n m m =--①,①当AC 是边时,点A 向下平移3个单位得到点C ,则点()M N 向下平移3个单位得到点()N M ,则03n -=或03n +=②,联立①②并解得23m n =⎧⎨=-⎩或13m n ⎧=-⎪⎨=⎪⎩(不合题意的值已舍去);②当AC 是对角线时,则由中点公式得:11(03)(0)22n -=+③,联立①③并解得23m n =⎧⎨=-⎩(不合题意的值已舍去);综上,点N 的坐标为(2,3)-或(1-3)或(1--3).【点评】本题是二次函数综合题,主要考查了一次函数的性质、平行四边形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.3.综合与探究:如图,在平面直角坐标系中,二次函数的图象交坐标轴于(1,0)A -,(3,0)B ,(0,4)C -三点,点(,)P m n 是直线BC 下方抛物线上的一个动点.(1)求这个二次函数的解析式;(2)动点P 运动到什么位置时,PBC ∆的面积最大,求出此时P 点坐标及PBC ∆面积的最大值;(3)在y 轴上是否存在点Q ,使以O ,B ,Q 为顶点的三角形与AOC ∆相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【分析】(1)将A 、B 、C 坐标代入即可求解析式;(2)设P 坐标,表示出PBC ∆的面积,再求出最大面积和面积最大时P 的坐标;(3)两个直角顶点是对应点,而AOC ∆两直角边的比为14,只需BOQ ∆两直角边比也为14,两个三角形就相似,分两种情况列出比例式即可.【解答】解:(1)设二次函数的解析式为12()()y a x x x x =--,二次函数的图象交坐标轴于(1,0)A -,(3,0)B ,(0,4)C -,11x ∴=-,23x =,124()()a x x x x -=--,解得11x =-,23x =,43a =,∴二次函数的解析式为2448(1)(3)4333y x x x x =+-=--,故答案为:2448(1)(3)4333y x x x x =+-=--;(2)设直线BC 解析式为y kx b =+,将(3,0)B ,(0,4)C -代入得034k b b =+⎧⎨-=⎩,解得43b =,4c =-,BC ∴解析式是443y x =-,如答图1,过P 作//PD y 轴,交BC 于D ,点(,)P m n 是直线BC 下方抛物线上的一个动点,03m ∴<<,248433n m m =--,4(,4)3D m m -,224484(4)(4)43333PD m m m m m ∴=----=-+,22211439()(4)(30)262()22322PBC B C S PD x x m m m m m ∆∴=⋅-=-+⋅-=-+=--+,3032<< ,32m ∴=时,PBC S ∆最大为92,此时224843834()45333232n m m =--=⨯-⨯-=-,3(2P ∴,5)-,故答案为:3(2P ,5)-,PBC S ∆最大为92;(3(1,0)A - ,(0,4)C -,(3,0)B ,∴14OA OC =,3OB =, 点Q 在y 轴上,90BOQ AOC ∴∠=∠=︒,若以O ,B ,Q 为顶点的三角形与AOC ∆相似,则BOQ ∠与AOC ∠对应,分两种情况:①如答图2,AOC QOB∆∆∽,则14OQ OAOB OC==即134OQ=,解得34OQ=,13(0,4Q∴或23 (0,)4Q-;②AOC BOQ∆∆∽,则14OB OAOQ OC==即314OQ=,解得12OQ=,3(0,12)Q∴或4(0,12)Q-,综上所述,存在y轴上的点Q,使以O,B,Q为顶点的三角形与AOC∆相似,这样的点一共4个:13 (0, 4Q或23 (0,)4Q-,3(0,12)Q或4(0,12)Q-,故答案为:存在这样的点Q,坐标分别是:13 (0, 4Q或23 (0,)4Q-,3(0,12)Q或4(0,12)Q-,【点评】本题是二次函数、相似三角形、面积等问题的综合题,主要考查坐标、线段的转化,面积的表示,涉及方程思想,分类思想等,难度适中.4.如图1,抛物线2y x bx c=-++与x轴交于A、B两点,与y轴交于点C,已知点B坐标为(3,0),点C 坐标为(0,3).(1)求抛物线的表达式;(2)点P 为直线BC 上方抛物线上的一个动点,当PBC ∆的面积最大时,求点P 的坐标;(3)如图2,点M 为该抛物线的顶点,直线MD x ⊥轴于点D ,在直线MD 上是否存在点N ,使点N 到直线MC 的距离等于点N 到点A 的距离?若存在,求出点N 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法可求解析式;(2)过点P 作PH x ⊥轴于H ,交BC 于点G ,先求出BC 的解析式,设点2(,23)P m m m -++,则点(,3)G m m -+,由三角形面积公式可得221133273(3)()22228PBC S PG OB m m m ∆=⨯⨯=⨯⨯-+=--+,由二次函数的性质可求解;(3)设直线MC 与x 轴交于点E ,过点N 作NQ MC ⊥于Q ,先求出点A ,点M 坐标,可求MC 解析式,可得4DE MD ==,由等腰直角三角形的性质可得MQ NQ ==,由两点距离公式可列222(|4|)42n n -=+,即可求解.【解答】解:(1) 点(3,0)B ,点(0,3)C 在抛物线2y x bx c =-++图象上,∴9303b c c -++=⎧⎨=⎩,解得:23b c =⎧⎨=⎩,∴抛物线解析式为:223y x x =-++;(2) 点(3,0)B ,点(0,3)C ,∴直线BC 解析式为:3y x =-+,如图,过点P 作PH x ⊥轴于H ,交BC 于点G ,设点2(,23)P m m m -++,则点(,3)G m m -+,22(23)(3)3PG m m m m m ∴=-++--+=-+,221133273(3)()22228PBC S PG OB m m m ∆=⨯⨯=⨯⨯-+=--+ ,∴当32m =时,PBC S ∆有最大值,∴点3(2P ,154;(3)存在N 满足条件,理由如下: 抛物线223y x x =-++与x 轴交于A 、B 两点,∴点(1,0)A -,2223(1)4y x x x =-++=--+ ,∴顶点M 为(1,4),点M 为(1,4),点(0,3)C ,∴直线MC 的解析式为:3y x =+,如图,设直线MC 与x 轴交于点E ,过点N 作NQ MC ⊥于Q ,∴点(3,0)E -,4DE MD ∴==,45NMQ ∴∠=︒,NQ MC ⊥ ,45NMQ MNQ ∴∠=∠=︒,MQ NQ ∴=,22MQ NQ ∴==,设点(1,)N n ,点N 到直线MC 的距离等于点N 到点A 的距离,NQ AN ∴=,22NQ AN ∴=,222()2MN AN ∴=,222(|4|)42n n ∴-=+,2880n n ∴+-=,46n ∴=-±,∴存在点N 满足要求,点N 坐标为(1,426)-+或(1,426)--.【点评】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,一次函数的性质,两点距离公式,等腰直角三角形的性质等知识,利用参数列方程是本题的关键.5.如图,抛物线过点(0,1)A 和C ,顶点为D ,直线AC 与抛物线的对称轴BD 的交点为B ,0),平行于y 轴的直线EF 与抛物线交于点E ,与直线AC 交于点F ,点F 的横坐标为3,四边形BDEF 为平行四边形.(1)求点F 的坐标及抛物线的解析式;(2)若点P 为抛物线上的动点,且在直线AC 上方,当PAB ∆面积最大时,求点P 的坐标及PAB ∆面积的最大值;(3)在抛物线的对称轴上取一点Q ,同时在抛物线上取一点R ,使以AC 为一边且以A ,C ,Q ,R 为顶点的四边形为平行四边形,求点Q 和点R 的坐标.【分析】(1)由待定系数法求出直线AB 的解析式为13y x =-+,求出F 点的坐标,由平行四边形的性质得出1613181(33a a a -+=-+--,求出a 的值,则可得出答案;(2)设2(,1)P n n -++,作PP x '⊥轴交AC 于点P ',则(,1)P n '+,得出2PP n '=-+,由二次函数的性质可得出答案;(3)联立直线AC 和抛物线解析式求出C ,4)3-,设Q ,)m ,分两种情况:①当AQ 为对角线时,②当AR 为对角线时,分别求出点Q 和R 的坐标即可.【解答】解:(1)设抛物线的解析式为2(0)y ax bx c a =++≠,(0,1)A ,B ,0),设直线AB 的解析式为y kx m =+,∴01m m +==⎪⎩,解得31k m ⎧=⎪⎨⎪=⎩,∴直线AB的解析式为13y x =+, 点FF ∴点纵坐标为113=-,F ∴点的坐标为,1)3-,又 点A 在抛物线上,1c ∴=,对称轴为:2b x a=-=,b ∴=-,∴解析式化为:21y ax =-+,四边形DBFE 为平行四边形.BD EF ∴=,1613181(33a a a ∴-+=-+--,解得1a =-,∴抛物线的解析式为21y x =-++;(2)设2(,1)P n n -++,作PP x '⊥轴交AC 于点P ',则3(,1)3P n '+,2733PP n n '∴=-+,2213737493)32222624ABP S OB PP n n ∆'==-+=--+ ,∴当736n =ABP ∆49324,此时7(36P 47)12.(3) 231231y y x x ⎧=+⎪⎨⎪=-++⎩,0x ∴=或733x =7(33C ∴,43-,设(3Q ,)m ,①当AQ 为对角线时,47(3,)33R m ∴+,R 在抛物线2(3)4y x =--+上,274(33)433m ∴+=--+,解得443m =-,44(3,3Q ∴-,437(3,33R -;②当AR 为对角线时,107(3,33R m ∴-,R 在抛物线2(4y x =--+上,2743m ∴-=--+,解得10m =-,Q ∴10)-,37)3R -.综上所述,443Q -,37(3R -;或Q ,10)-,37)3R -.【点评】本题是二次函数综合题,考查了待定系数法,二次函数的性质,二次函数图象上点的坐标特征,平行四边形的性质等知识,熟练掌握二次函数的性质及方程思想,分类讨论思想是解题的关键.6.在平面直角坐标系xOy 中,等腰直角ABC ∆的直角顶点C 在y 轴上,另两个顶点A ,B 在x 轴上,且4AB =,抛物线经过A ,B ,C 三点,如图1所示.(1)求抛物线所表示的二次函数表达式.(2)过原点任作直线l 交抛物线于M ,N 两点,如图2所示.①求CMN ∆面积的最小值.②已知3(1,2Q -是抛物线上一定点,问抛物线上是否存在点P ,使得点P 与点Q 关于直线l 对称,若存在,求出点P 的坐标及直线l 的一次函数表达式;若不存在,请说明理由.【分析】(1)先根据等腰直角三角形的性质求得OA 、OB 、OC ,进而得A 、B 、C 三点的坐标,再用待定系数法求得抛物线的解析式;(2)①设直线l 的解析式为y kx =,1(M x ,1)y ,2(N x ,2)y ,联立方程组求得12||x x -,再由三角形的面积公式求得结果;②假设抛物线上存在点21(,2)2P m m -,使得点P 与点Q 关于直线l 对称,由OP OQ =列出方程求得m 的值,再根据题意舍去不合题意的m 值,再求得PQ 的中点坐标,便可求得直线l 的解析式.【解答】解:(1)设抛物线的解析式为2(0)y ax bx c a =++≠,在等腰Rt ABC ∆中,OC 垂直平分AB ,且4AB =,2OA OB OC ∴===,(2,0)A ∴-,(2,0)B ,(0,2)C -,∴4204202a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩,解得,1202a b c ⎧=⎪⎪=⎨⎪=-⎪⎩,∴抛物线的解析式为2122y x =-;(2)①设直线l 的解析式为y kx =,1(M x ,1)y ,2(N x ,2)y ,由2122y x y kx ⎧=-⎪⎨⎪=⎩,可得21202x kx --=,122x x k ∴+=,124x x =- ,∴222121212()()4416x x x x x x k -=+-=+,∴12||x x -=∴121||2CMN S OC x x ∆=-= ,∴当0k =时取最小值为4.CMN ∴∆面积的最小值为4.②假设抛物线上存在点21(,2)2P m m -,使得点P 与点Q 关于直线l 对称,OP OQ ∴==解得,1m 2m =,31m =,41m =-,31m = ,41m =-不合题意,舍去,当1m =1)2P -,线段PQ 的中点为1)-,∴1=-,∴1k =,∴直线l 的表达式为:(1y x =-,当2m =时,点(P 1)2-,线段PQ 的中点为,1)-,∴1=-,∴1k =,∴直线l 的解析式为(1y x =+.综上,点P ,1)2-,直线l 的解析式为(1y x =-或点(P ,1)2-,直线l 的解析式为(1y x =+.【点评】本题是二次函数的综合题,主要考查了二次函数的图象与性质,一次函数的图象与性质,待定系数法,轴对称的性质,第(2)①题关键是求得M 、N 两点的横坐标之差,第(2)②小题关键是根据轴对称性质列出m 的方程,以及求得PQ 的中点坐标.。
求三角形面积题目10题

求三角形面积题目10题
以下是10道适合小学生求解三角形面积的题目:
1.一个三角形的底是8厘米,高是6厘米,求这个三角形的面积。
2.一个三角形的面积是12平方厘米,底是4厘米,求这个三角形的高。
3.一个等腰三角形的底是10厘米,高是8厘米,求这个三角形的面积。
4.一个直角三角形的两条直角边分别是6厘米和8厘米,求这个三角形的面积。
5.一个三角形的底是15厘米,面积是45平方厘米,求这个三角形的高。
6.一个三角形的面积是24平方厘米,高是8厘米,求这个三角形的底。
7.一个等边三角形的边长是12厘米,求这个三角形的面积。
8.一个三角形的底是12厘米,高是底的2倍,求这个三角形的面积。
9.一个三角形的面积是36平方厘米,高是9厘米,求这个三角形的底。
10.一个三角形的底和高都是10厘米,求这个三角形的面积。
第08讲 拓展三:三角形中面积(定值,最值,取值范围)问题 (精讲)(教师版)

第08讲 拓展三:三角形中面积(定值,最值,取值范围)问题 (精讲)目录第一部分:知识点精准记忆第二部分:典型例题剖析高频考点一:求三角形面积(定值问题)高频考点二:根据三角形面积求其它元素高频考点三:求三角形面积最值高频考点四:求三角形面积取值范围第三部分:高考真题感悟1、三角形面积的计算公式:①12S =⨯⨯底高; ②111=sin sin sin 222S ab C ac B bc A ==; ③1()2S a b c r =++(其中,,,a b c 是三角形ABC 的各边长,r 是三角形ABC 的内切圆半径); ④4abc S R=(其中,,,a b c 是三角形ABC 的各边长,R 是三角形ABC 的外接圆半径). 2、三角形面积最值:核心技巧:利用基本不等式222()22a b a b ab ++≤≤,再代入面积公式. 3、三角形面积取值范围:核心技巧:利用正弦定理2sin a R A =,2sin b R B =,代入面积公式,再结合辅助角公式,根据角的取值范围,求面积的取值范围.高频考点一:求三角形面积(定值问题)1.(2022·河南·模拟预测(文))已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且满足()2cos cos cos c C a B b B C =-+.(1)求角C ;(2)若6c =,ABC 的面积6sin S b B =,求S .【答案】(1)π3(2)(1)因为πA B C ++=,所以()cos cos B C A +=-,所以2cos cos cos c C a B b A =+,由正弦定理得()2sin cos sin cos sin cos sin C C A B B A A B =+=+.因为()sin sin A B C +=,所以2sin cos sin C C C =.因为()0,πC ∈,所以sin 0C ≠,所以1cos 2C =,则π3C =. (2)由6sin S b B =,根据面积公式,得16sin sin 3sin 2b B ac B a B ==,所以2a b =. 由余弦定理得2221cos 22a b c C ab +-==,整理得2236a b ab +-=,即2336b =, 所以b =a =所以ABC 的面积11πsin 223S ab C ==⨯=2.(2022·河南·夏邑第一高级中学高二期末(文))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,()()sin sin sin sin sin sin 3sin sin A B C A B C A B+++-=. (1)求角C 的大小;(2)若ABC 外接圆的面积为12π,6b =,求ABC 的面积.【答案】(1)3π(2)(1)因为()()sin sin sin sin sin sin 3sin sin A B C A B C A B +++-=,由正弦定理,得()()3a b c a b c ab +++-=,整理得222a b c ab +-=,由余弦定理,得2221cos 222a b c ab C ab ab +-===. 因为()0,C π∈,所以3C π=.(2)设ABC 外接圆的半径为R ,则212R ππ=,所以R =因为6b c ==,3C π=,所以ABC 是等边三角形.所以ABC 的面积为11sin 6622ab C =⨯⨯=3.(2022·全国·高三专题练习)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin sin2B C a C +=. (1)求角A 的大小;(2)若点D 在边BC 上,且33CD BD ==,π6BAD ∠=,求△ABC 的面积. 【答案】(1)2π3A =;(1)由已知及正弦定理得:sin sin sin2B C A C C +=,又πBC A +=-, ∴π222B C A +=-,又sin 0C ≠, ∴sin 2A A ,则2sin cos222A A A =,而π022A <<, ∴cos 02A ≠,则sin 2A =π23A =,得2π3A =. (2)由2π3BAC ∠=,π6BAD ∠=,则π2DAC ∠=. 法一:在△ABD 中,πsin sin 6BD c BDA =∠,① 在△ADC 中,πsin sin 2CD b ADC =∠,② ∵πADB ADC ∠+∠=,∴sin sin BDA ADC ∠=∠,③由①②③得:2BD c CD b =,又33CD BD ==,得1BD =, ∴23c b =,不妨设2c m =,3b m =, 在△ABC 中,由余弦定理可得,()()2222π423223cos 3m m m m =+-⨯⨯,得21619m =, 所以11sin 2322ABC S b c BAC m m =⨯∠=⨯⨯△. 法二:π1sin sin 621π2sin sin 22BADADC c c AD BAD S c S b b AD CAD b ⋅∠===⋅∠△△. ∵△BAD 的边BD 与△ADC 的边DC 上的高相等,∴13BAD ADC S BD S DC ==△△,由此得:123c b =,即23c b =,不妨设2c m =,3b m =, 在△ABC 中,由余弦定理可得,()()2222π423223cos 3m m m m =+-⨯⨯,得21619m =,所以11sin 2322ABC S b c BAC m m =⨯∠=⨯⨯△. 4.(2022·河南三门峡·模拟预测(文))已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且cos cos 3cos b a C c A C +=. (1)求tan C ;(2)若3c =,16sin sin 27A B =,求ABC 的面积. 【答案】(1)tan C =ABC S =(1)解:由题意得: 由正弦定理得sin sin cos sin cos 3cos B A C C A C +=, 所以()sin sin sin()3cos B A C B C π+=-=, 所以sin sin 3cos B B C= 又因为sin 0B ≠,所以1cos 3C =.所以sin C ==,sin tan cos C C C == (2)若3c =,由正弦定理sin sin sin a b c A B C ==,得sin sin a b A B ===则a A =,b B =,则16216216sin sin 6161627ab A B A B ===⨯=,所以11sin 622ABC S ab C ==⨯=△5.(2022·全国·高三专题练习)在①()()()sin sin sin sin A B a b C B c +-=-,②sinsin 2B C b a B +=,③2tan tan tan B b A B c =+中任选一个,补充在横线上,并回答下面问题.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且________.(1)求角A 的大小;(2)已知2AB =,D 为AB 中点,且2CD ab =,求ABC 面积.【答案】(1)选①3A π=;选②3A π=;选③3A π=(1)解:选①:()()()sin sin sin sin A B a b C B c +-=-,由正弦定理可得:()()()a b a b c b c +-=-,222a b c bc -=-,222a c b bc =+-,由余弦定理可得()2221cos ,0,22b c a A A bc π+-==∈,所以3A π=, 选②:sin sin 2B C b a B +=, 由正弦定理得:sin sinsin sin ,sin 02B C B A B B +=>, 所以sinsin ,sin sin 22B C A A A π+-==, cos 2sin cos ,cos 02222A A A A =>, 所以1sin 22A =,()0,A π∈,3A π=, 选③:2tan tan tanB b A B c=+, ∴由正弦定理可得:2tan sin tan tan sin B B A B C =+, 可得:sin 2sin cos ,sin sin sin cos cos BB B A BC A B⨯=+ 可得:()2sin 2sin 2sin cos sin cos cos sin cos sin cos sin sin sin cos cos cos cos B BB A B B B A B B A A BC CA B A B===++, sin 0B ≠,sin 0C ≠,解得1cos 2A =, ()0,A π∈,3A π∴=. (2)解:2AB =,D 为AB 的中点,1AD BD ∴==,CDA CDB π∠+∠=,cos cos 0CDA CDB ∴∠+∠=,222211022CD b CD a CD CD+-+-+=,即22222CD a b +=+, 2CD ab=,()22a b ∴-=,a b ∴-),a b ∴, 在ABC 中,由余弦定理有22)422cos60b b b =+-⋅⋅⋅,解得1b =,)121sin 23ABC S π=⋅⋅⋅=△高频考点二:根据三角形面积求其它元素1.(2022·江苏南京·模拟预测)请在①向量,sin c a x B b c -⎛⎫= ⎪+⎝⎭,,sin b c y A c a -⎛⎫= ⎪+⎝⎭,且x y ;π2sin 3c A ⎛⎫=+ ⎪⎝⎭这两个条件中任选一个填入横线上并解答.在锐角三角形ABC 中,已知角A ,B ,C 的对边分别为a ,b ,c ,.(1)求角C ;(2)若ABC 的面积为2a b +的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)π3C =(2)()8,10 (1)选择①:因为x y ,所以()()sin sin c a A b c B b c c a --=++, 由正弦定理得,()()c a a b c b c c ab --=++, 即()()2222ac a b b c -=-,即2233ac bc a b +=+,即()()()222c a b a b a ab b +=+-+,即222c a b ab =+-.因为2221cos 22a b c C ab +-==, 又C 为锐角,所以π3C =. 选择②:π2sin 3c A ⎛⎫=+ ⎪⎝⎭,π2sin sin 3B C A ⎛⎫=+ ⎪⎝⎭,sin sin cos B C A C A =.又()sin sin sin cos cos sin B A C A C A C =+=+,cos sin sin A C C A =.因为sin 0A >sin C C =,又C 为锐角,所以tan C π3C =.(2)因为1sin 2ABC S ab C === 所以8ab =,则822a b a a+=+. (法一)由余弦定理得,222222cos 8c a b ab C a b =+-=+-.①因为ABC 为锐角三角形,所以cos 0,cos 0,A B >⎧⎨>⎩即2222220,0.b c a a c b ⎧+->⎨+->⎩将①代入上式可得224,4,b a ⎧>⎨>⎩即2284,4,a a ⎧⎛⎫>⎪ ⎪⎨⎝⎭⎪>⎩解得24a <<. 令()82f a a a =+,,则()()22224820a f a a a-=-=>', 所以()f a 在24a <<上单调递增,所以()()()24f f a f <<,即()810f a <<,即2a b +的取值范围为()8,10.(法二)由正弦定理得π1sin sin sin 11322sin sin sin 2tan B B B a A b B B B B⎛⎫+ ⎪⎝⎭====+, 又288a a a b a==,所以21182tan a B =. 因为ABC 为锐角三角形,所以2ππ0,32π0,2A B B ⎧<=-<⎪⎪⎨⎪<<⎪⎩解得ππ62B <<因为tan B10tan B <<111222tan B<<, 即21228a <<,解得24a <<. 令()82f a a a =+,24a <<,则()()22224820a f a a a-=-=>', 所以()f a 在24a <<上单调递增,所以()()()24f f a f <<,即()810f a <<,即2a b +的取值范围为()8,10.2.(2022·山西·朔州市平鲁区李林中学高一阶段练习)在ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,已知22cos b a c B =-(1)求C 的大小;(2)若ABC的面积为cos2cos2A B +的值.【答案】(1)3π;(2)56-. (1)因为22cos b a c B =-,所以由正弦定理得sin 2sin 2sin cos B A C B =-,所以sin 2sin()2sin cos B B C C B =+-,所以o s s in 2sin cos 2c sin 2sin cos B C B C C B B =+-,即sin 2sin cos B B C =sin 0B ≠,1cos 2C ∴=,(0,)C π∈,3C π∴=.(2)因为ABC的面积为1sin 2ab C =8ab =,2sincRC∴=,解得3c=,由余弦定理可得,2222cosc a b ab C=+-,所以2217a b+=,2222221cos2cos222(sin sin)22()()2()226a bA B A B a bR R⎡⎤+=-+=-+=-+⎢⎥⎣⎦,5cos2cos26A B∴+=-.3.(2022·四川·内江市教育科学研究所三模(文))如图,在ABC中,2AC=,120ACB∠=︒,D是边AB上一点.(1)若CAD是以AD为斜边的等腰直角三角形,求BD的长;(2)若D是边AB的中点,ABC的面积为CD的长.【答案】(1)由120ACB∠=︒,2AC=,CAD是以AD为斜边的等腰直角三角形所以2CD=,30BCD∠=︒,15B∠=︒,则()sin sin4530sin45cos30cos45sin30B=︒-︒=︒︒-︒︒=.在△BCD中,由正弦定理知sin sinBD CDBCD B=∠,则sinsinCD BCDBDB∠⋅==(2)由1sin2ABCS CA CB ACB∠=⋅⋅=△4BC==.又D是边AB的中点,所以()11112222CD CA AD CA AB CA CB CA CA CB=+=+=+-=+,则()22211124222CD CA CB CA CB CA CB=+=++⋅==故CD=4.(2022·河南郑州·高一期中)在锐角三角形ABC中,角A、B、C的对边分别为a、b、c,向量(2,3a a=,(,sin)b c C=,且a b∥.(1)求角A(2)若c=2,且△ABC AC边上的中线BM的大小.【答案】(1)3Aπ=(2)BM=(1)因为a b∥,(2,3a a=,(sin)b c C=⋅,所以2sina C.因为0,2C π⎛⎫∈ ⎪⎝⎭,所以sin 0C >,所以sin A =. 因为0,2A π⎛⎫∈ ⎪⎝⎭,所以3A π=;(2)因为△ABC 1sin 2bc A = 因为c =2.3A π=.所以3b =.在三角形ABM 中,∵M 为AC 的中点.∴1322AM b ==,由余弦定理得 2222331132cos 4222224BM AM AB AB AM A ⎛⎫=+-⋅=+-⨯⨯⨯= ⎪⎝⎭.所以BM =. 5.(2022·湖南·长郡中学高三阶段练习)法国著名军事家拿破仑·波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这个三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.如图,在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知()()cos cos sin a B C A C a -=-.以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为1O ,2O ,3O .(1)求A ;(2)若a =123O O O ABC 的周长.【答案】(1)60︒(2)3(1)解:由()()cos cos sin a B C A C a -=-,得()cos cos sin cos a B C a A C A -+=,即()()cos cos sin cos a B C a B C C A --+=,即()()cos cos sin sin cos cos sin sin sin cos a B C B C a B C B C C A +--=即2sin sin sin cos a B C C A =,∵sin 0C ≠,∴sin cos a B A =,由正弦定理得sin sin cos A B B A =,∵sin 0B ≠,∴sin A A =,∴tan A =∵0180A <<︒︒,∴60A =︒.(2)解:如图,连接1AO 、3AO ,则1AO =,3AO =,正123O O O 面积2213131sin 602S O O O =⋅⋅︒==,∴21373O O =, 而60BAC ∠=︒,则13120O AO ∠=°,∴13O AO 中,由余弦定理得:222131313132cos O O AO AO AO AO O AO =+-⋅⋅∠, 有2271233332b c bc ⎛⎫=+-⋅⋅- ⎪⎝⎭,则227b c bc ++=,在ABC 中,60A =︒,a =2222cos a b c bc BAC =+-∠,则223b c bc +-=, ∴2bc =,225b c +=,∴3b c +=,所以ABC 的周长为3.高频考点三:求三角形面积最值1.(2022·上海市青浦高级中学高一阶段练习)ABC ∆中,60,A a =︒=(1)若2b c =,求(2)求三角形面积的最大值【答案】(1)已知60,A a =︒=2b =,,由余弦定理有:2222431cos 242b c a c A bc c +-+-===, 2210c c -+=,所以=1c .(2)由余弦定理有,222222cos 2a =b c bc A b c bc bc bc bc +-=+-≥-=,当且仅当“=b c ”时取等,所以3bc ≤.所以1sin 2S bc A ==≤2.(2022·山西·运城市景胜中学高二阶段练习(理))在ABC 中,b ,c 分别为内角B ,C 的对边长,设向量cos 2A m ⎛= ⎝cos 2A n ⎛= ⎝22m n ⋅=.(1)求角A 的大小;(2)若a =,求三角形面积的最大值.【答案】(1)4π(2))514+(1)由22m n ⋅=得:22cos sin 222A A -=;即cos 2A =因为()0A π∈,,所以4A π=(2)由2222cos a b c bc A =+-得:225b c +=又222b c bc +≥∴ (52bc ≥∴ (522bc ≤∴ ()52511()2224ABC maxS=⋅=.三角形面积的最大值为)514.3.(2022·上海·高三专题练习)已知()21cos cos 2f x x x x =-+. (1)若ππ,63x ⎡⎤∈⎢⎥⎣⎦,求()f x 的取值范围;(2)设ABC 的三边分别是a ,b ,c ,周长为2,若()12f B =-,求ABC 面积的最大值.【答案】(1)1,12⎡⎤⎢⎥⎣⎦;(2)12.(1)()211cos21cos cos 2222x f x x x x x +=-+=-+ sin 2coscos 2sinsin 2666x x x πππ⎛⎫=-=- ⎪⎝⎭,又ππ,63x ⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈⎢⎥⎣⎦, 1sin 2,162x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,故()f x 的取值范围为1,12⎡⎤⎢⎥⎣⎦.(2)由()12f B =-可得,1sin 262B π⎛⎫-=- ⎪⎝⎭,而112,666B πππ⎛⎫-∈- ⎪⎝⎭,所以7266B ππ-=,解得23B π=.由于2222222cos3b ac ac a c ac π=+-=++,又2a b c ++=,所以()2222a c a c ac --=++,化简可得,()44ac a c +=+,而2a c >+≥1ac <,所以()44ac a c +=+≥a c =4+4-28ac ≤-故ABC 面积的最大值为()max 1sin 122S ac B ==. 4.(2022·河南·高三阶段练习(理))在ABC 中,,,A B C 所对的边分别为,,a b c ,向量()(),2,cos ,cos m a b c n B A =-=,且m n ⊥.(1)求角A 的大小;(2)若ABC 外接圆的半径为2,求ABC 面积的最大值.【答案】(1)3A π=;(2)(1)依题意得:cos (2)cos 0a B b c A +-=,则sin cos sin cos 2sin cos A B B A C A +=, ∴sin 2sin cos C C A =,又sin 0C ≠, ∴1cos 2A =,()0,A π∈,故3A π=.(2)法一:由正弦定理得2sin 4sin b R B B ==,24sin 4sin 3c C B π⎛⎫==- ⎪⎝⎭,∴ABC 面积121sin sin sin 232S bc A B B B B B π⎫⎛⎫==-=+⎪ ⎪⎪⎝⎭⎝⎭)26sin cos 3sin 21cos 22,6B B B B B B π⎛⎫=+=-=- ⎪⎝⎭由3A π=得:203B π<<,则72666B πππ-<-<, ∴1sin 2126B π⎛⎫-<-≤ ⎪⎝⎭,故262B ππ-=,即3B π=时,max S =.法二:由正弦定理得:2sin a R A ==2222cos a b c bc A =+-, ∴22122b c bc bc +=+≥,当且仅当b c =时取等号,∴12bc ≤,max max 1()sin 23S bc π==5.(2022·福建省厦门第六中学高一阶段练习)已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,cos sin 0a C C b c --=.(1)求A ;(2)若2a =,求ABC 的面积的最大值. 【答案】(1)3π;(1)解:在ABC 中,因为cos sin 0a C C b c --=,所以由正弦定理有sin cos sin sin sin 0A C A C B C --=,即sin cos sin sin()sin A C A C A C C -+-sin cos sin sin cos cos sin sin 0A C A C A C A C C =---=,sin cos sin sin 0A C A C C --=, 因为(0,)C π∈,所以sin 0C ≠,cos 10A A ,即1sin()62A π-=,因为(0,)A π∈,所以5666A πππ-<-<, 所以66A ππ-=,解得:3A π=.(2)解:因为2a =,所以由(1)及余弦定理可得2222cos a b c bc A =+-,则2242cos3b c bc π=+-,即224b c bc =+-,222b c bc +≥,则222b c bc bc bc +-≥-,即4bc ≥,即4bc ≤,当且仅当2b c ==时,取等号,所以()max 4bc =, 所以ABC的面积的最大值为11sin 422S bc A ==⨯=6.(2022·湖南·雅礼中学高三阶段练习)已知等腰三角形ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,且sin b A B =,c (c +b )=(a +b )(a -b ). (1)求A 和b ;(2)若点E ,F 分别是线段BC (含端点)上的动点,且BF >BE ,在运动过程中始终有3EAF π∠=,求△EAF 面积的最小值.【答案】(1);23π(1)由正弦定理得:sin b A B =即:22a bb R R⨯= (R 为三角形ABC 的外接圆半径),故a =,由()()()c c b a b a b +=+- 得:222c b a bc +-=- , 则1cos 2A =- ,因为(0,)A π∈ ,故23A π=; 由等腰三角形ABC 可得6B π=,故622sin3b ππ== ;(2)由(1)知:2a b c === ,由点E ,F 分别是线段BC (含端点)上的动点,且BF >BE ,在运动过程中始终有3EAF π∠= , 知点E 在点F 的左边,如图:设EAB θ∠= ,3EAF π∠=不变,可知[0,]3πθ∈,在ABE △中,由正弦定理可得5sin sin(6)6AEAB ππθ=-, 5sin()16AE πθ∴=-, 在ABF 中,由正弦定理可得6sin sin()2AFABππθ=-,1cos AF θ∴=,故1||||sin 52cos s 1136in()AEFSAE AF ππθθ=⨯-12sin(2)6θ++,[0,]3πθ∈,∴16sin(2)[,1]2πθ+∈,∴三角形AEF6πθ=.7.(2022·福建·厦门双十中学高一期中)为响应国家“乡村振兴”号召,农民王大伯拟将自家一块直角三角形地按如图规划成3个功能区:△BNC 区域为荔枝林和放养走地鸡,△CMA 区域规划为“民宿”供游客住宿及餐饮,△MNC 区域规划为小型鱼塘养鱼供休闲垂钓.为安全起见,在鱼塘△MNC 周围筑起护栏.已知40m AC =,BC =,AC BC ⊥,30MCN ∠=︒.(1)若20m AM =时,求护栏的长度(△MNC 的周长);(2)当ACM ∠为何值时,鱼塘△MNC 的面积最小,最小面积是多少?【答案】(1)60+(2)15ACM ∠=︒,最小值为(212002km .(1)由40m AC =,BC =,AC BC ⊥,则tan AC B BC ==, 所以30B =︒,60A =︒,则280AB AC ==,在△ACM 中,由余弦定理得22212cos 16004002402012002CM AC AM AC AM A =+-⋅⋅=+-⨯⨯⨯=,则CM = 所以222AC AM CM =+,即CM AB ⊥,又30MCN ∠=︒, 所以tan3020MN CM =︒=,则240CN MN ==,综上,护栏的长度(△MNC的周长)为204060++=+(2)设()060ACM θθ∠=︒<<︒, 在△BCN 中,由()sin 30sin 90CN BC θ=︒︒+,得CN =所以()1300sin 302sin 60cos CMNSCM CN θθ=⋅︒=+︒,而()21sin 60cos sin cos 2θθθθθ+︒=()()1111sin 21cos 2sin 22sin 2604222θθθθθ⎛⎫=+=+=+︒+ ⎪ ⎪⎝⎭,所以CMNS=,仅当26090θ+︒=︒,即15θ=︒时,()2sin 260θ+︒2+此时△CMN 的面积取最小值为(212002km .8.(2022·上海徐汇·二模)某动物园喜迎虎年的到来,拟用一块形如直角三角形ABC 的地块建造小老虎的休息区和活动区.如图,90BAC ∠=︒,20AB AC ==(单位:米),E 、F 为BC 上的两点,且45EAF ∠=︒,AEF 区域为休息区,ABE △和ACF 区域均为活动区.设()045EAB αα∠=<<︒.(1)求AE 、AF 的长(用α的代数式表示);(2)为了使小老虎能健康成长,要求所建造的活动区面积尽可能大(即休息区尽可能小).当α为多少时,活动区的面积最大?最大面积为多少?【答案】(1)20sin cos AE αα=+米,AF(2)当α为8π时,小老虎活动区的面积最大,最大面积为(2002平方米. (1)由题意得,20AB AC ==米,90BAC ∠=︒,则45ABC ACB ∠=∠=︒, 又由()045EAB αα∠=<<︒,180135AEB EAB ABE α∴∠=︒-∠-∠=︒-,9045CAF EAF EAB α∠=︒-∠-∠=︒-,所以18090AFC CAF ACF α∠=︒-∠-∠=︒+;在ABE △中,由正弦定理得:sin sin AE ABABE AEB=∠∠,即()2020sin 45sin 135sin cos AE AE ααα=⇒=︒︒-+米;同理,在ACF 中,sin sin AF ACACF AFC=∠∠,即()20sin 45sin 90AF AF α=⇒=︒︒+(2)由(1)知,综20sin cos AE αα=+米,AF =所以小老虎休息区AEF 面积为:1120sin sin 4522sin cos AEF S AF AE EAF αα=⨯⨯⨯∠=⨯︒+△ 化简得:210010020011cos2sin cos cossin 221224AEF S αααααα===+π+⎛⎫+++ ⎪⎝⎭△ 又()045EAB αα∠=<<︒,∴32444πππα<+<,则当242ππα+=,即8πα=时,AEFS取得最小值)20020012184=ππ⎛⎫⨯++ ⎪⎝⎭;此时小老虎活动区面积S 取得最大值,即)(12020200120022ABC AEF S S S =-=⨯⨯-=△△平方米.综上所述:当α为8π时,小老虎活动区的面积最大,最大面积为(2002平方米. 高频考点四:求三角形面积取值范围1.(2022·江苏·无锡市第一中学高一期中)已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且()sin sin sin b c B c C a A -+=,cos cos 1b C c B +=.(1)求A 和a 的大小;(2)若ABC 为锐角三角形,求ABC 的面积的取值范围.【答案】(1)π3A =,1a =(2)⎝⎦(1)因为()sin sin sin b c B c C a A -+=,由正弦定理得,()22b c b c a -+=,即222a b c bc =+-,由余弦定理得,2222cos a b c bc A =+-,所以1cos 2A =, 又()0,πA ∈,所以π3A =.因为cos cos 1b C c B +=,由余弦定理得, 222222·122a b c a c b b c ab ac+-+-⋅+=,可得1a = 所以π3A =,1a =.(2)由(1)知π3A =,1a =,由正弦定理得,sin sin B a B A b ==,sin 2πsin 3a C c C B A ⎛⎫===- ⎪⎝⎭. 因为ABC 为锐角三角形,所以π0,22ππ0,32B C B ⎧⎛⎫∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-∈ ⎪⎪⎝⎭⎩,得ππ,62B ⎛⎫∈ ⎪⎝⎭.从而ABC 的面积121sin sin πsin 232S bc A B B B B B ⎛⎫⎛⎫==⋅-=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭211cos 2sin cos 224B B B B B ⎫⎫-=⋅=⎪⎪⎪⎪⎝⎭⎝⎭1π2cos 2226B B B ⎫⎛⎫=-+=-⎪ ⎪⎪⎝⎭⎝⎭又ππ,62B ⎛⎫∈ ⎪⎝⎭,ππ5π2,666B ⎛⎫-∈ ⎪⎝⎭,所以π1sin 2,162B ⎛⎫⎛⎤-∈ ⎪ ⎥⎝⎭⎝⎦,从而ABC的面积的取值范围为⎝⎦.2.(2022·四川绵阳·高一期中)在ABC 中,内角A B C ,,的对边分别为a ,b ,c ,且2tan tan tan B bA B c=+.(1)求角A 的大小;(2)若ABC 是锐角三角形,2b =,求ABC 面积的取值范围. 【答案】(1)3A π=;(2). (1)解:由2tan tan tan B bA B c =+得2sin cos sin sin cos cos sin sin B A B A B A B C=+,即()2cos 1sin sin A A B C=+,又sin()sin A B C +=,所以1cos 2A = 因为0A π<<,故3A π=.(2)解:1sin 2ABCSbc A == ,由正弦定理知:2sin sin 31sin sin B b C c B B π⎛⎫+ ⎪⎝⎭===+. 因为ABC 是锐角三角形,所以022032B C B πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,所以62B ππ<<,于是tan B 14c <<.ABCS <<3.(2022·浙江·瑞安市瑞祥高级中学高一阶段练习)ABC 中,角,,A B C 所对的边分别为,,a b c ,已知(),,sin ,sin 2A C m a b n A +⎛⎫== ⎪⎝⎭,且//m n .(1)求B ;(2)若ABC为锐角三角形,且a =ABC 的面积的取值范围. 【答案】(1)3B π=(2)⎝ (1)解:由题意,向量(),,sin ,sin 2A C m a b n A +⎛⎫== ⎪⎝⎭,因为//m n ,可得sinsin 2A Ca b A +=, 又由正弦定理得sin sinsin sin 2A CA B A +=, 因为(0,)A π∈,所以sin 0A >,所以sin sin 2A CB +=, 即sin sin cos22BB B π-==,所以2sin cos cos 222B B B =, 可得cos2sin 1022B B ⎛⎫-= ⎪⎝⎭,所以cos 02B =或1sin 22B =, 又因为()0,B π∈,所以3B π=.(2)解:由(1)结合正弦定理sin sin sin a b c A B C==sin sin 3b cC π==,所以()sin A B c A +===所以191sin 22tan ABCSac B A === 又由ABC 为锐角三角形,且3B π=,则022032A A πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62A ππ<<,因为tan y x =在,62x ππ⎛⎫∈ ⎪⎝⎭单调递增,所以tan A >ABCS<<ABC S⎝∈.4.(2022·黑龙江·齐齐哈尔市恒昌中学校高二期中)在ABC 中,设角A ,B ,C 的对边长分别为a ,b ,c ,已知sin sin sin sin a b A Cc A B--=+. (1)求角B 的值;(2)若ABC 为锐角三角形,且c =1,求ABC 的面积S 的取值范围.【答案】(1)60B =︒(2)S ∈⎝⎭(1)由已知及正弦定理,得a b a cc a b--=+, 即()()()a b a b c a c -+=-,即222a b ac c -=-,即222a c b ac +-=. 由余弦定理,得2221cos 22a cb B ac +-==,因为()0,180B ∈︒︒,所以60B =︒.(2)因为120A C +=︒,c =1,由正弦定理,得()sin 120sin 1sin sin 2C c A a C C ︒-===所以11sin sin 60122S ac B a ⎫==︒=⎪⎪⎝⎭因为ABC 为锐角三角形,则3090C ︒<<︒,从而tan C ⎫∈+∞⎪⎪⎝⎭,所以S ∈⎝⎭5.(2022·广东茂名·高一阶段练习)在△ABC 中,设角A ,B ,C 的对边长分别为a ,b ,c ,已知sin sin sin A B a cC a b--=+.(1)求角B 的值;(2)若△ABC 为锐角三角形,且2c =,求△ABC 的面积S 的取值范围.【答案】(1)60°;(2)⎝﹒ (1)∵sin sin sin A B a c C a b--=+,∴由正弦定理得a b a cc a b--=+,即()()()a b a b c a c -+=-,即222a b ac c -=-, 即222a c b ac +-=,由余弦定理得2221cos 22a cb B ac +-==,∵()0,180B ∈︒︒,∴60B =︒; (2)∵B =60°,∴120A C +=︒,即A =120°-C ,又∵2c =,∴由正弦定理得()2sin 120sin 1sin sin C c A a C C ︒-====,∴1sin sin 6012ABC S ac B a ⎫==︒=⎪⎪⎝⎭△,∵△ABC 为锐角三角形,∴090090120A C A C ︒<<︒⎧⎪︒<<︒⎨⎪=︒-⎩,解得3090C ︒<<︒,从而tan C ⎫∈+∞⎪⎪⎝⎭,∴S ∈⎝. 6.(2022·湖北·宜昌市夷陵中学高一期中)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos cos 2sin a bB AC c c+=.(1)求角C 的大小;(2)若ABC 是锐角三角形,且4b =,求ABC 面积的取值范围. 【答案】(1)6C π=或56C π=(2) (1)由正弦定理可得sin cos sin cos cos cos =2sin sin a b A B B AB AC c c C++= 整理得2sin()sin 2sin A B C C +== 因为(0,)C π∈,所以sin 0C >, 所以1sin 2C =,所以6C π=或56C π=(2)因为4b =,所以1sin 26ABCSab a π==,由正弦定理可得54sin()sin 26sin sin tan B b A a BB Bπ-===+因为ABC 是锐角三角形, 所以6C π=,所以,500262πππB B <<<-< 所以32B ππ<<所以tan 0B >,10tan B <<可得a <<即ABC面积的取值范围为 7.(2022·江苏省苏州第十中学校高一期中)已知ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且()2cos cos a b C c B -= (1)求角C(2)若2a =,3b =,CD 为角C 的平分线,求CD 的长; (3)若cos cos 4a B b A +=,求锐角ABC 面积的取值范围. 【答案】(1)3π(3)⎝ (1)解:由()2cos cos a b C c B -=及正弦定理得()2sin sin cos sin cos A B C C B -=所以()2sin cos sin sin A C B C A =+= ∴sin 0A ≠,∴1cos 2C = ∵0C π<<,∴3C π=(2)解:设CD x =由+=ACDBCDABCSSS得1111132622222x x ⋅⋅+⋅⋅=⨯解得x =CD(3)解:设ABC 外接圆半径为R ,由cos cos 4a B b A += 2sin cos 2sin cos 4R A B R B A +=,即2sin 4R C =,即42sin sin cR C C==,∴4c = 所以ABC的面积1sin 2S ab C ==∵sin sin b a B A ==∴a A =,b B∴2sin 3S A A π⎛⎫- ⎪⎝⎭22sin cos cos sin 33A A A ππ⎛⎫=- ⎪⎝⎭1sin 2A A A ⎫=+⎪⎪⎝⎭21cos sin 2A A A ⎫=+⎪⎪⎝⎭11cos244A A ⎫=-+⎪⎪⎝⎭26A π⎛⎫=- ⎪⎝⎭∵02A π<<,02B π<<,23A B π+=, ∴2032A <-<ππ, ∴62A ππ<<, ∴52666A πππ<-<,∴1sin 2126A π⎛⎫<-≤ ⎪⎝⎭,∴S ∈⎝1.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=. (1)求B ;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件②:ABC 的周长为4+ 条件③:ABC 【答案】(1)6π;(2)答案不唯一,具体见解析. (1)2cos c b B =,则由正弦定理可得sin 2sin cos C B B =, 2sin 2sin3B π∴==23C π=,0,3B π⎛⎫∴∈ ⎪⎝⎭,220,3B π⎛⎫∈ ⎪⎝⎭, 23B π∴=,解得6B π=;(2)若选择①:由正弦定理结合(1)可得sin 21sin 2c Cb B=== 与c =矛盾,故这样的ABC 不存在; 若选择②:由(1)可得6A π=,设ABC 的外接圆半径为R , 则由正弦定理可得2sin 6a b R R π===,22sin3c R π=, 则周长24a b c R ++=+=+ 解得2R =,则2,a c ==由余弦定理可得BC 边上的中线的长度为:=若选择③:由(1)可得6A π=,即a b =,则211sin 22ABCSab C a ===,解得a = 则由余弦定理可得BC 边上的中线的长度为:2.(2019·全国·高考真题(理))ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【答案】(1) 3B π=;(2). (1)根据题意sin sin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sinsin 2A CB +=. 0<B π<,02AC π+<<因为故2A C B +=或者2A C B π++=,而根据题意A B C π++=,故2A CB π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=, 故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 3sin sin sin 222sin sin ABCC a A Sac B c B c B c C Cπ-=⋅=⋅=⋅=22sin cos cos sin 2123133(sin cos )sin 3tan 38tan C C C C C ππππ-=-=+又因,tan 62C C ππ<<>318tan C <<ABCS <<. 故ABCS的取值范围是 3.(2017·上海·高考真题)已知函数()()221cos sin ,0,2f x x x x π=-+∈.(1)求()f x 的单调递增区间;(2)设ABC 为锐角三角形,角A所对边a =B 所对边5b =,若()0f A =,求ABC 的面积. 【答案】(1),2;(2(1)依题意2211()cos sin cos 20,π22f x x xxx ,由2ππ22πk x k -≤≤得πππ2k x k -≤≤,令1k =得ππ2x ≤≤.所以()f x 的单调递增区间,2.(2)由于a b <,所以A 为锐角,即π0,02π2A A <<<<.由()0f A =,得11cos 20,cos 222A A +==-,所以2ππ2,33A A ==. 由余弦定理得2222cos a b c bc A =+-⋅,2560c c -+=,解得2c =或3c =.当2c =时,222cos 02a c b B ac +-==<,则B 为钝角,与已知三角形ABC 为锐角三角形矛盾.所以3c =.所以三角形ABC 的面积为11sin 5322bc A =⨯⨯=4.(2013·湖北·高考真题(文))在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c ,已知cos2A ﹣3cos (B+C )=1. (1)求角A 的大小; (2)若△ABC 的面积S=5,b=5,求sinBsinC 的值.【答案】(1)(2)57试题解析:(1)由cos 2A -3cos(B +C)=1, 得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0, 解得cos A =或cos A =-2(舍去).因为0<A<π,所以A =.(2)由S =bcsin A =bc×=bc =5,得bc =20,又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bccos A =25+16-20=21,故a =. 从而由正弦定理得sin B sin C =sin A×sin A =sin 2A =×=.5.(2015·山东·高考真题(理))设()2sin cos cos 4f x x x x π⎛⎫=-+ ⎪⎝⎭.(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫== ⎪⎝⎭,求ABC ∆面积的最大值.【答案】(Ⅰ)单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(Ⅱ)ABC ∆ 试题解析:解:(Ⅰ)由题意知()1cos 2sin 2222x x f x π⎛⎫++ ⎪⎝⎭=- sin 21sin 21sin 2222x x x -=-=- 由222,22k x k k Z ππππ-+≤≤+∈ 可得,44k x k k Z ππππ-+≤≤+∈由3222,22k x k k Z ππππ+≤≤+∈ 可得3,44k x k k Z ππππ+≤≤+∈ 所以函数()f x 的单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(Ⅱ)由1sin 0,22A f A ⎛⎫=-= ⎪⎝⎭得1sin 2A =由题意知A为锐角,所以cos A =由余弦定理:2222cos a b c bc A =+-可得:2212b c bc +=+≥即:2bc ≤ 当且仅当b c =时等号成立.因此1sin 2bc A ≤所以ABC ∆。
高三数学压轴题训练——解三角形问题的两类题型

高三数学压轴题训练——解三角形问题的两类题型解三角形问题中,边角的求解是所有问题的基本,通常有以下两个解题策略: (1)边角统一化:运用正弦定理和余弦定理化角、化边,通过代数恒等变换求解; (2)几何问题代数化:通过向量法、坐标法将问题代数化,借用函数与方程来求解,对于某些问题来说此法也是极为重要的.[典例] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知∠A =2π3,a =3c ,则cb =______.[思路点拨]本题条件涉及三角形边、角的数量关系,结论是求边比问题,必然通过解三角形来处理.注意正弦定理和余弦定理的灵活应用.[方法演示]法一:角化边(余弦定理)由余弦定理及a =3c ,得cos A =b 2+c 2-a 22bc =b 2-2c 22bc =-12,化简得b 2+bc -2c 2=0,即2⎝⎛⎭⎫c b 2-c b -1=0,解得c b =1或c b =-12(舍去). 法二:边化角(正弦定理)由⎩⎪⎨⎪⎧a =3c ,∠A =2π3得sin A =3sin C =32,即sin C =12. 又角C 是三角形的内角,则∠C =π6.又∠A =2π3,所以∠B =π6,从而有c b =sin C sin B =1.法三:几何法过点C 作BA 的垂线CD ,交BA 的延长线于点D ,如图,由∠BAC =2π3,得∠DAC =π3,即在Rt △DAC 中,AD =12b ,CD =32b .由△BDC 是直角三角形,得CD 2+BD 2=BC 2, 即⎝⎛⎭⎫32b 2+⎝⎛⎭⎫c +12b 2=a 2. 由a =3c ,得b 2+bc -2c 2=0,即2⎝⎛⎭⎫c b 2-c b -1=0,解得c b =1或c b =-12(舍去). 法四:坐标法根据题意,以点A 为原点,AB 为x 轴的正方向,建立如图所示的平面直角坐标系,根据题意可知AB =c ,AC =b ,BC =a ,∠CAB =2π3,则A (0,0),B (c,0),C -b 2,32b .根据两点间距离公式,BC =⎝⎛⎭⎫32b 2+⎝⎛⎭⎫c +12b 2=a .由a =3c ,得b 2+bc -2c 2=0,即2⎝⎛⎭⎫c b 2-c b -1=0,解得c b =1或c b =-12(舍去). 法五:向量法由BC ―→=AC ―→-AB ―→,得|BC ―→|2=|AC ―→-AB ―→ |2=|AC ―→|2-2AC ―→·AB ―→+|AB ―→|2.又由|BC ―→|=a =3c ,得3c 2=b 2-2bc cos 2π3+c 2,化简得b 2+bc -2c 2=0,即2⎝⎛⎭⎫c b 2-c b -1=0,解得c b =1或c b =-12(舍去).法六:特殊值法因为a =3c ,不妨令c =1,所以a =3,结合条件∠A =2π3,由余弦定理得b =1,于是cb =1.答案:1 [解题师说]本题法一、法二分别运用了余弦定理和正弦定理,这两种方法(边化角、角化边)是最基本的方法,其本质就是将题中的边、角统一,方便求解;法三运用了三角形的几何性质,回归三角形的本质;法四和法五都是将题中的边和角坐标化、向量化,将几何问题代数化,从而求出结果.易知法五和法一的本质是相同的,因为我们知道余弦定理是可以用向量法证明的.法六是抓住了条件a =3c 的本质,这是两个边的比例关系,通过令c =1将比例变为了具体数值,便于计算,也体现了基本量的思想.[应用体验]1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34 B.43 C .-43D .-34解析:选C 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab , 则结合面积公式与余弦定理,得ab sin C =2ab cos C +2ab , 即sin C -2cos C =2, 所以(sin C -2cos C )2=4,即sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去).2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且满足(a +b )sin C2=12,(a -b )cos C2=5,则c =________.解析:因为(a +b )sin C 2=12,(a -b )cos C2=5,所以(a +b )2(1-cos C )2=144,①(a -b )2(1+cos C )2=25,②由①②得2a 2+2b 2-4ab cos C2=169,即a 2+b 2-2ab cos C =169, 由余弦定理得c 2=169,所以c =13. 答案:13三角形中的最值、范围的求法(1)目标函数法:根据已知和所求最值、范围,选取恰当的变量,利用正弦定理与余弦定理建立所求的目标函数,然后根据目标函数解析式的结构特征求解最值、范围.(2)数形结合法:借助图形的直观性,利用所学平面图形中的相关结论直接判断最值、范围.[典例] 已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 的面积的最大值为________.[思路点拨]本题条件为三角形的边角关系式,而问题是求三角形面积的最值,势必要利用三角形的正、余弦定理、三角形的面积公式,以及三角恒等变换,再利用三角形的几何性质和均值不等式来解决最值问题.[方法演示]法一:综合运用正、余弦定理由正弦定理知(2+b )(sin A -sin B )=(c -b )sin C 可化为(2+b )(a -b )=c (c -b ), 将a =2代入整理,得b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =12,故A =π3,则△ABC 的面积S =12bc sin A =34bc .而b 2+c 2-a 2=bc ≥2bc -a 2⇒bc ≤4, 所以S =34bc ≤3,当且仅当b =c =2时取到等号, 故△ABC 的面积的最大值为 3. 法二:正、余弦定理与数形结合由法一得A =π3,可知△ABC 的边a =2为定长,△ABC 的角A =π3为定值,作出示意图如图所示,满足条件的点A 在圆周上的运动轨迹为优弧BC (包括两个端点B ,C ),易知当点A 位于优弧中点时,此时△ABC 的面积最大,由于A =π3,则此时的△ABC 是等边三角形,面积为 3.法三:正、余弦函数的有界性由法一知A =π3,则由正弦定理得,b =a sin A ·sin B =433sin B ,c =433sin C ,则S △ABC=12bc sin A =34bc =433sin B ·sin C =433·12[cos(B -C )-cos(B +C )]=233cos(B -C )+12≤233·⎝⎛⎭⎫1+12=3,当且仅当cos(B -C )=1,即B =C 时,△ABC 的面积取得最大值 3.法四:函数思想 由法三得S =433sin B ·sin C =433sin B ·sin 2π3-B ,令g (B )=sin B ·sin ⎝⎛⎭⎫2π3-B =sin B32cos B +12sin B =12sin ⎝⎛⎭⎫2B -π6+14. 由0<B <2π3,易得g (B )max =34,当且仅当B =π3时取等号,所以△ABC 的面积的最大值为 3.答案: 3 [解题师说]上述四种解法,可归为两类:法一、三、四是借助正、余弦定理,把三角形面积这个目标函数转化为边或角的形式,然后借助基本不等式或函数性质来解决;法二是结合问题特征,构造几何图形来求得最值,直观迅速.不难发现,法三与法四的区别仅是对式子sin B ·sin C 的变形方法不同,两者本质相同. [应用体验]1.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.解析:如图所示,延长BA 与CD 相交于点E ,过点C 作CF ∥AD 交AB 于点F , 则BF <AB <BE .在等腰三角形CFB 中,∠FCB =30°,CF =BC =2, ∴BF =22+22-2×2×2cos 30°=6- 2.在等腰三角形ECB 中,∠CEB =30°,∠ECB =75°, BE =CE ,BC =2,BE sin 75°=2sin 30°,∴BE =212×6+24=6+ 2.∴6-2<AB <6+ 2. 答案:(6-2,6+2)2.若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________. 解析:由sin A +2sin B =2sin C 及正弦定理, 得a +2b =2c . 由余弦定理得,cos C =a 2+b 2-c 22ab=a 2+b 2-14(a +2b )22ab=34a 2+12b 2-22ab 2ab =3a 8b +b 4a -24≥6-24,当且仅当3a 2=2b 2时取等号. 故cos C 的最小值为6-24.答案:6-24一、选择题1.在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(a -b )(sin A +sin B )=(c -b )sin C .若a =3,则b 2+c 2的取值范围是( )A .(5,6]B .(3,5)C .(3,6]D .[5,6]解析:选A 由正弦定理可得,(a -b )(a +b )=(c -b )c ,即b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12,则A =π3.又b sin B =c sin C =a sin π3=2,所以b 2+c 2=4(sin 2B +sin 2C )=4[sin 2B +sin 2(A +B )]=41-cos 2B 2+1-cos[2(A +B )]2=3sin 2B -cos 2B +4=2sin2B -π6+4.又△ABC 是锐角三角形,所以B ∈⎝⎛⎭⎫π6,π2,所以2B -π6∈⎝⎛⎭⎫π6,5π6.所以b 2+c 2的取值范围是(5,6].2.已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( )A .10B .9C .8D .5解析:选D ∵23cos 2A +cos 2A =0,∴23cos 2A +2cos 2A -1=0,解得cos 2A =125,∵△ABC 为锐角三角形,∴cos A =15.由余弦定理知a 2=b 2+c 2-2bc cos A ,即49=b 2+36-125b ,解得b =5或b =-135(舍去). 3.在△ABC 中,A =60°,BC =10,D 是AB 边上不同于A ,B 的任意一点,CD =2,△BCD 的面积为1,则AC 的长为( ) A .2 3 B. 3 C.33D.233解析:选D 由S △BCD =1,可得12×CD ×BC ×sin ∠DCB =1,即sin ∠DCB =55,所以cos ∠DCB =255或cos ∠DCB =-255.又∠DCB <∠ACB =180°-A -B =120°-B <120°,所以cos ∠DCB >-12,所以舍去cos ∠DCB =-255.在△BCD 中,cos ∠DCB =CD 2+BC 2-BD 22CD ·BC =255,解得BD =2,又sin ∠DCB =55,由正弦定理得sin ∠DBC =CD sin ∠DCB 2=1010,在△ABC 中,由正弦定理可得AC =BC sin B sin A =233.4.如图,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =( )A.223B.24C.64D.63解析:选C 因为DE ⊥AB ,DE =22,所以AD =22sin A ,所以BD =AD =22sin A .因为AD =DB ,所以∠A =∠ABD ,所以∠BDC =∠A +∠ABD =2∠A .在△BCD 中,由正弦定理BD sin C =BC sin BDC ,得22sin A 32=4sin 2A,整理得cos A =64. 5.为测出所住小区的面积,某人进行了一些测量工作,所得数据如图所示,则小区的面积是( )A.3+64 km 2B.3-64 km 2C.6+34km 2D.6-34km 2解析:选D 如图,连接AC ,根据余弦定理可得AC =22+12-2×2×1×12==3,故△ABC 为直角三角形,且∠ACB =90°,∠BAC =30°,故△ADC 为等腰三角形,设AD =DC =x ,根据余弦定理得x 2+x 2+3x 2=3,即x 2=32+3=3(2-3).所以所求小区的面积为12×1×3+12×3(2-3)×12=23+6-334=6-34(km 2).6.若钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A.22B .1 C. 2D. 5解析:选D 由题意可得12AB ·BC ·sin B =12,又AB =1,BC=2,所以sin B =22,所以B =45°或B =135°.当B =45°时,由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B=1,此时AC =AB =1,BC =2,易得A =90°,与“钝角三角形”条件矛盾,舍去.所以B =135°.由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B = 5.7.在非等边三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a 为最大边,如果sin 2(B +C )<sin 2B +sin 2C ,则角A 的取值范围为( )A.⎝⎛⎭⎫0,π2 B.⎝⎛⎭⎫π4,π2 C.⎝⎛⎭⎫π6,π3D.⎝⎛⎭⎫π3,π2解析:选D 由题意得sin 2A <sin 2B +sin 2C ,由正弦定理得a 2<b 2+c 2,即b 2+c 2-a 2>0,则cos A =b 2+c 2-a 22bc >0.因为0<A <π,所以0<A <π2,又a 为最大边,所以A >π3,即角A 的取值范围为⎝⎛⎭⎫π3,π2.8.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =b cos C +c sin B ,且△ABC 的面积为1+2,则b 的最小值为( )A .2B .3 C. 2D. 3解析:选A 由a =b cos C +c sin B 及正弦定理,得sin A =sin B cos C +sin C sin B ,即sin(B +C )=sin B cos C +sin C sin B ,得sin C cos B =sin C sin B ,又sin C ≠0,所以tan B =1.因为B ∈(0,π),所以B =π4.由S △ABC =12ac sin B =1+2,得ac =22+4.又b 2=a 2+c 2-2ac cos B ≥2ac -2ac =(2-2)(4+22)=4,当且仅当a =c 时等号成立,所以b ≥2,b 的最小值为2,故选A.9.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A -sin B =c (sin A -sin C )a +b,b =3,则△ABC 的面积的最大值为( )A.334B.34C.332D.32解析:选A 根据正弦定理由sin A -sin B =c (sin A -sin C )a +b ,可得a -b =c (a -c )a +b,得a 2-b 2=c (a -c ),即a 2+c 2-b 2=ac ,故a 2+c 2-b 22ac =12=cos B ,∵B ∈(0,π),∴B =π3.又由b=3,可得a 2+c 2=ac +3,故a 2+c 2=ac +3≥2ac ,即ac ≤3,当且仅当a =c =3时取等号,故ac 的最大值为3,这时△ABC 的面积取得最大值,为12×3×sin π3=334.10.为了竖一块广告牌,要制造一个三角形支架,如图,要求∠ACB =60°,BC 的长度大于1 m ,且AC 比AB 长0.5 m ,为了稳固广告牌,要求AC 越短越好,则AC 最短为( )A.⎝⎛⎭⎫1+32m B .2 m C .(1+3)mD .(2+3)m解析:选D 设BC 的长度为x m ,AC 的长度为y m ,则AB 的长度为(y -0.5)m ,在△ABC 中,由余弦定理AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB ,得(y -0.5)2=y 2+x 2-2xy ×12,化简得y (x -1)=x 2-14.因为x >1,所以x -1>0,因此y =x 2-14x -1=(x -1)+34(x -1)+2≥3+2,当且仅当x -1=34(x -1)时取等号,即x =1+32时,y 取得最小值2+3,因此AC最短为(2+3)m.11.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin(B +A )+sin(B -A )=3sin 2A ,且c =7,C =π3,则△ABC 的面积是( )A.334B.736 C.334或213D.334或736解析:选D 由sin(B +A )+sin(B -A )=3sin 2A ,可得2sin B cos A =6sin A cos A .当cos A =0时,得A =π2,因为C =π3,则B =π6,又c =7,由正弦定理,得b =c sin B sin C =213,由三角形的面积公式知△ABC 的面积S =12bc sin A =736;当cos A ≠0时,由2sin B cos A =6sin A cos A ,得sin B =3sin A ,根据正弦定理可知b =3a ,由余弦定理可知cos C =a 2+b 2-c 22ab =a 2+9a 2-76a 2=12,可得a =1,b =3,此时△ABC 的面积S =12ab sin C =334.综上可知,△ABC 的面积为736或334. 12.如图所示,在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足b =c ,b a =1-cos B cos A.若点O 是△ABC 外一点,∠AOB =θ(0<θ<π),OA =2,OB =1,则四边形OACB 面积的最大值是( )A.4+534B.8+534 C .3 D.4+52 解析:选B 由b a =1-cos B cos A及正弦定理得sin B cos A =sin A -sin A cos B ,所以sin(A +B )=sin A ,所以sin C =sin A .又b =c ,所以a =b =c ,△ABC 为等边三角形.设△ABC的边长为k ,则k 2=12+22-2×1×2×cos θ=5-4cos θ,则S 四边形OACB =12×1×2sin θ+34k 2=sin θ+34(5-4cos θ)=2sin θ-π3+534≤2+534=8+534,所以当θ-π3=π2,即θ=5π6时,四边形OACB 的面积取得最大值,且最大值为8+534. 二、填空题13.设△ABC 三个内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2sin C =4sin A ,(ca +cb )(sin A -sin B )=sin C (27-c 2),则△ABC 的面积为________.解析:由a 2sin C =4sin A ,得ac =4.由(ca +cb )(sin A -sin B )=sin C (27-c 2),得(a +b )(a -b )=27-c 2,即a 2+c 2-b 2=27,∴cos B =a 2+c 2-b 22ac =74,则sin B =34, ∴S △ABC =12ac sin B =32. 答案:3214.在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A =__________.解析:如图,AD 为△ABC ,BC 边上的高.设BC =a ,由题意知AD =13BC =13a .又B =π4,所以BD =AD =13a ,DC =23a . 在Rt △ABD 中,由勾股定理得,AB = ⎝⎛⎭⎫13a 2+⎝⎛⎭⎫13a 2=23a . 同理,在Rt △ACD 中,AC =⎝⎛⎭⎫13a 2+⎝⎛⎭⎫23a 2=53a . ∵S △ABC =12AB ·AC ·sin ∠BAC =12BC ·AD , ∴12×23a ×53a ·sin ∠BAC =12a ·13a , ∴sin ∠BAC =310=31010. 答案:31010 15.已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足4S =a 2-(b -c )2,b +c =8,则S 的最大值为__________.解析:由题意得,4×12bc sin A =a 2-b 2-c 2+2bc ,又a 2=b 2+c 2-2bc cos A ,代入上式得,2bc sin A =-2bc cos A +2bc ,即sin A +cos A =1,2sin ⎝⎛⎭⎫A +π4=1.∵0<A <π,∴π4<A +π4<5π4,∴A +π4=3π4,∴A =π2,S =12bc sin A =12bc .又b +c =8≥2bc ,当且仅当b =c 时取“=”,∴bc ≤16,∴S 的最大值为8.答案:816.在△ABC 中,B =30°,AC =25,D 是AB 边上的一点,CD =2,若∠ACD 为锐角,△ACD 的面积为4,则BC =________.解析:依题意得S △ACD =12CD ·AC ·sin ∠ACD =25·sin ∠ACD =4,sin ∠ACD =25.又∠ACD 是锐角,因此cos ∠ACD =1-sin 2∠ACD =15.在△ACD 中,AD =CD 2+AC 2-2CD ·AC ·cos ∠ACD =4.又ADsin ∠ACD =CD sin A ,所以sin A =CD ·sin ∠ACD AD =15.在△ABC 中,AC sin B =BC sin A ,所以BC =AC ·sin A sin B=4. 答案:4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷第1页,总14页………外…………○…………订…………○……学:___________考号:___________………内…………○…………订…………○……三角形面积最值问题30题含详细答案1.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.2.如图,在平面直角坐标系xOy 中,已知抛物线22y ax x c =-+与直线y kx b =+都经过(0,3)A -、(3,0)B 两点,该抛物线的顶点为C . (1)求此抛物线和直线AB 的解析式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x 轴的垂线交抛物线于点N ,使点M 、N 、C 、E 是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P 是直线AB 下方抛物线上的一动点,当PAB ∆面积最大时,求点P 的坐标,并求PAB ∆面积的最大值.3.如图,抛物线25(0)y ax bx a =+-≠经过x 轴上的点A (1,0)和点B 及y 轴上的点C ,经过B 、C 两点的直线为y x n =+.试卷第2页,总14页……订…………○……※※内※※答※※题※※……订…………○……①求抛物线的解析式.②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,△PBE 的面积最大并求出最大值. ③过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B 、C 重合)作直线AM 的平行线交直线BC 于点Q .若点A 、M 、N 、Q 为顶点的四边形是平行四边形,求点N 的横坐标.4.如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.试卷第3页,总14页…○…………外………………订…………………线…………○……___________考号:______…○…………内………………订…………………线…………○……5.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.6.已知抛物线y =a (x ﹣1)2过点(3,4),D 为抛物线的顶点. (1)求抛物线的解析式;(2)若点B 、C 均在抛物线上,其中点B (0,1),且∠BDC =90°,求点C 的坐标: (3)如图,直线y =kx +1﹣k 与抛物线交于P 、Q 两点,∠PDQ =90°,求△PDQ 面积的最小值.7.如图,抛物线y =ax 2+bx+c 经过A (0,3)、B (﹣1,0)、D (2,3),抛物线与x试卷第4页,总14页装…………○……………○…………线※要※※在※※装※※订※答※※题※※装…………○……………○…………线轴的另一交点为E ,点P 为直线AE 上方抛物线上一动点,设点P 的横坐标为t . (1)求抛物线的表达式;(2)当t 为何值时,△PAE 的面积最大?并求出最大面积;(3)是否存在点P 使△PAE 为直角三角形?若存在,求出t 的值;若不存在,说明理由.8.如图,四边形ABCD 是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D 重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB 、BA (或它们的延长线)于点E 、F ,∠EDF=60°,当CE=AF 时,如图1小芳同学得出的结论是DE=DF .(1)继续旋转三角形纸片,当CE≠AF 时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;(2)再次旋转三角形纸片,当点E 、F 分别在CB 、BA 的延长线上时,如图3请直接写出DE 与DF 的数量关系;(3)连EF ,若△DEF 的面积为y ,CE=x ,求y 与x 的关系式,并指出当x 为何值时,y 有最小值,最小值是多少?9.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠. (初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)试卷第5页,总14页…………○………………○………………○…………………○……学校:____:___________班级:____:___________…………○………………○………………○…………………○……(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.试卷第6页,总14页…○…………外………订…………○………………○……※内※※答※※题※※…○…………内………订…………○………………○……10.如图,在平面直角坐标系xOy 中,反比例函数(0)m y x x =>的图像经过点34,2A ⎛⎫⎪⎝⎭,点B 在y 轴的负半轴上,AB 交x 轴于点C ,C 为线段AB 的中点.(1)m =________,点C 的坐标为________;(2)若点D 为线段AB 上的一个动点,过点D 作//DE y 轴,交反比例函数图像于点E ,求ODE 面积的最大值.11.如图,直线l :y =﹣3x +3与x 轴、y 轴分别相交于A 、B 两点,抛物线y =ax 2﹣2ax +a +4(a <0)经过点B ,交x 轴正半轴于点C . (1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值及此时动点M 的坐标;(3)将点A 绕原点旋转得点A ′,连接CA ′、BA ′,在旋转过程中,一动点M 从点B 出发,沿线段BA ′以每秒3个单位的速度运动到A ′,再沿线段A ′C 以每秒1个单位长度的速度运动到C 后停止,求点M 在整个运动过程中用时最少是多少?12.(问题提出)试卷第7页,总14页……○…………外装…………○……姓名:___________班级:____……○…………内装…………○……(1)如图①,在等腰Rt ABC 中,斜边4AC =,点D 为AC 上一点,连接BD ,则BD 的最小值为 .(问题探究)(2)如图2,在ABC 中,5AB AC ==,6BC =,点M 是BC 上一点,且4BM =,点P 是边AB 上一动点,连接PM ,将BPM △沿PM 翻折得到DPM △,点D 与点B 对应,连接AD ,求AD 的最小值.(问题解决)(3)如图③,四边形ABCD 是规划中的休闲广场示意图,其中135BAD ADC ∠=∠=︒,30DCB ∠=︒,AD =,3AB km =,点M 是BC 上一点,4MC km =.现计划在四边形ABCD 内选取一点P ,把DCP 建成商业活动区,其余部分建成景观绿化区.为方便进入商业区,需修建小路BP 、MP ,从实用和美观的角度,要求满足PMB ABP ∠=∠,且景观绿化区面积足够大,即DCP 区域面积尽可能小.则在四边形ABCD 内是否存在这样的点P ?若存在,请求出DCP 面积的最小值;若不存在,请说明理由.13.在平面直角坐标系中,点O 是原点,四边形AOBC 是矩形,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O B C ,,的对应点分别为D E F ,,.(1)如图①,当点D 落在BC 边上时,求点D 的坐标;(2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .求点H 的坐标; (3)记K 为矩形AOBC 对角线的交点,S 为KDE 的面积,求S 的取值范围(直接写出结果即可).试卷第8页,总14页……外…………○……………订…………○…※※请※※线※※内※※答※※题※※……内…………○……………订…………○…14.(1)如图1,四边形ABCD 中,//AD BC ,点E 为DC 边的中点,连接AE 并延长交BC 的延长线于点F ,求证:ABF ABCD S S ∆=四边形.(S 表示面积)(2)如图2,在ABC ∆中,过AC 边的中点P 任意作直线EF ,交BC 边于点F ,交BA 的延长线于点E ,试比较EBF ∆与ABC ∆的面积,并说明理由.(3)如图3,在平面直角坐标系中,已知一次函数y kx b =+的图像过点()2,4P 且分别于x 轴正半轴,y 轴正半轴交于点A 、B ,请问AOB ∆的面积是否存在最小值?若存在,求出此时一次函数关系式;若不存在,请说明理由.15.△ABC 为等边三角形,AB =8,AD ⊥BC 于点D ,E 为线段AD 上一点,AE =.以AE 为边在直线AD 右侧构造等边三角形AEF ,连接CE ,N 为CE 的中点. (1)如图1,EF 与AC 交于点G ,连接NG ,求线段NG 的长;(2)如图2,将△AEF 绕点A 逆时针旋转,旋转角为α,M 为线段EF 的中点,连接DN ,MN .当30°<α<120°时,猜想∠DNM 的大小是否为定值,并证明你的结论; (3)连接BN .在△AEF 绕点A 逆时针旋转过程中,当线段BN 最大时,请直接写出△ADN 的面积.16.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.试卷第9页,总14页…外…………○………………○…………订………○……学校:_____名:___________班级:___________考号…内…………○………………○…………订………○……(1)求x 的取值范围; (2)求ABC 面积的最大值.17.在平面直角坐标系中,抛物线265y x mx =-+与y 轴的交点为A ,与x 轴的正半轴分别交于点B (b ,0),C (c ,0).(1)当b =1时,求抛物线相应的函数表达式;(2)当b =1时,如图,E (t ,0)是线段BC 上的一动点,过点E 作平行于y 轴的直线l 与抛物线的交点为P .求△APC 面积的最大值;(3)当c =b + n .时,且n 为正整数.线段BC (包括端点)上有且只有五个点的横坐标是整数,求b 的值.18.如图,抛物线2y ax bx c =++与坐标轴交于点()()()0, 31,03,0A B E --、、,点P 为抛物线上动点,设点P 的横坐标为t .(1)若点C 与点A 关于抛物线的对称轴对称,求C 点的坐标及抛物线的解析式; (2)若点P 在第四象限,连接PA PE 、及AE ,当t 为何值时,PAE ∆的面积最大?最大面积是多少?(3)是否存在点P ,使PAE ∆为以AE 为直角边的直角三角形,若存在,直接写出点P试卷第10页,总14页…外…………○…※…内…………○…的坐标;若不存在,请说明理由. 19.综合与实践问题情境:在综合与实践课上,老师让同学们以“两个大小不等的等腰直角三角板的直角顶点重合,并让一个三角板固定,另一个绕直角顶点旋转”为主题开展数学活动,如图1,三角板ABC 和三角板CDE 都是等腰直角三角形,90C ∠=︒,点D ,E 分别在边BC ,AC 上,连接AD ,点M ,P ,N 分别为DE ,AD ,AB 的中点.试判断线段PM 与PN 的数量关系和位置关系.探究展示:勤奋小组发现,PM PN =,PM PN ⊥.并展示了如下的证明方法:∵点P ,N 分别是AD ,AB 的中点,∴PNBD ,12PN BD =. ∵点P ,M 分别是AD ,DE 的中点,∴PM AE ∥,12PM AE =.(依据1)∵CA CB =,CD CE =,∴BD AE =,∴PM PN =. ∵PNBD ,∴DPN ADC ∠=∠.∵PM AE ∥,∴DPM DAC ∠=∠.∵90BCA ∠=︒,∴90ADC CAD ∠+∠=︒.(依据2)∴90MPN DPM DPN CAD ADC ∠=∠+∠=∠+∠=︒.∴PM PN ⊥. 反思交流:(1)①上述证明过程中的“依据1”,“依据2”分别是指什么? ②试判断图1中,MN 与AB 的位置关系,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,把CDE △绕点C 逆时针方向旋转到如图2的位置,发现PMN 是等腰直角三角形,请你给出证明;(3)缜密小组的同学继续探究,把CDE △绕点C 在平面内自由旋转,当4CD =,10CB =时,求PMN 面积的最大值.20.如图,在平面直角坐标系中,四边形 OABC 为菱形,点 C 的坐标为(4,0),∠AOC = 60°,垂直于 x 轴的直线 l 从 y 轴出发,沿 x 轴正方向以每秒 1 个单位长度的速度运动,设直线 l 与 菱形 OABC 的两边分别交与点 M 、N (点 M 在点 N 的上方).○…………外…………订………………○……级:___________考号:__○…………内…………订………………○……(1)求 A 、B 两点的坐标;(2)设 OMN 的面积为 S ,直线 l 运动时间为 t 秒(0 ≤t ≤6 ),试求 S 与 t 的函数表达 式;(3)在题(2)的条件下,t 为何值时,S 的面积最大?最大面积是多少.21.如图,抛物线y=ax 2+bx+c 经过点A (﹣1,0),C (0,3),抛物线的顶点在直线1x =上.(1)求抛物线的解析式;(2)若点P 为第一象限内抛物线上的一点,设△PBC 的面积为S ,求S 的最大值并求出此时点P 的坐标; 22.综合与探究如图,已知抛物线()20y ax bx c a =++≠与x 轴交于A 、()20B ,两点,与y 轴交于点C ,顶点坐标为点1924D ⎛⎫⎪⎝⎭,. (1)求此抛物线的解析式;(2)点P 为抛物线对称轴上一点,当PA PC +最小时,求点P 坐标;(3)在第一象限的抛物线上有一点M ,当BCM ∆面积最大时,求点M 坐标; (4)在x 轴下方抛物线上有一点H ,ABH ∆面积为6,请直接写出点H 的坐标.○…………装………○…………线…………※※请※※不※※要※※在※※○…………装………○…………线…………23.如图,已知抛物线23y ax bx =++与x 轴交于A 、B 两点,过点A 的直线l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,3).(1)求抛物线的解析式;(2)抛物线的对称轴上是否存在点D ,使△BCD 的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)点P 是抛物线上AC 下方的一个动点,是否存在点p ,使△PAC 的面积最大?若存在,求出点P 的坐标,若不存在,请说明理由.二、填空题24.如图,直线AB 交坐标轴于A(-2,0),B(0,-4),点P 在抛物线1(2)(4)2y x x =--上,则△ABP 面积的最小值为__________.25.如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.………○…………装………………订……………线…………○……学校:___________姓名:_级:___________考号:………○…………装………………订……………线…………○……26.如图,30AOB ∠=,C 是BO 上的一点,4CO =,点P 为AO 上的一动点,点D 为CO 上的一动点,则PC PD +的最小值为 ________,当PC PD +的值取最小值时,则OPC ∆的面积为________.27.如图,已知直线433y x =-与x 轴、y 轴分别交于A ,B 两点,P 是以(0,1)C 为圆心,1为半径的圆上一动点,连接PA ,PB ,当PAB ∆的面积最大时,点P 的坐标为__________.28.如图,在Rt ABC ∆中,90ACB ∠=︒,4AB =,点D ,E 分别在边AB ,AC 上,且2DB AD =,3AE EC =连接BE ,CD ,相交于点O ,则ABO ∆面积最大值为__________.…………装…………○…订…………○……线…………○……※请※※不※※要※※在※※装※※订内※※答※※题※※…………装…………○…订…………○……线…………○……29.如图,在△ABC 中,∠ACB =120°,AC =BC =2,D 是AB 边上的动点,连接CD ,将△BCD 绕点C 沿顺时针旋转至△ACE ,连接DE ,则△ADE 面积的最大值=_____.30.如图,∠AOB=45°,点M 、N 分别在射线OA 、OB 上,MN=7,△OMN 的面积为14,P 是直线MN 上的动点,点P 关于OA 对称的点为P 1,点P 关于OB 对称点为P 2,当点P 在直线NM 上运动时,△OP 1P 2的面积最小值为_____参考答案1.(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) Q -或(或1122⎛-+- ⎝⎭或⎝⎭. 【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解; (2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解; (3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角的关系,确定直线OQ 倾斜角,进而求解. 【详解】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =, 故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 的坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+, ()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况:①当ACB BOQ ∠=∠时,4AB =,BC =AC = 过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:AH =,∴CH 则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:x =故点Q -或(; ②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:x =故点13,22Q ⎛⎫-+- ⎪ ⎪⎝⎭或1322⎛⎫-+ ⎪ ⎪⎝⎭;综上,点Q -或(或1122⎛-+- ⎝⎭或13,22⎛-+ ⎝⎭. 【点睛】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.2.(1)抛物线的解析式为223y x x =--,直线AB 的解析式为3y x =-,(2)(2,1)-或33(22+-+.(3)当32m =时,PAB∆面积的最大值是278,此时P 点坐标为33(,)22-. 【解析】 【分析】(1)将(0,3)A -、(3,0)B 两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C 点坐标和E 点坐标,则2CE =,分两种情况讨论:①若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE MN =,②若点M 在x 轴上方,四边形CENM 为平行四边形,则CE MN =,设(,3)M a a -,则2(,23)N a a a --,可分别得到方程求出点M 的坐标;(3)如图,作//PG y 轴交直线AB 于点G ,设2(,23)P m m m --,则(,3)G m m -,可由12PAB S PG OB ∆=,得到m 的表达式,利用二次函数求最值问题配方即可. 【详解】解:(1)∵抛物线22y ax x c =-+经过(0,3)A -、(3,0)B 两点,∴9603a c c -+=⎧⎨=-⎩,∴13a c =⎧⎨=-⎩,∴抛物线的解析式为223y x x =--, ∵直线y kx b =+经过(0,3)A -、(3,0)B 两点,∴303k b b +=⎧⎨=-⎩,解得:k 1b 3=⎧⎨=-⎩,∴直线AB 的解析式为3y x =-,(2)∵2223(1)4y x x x =--=--,∴抛物线的顶点C 的坐标为(1,4)-, ∵//CE y 轴, ∴(1,2)E -, ∴2CE =,①如图,若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE MN =, 设(,3)M a a -,则2(,23)N a a a --,∴223(23)3MN a a a a a =----=-+, ∴232a a -+=,解得:2a =,1a =(舍去), ∴(2,1)M -,②如图,若点M 在x 轴上方,四边形CENM 为平行四边形,则CE MN =,设(,3)M a a -,则2(,23)N a a a --,∴2223(3)3MN a a a a a =----=-, ∴232a a -=,解得:a =,a =(舍去),∴M ,综合可得M 点的坐标为(2,1)-或33(22+-+. (3)如图,作//PG y 轴交直线AB 于点G ,设2(,23)P m m m --,则(,3)G m m -, ∴223(23)3PG m m m m m =----=-+, ∴22211393327(3)3()2222228PAB PGA PGB S S S PG OB m m m m m ∆∆∆=+==⨯-+⨯=-+=--+, ∴当32m =时,PAB ∆面积的最大值是278,此时P 点坐标为33(,)22-.【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数求最值问题,以及二次函数与平行四边形、三角形面积有关的问题.3.①265y x x =-+-;②当2t =时,△PBE 的面积最大,最大值为;③点N 的横坐标为:4或52+或52.【解析】 【分析】①点B 、C 在直线为y x n =+上,则B (﹣n ,0)、C (0,n ),点A (1,0)在抛物线上,所以250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩,解得1a =-,6b =,因此抛物线解析式:265y x x =-+-; ②先求出点P 到BC 的高h为sin 45)BP t ︒=-,于是211)22)22PBE S BE h t t t ∆=⋅=-⨯=-+2t =时,△PBE 的面积最大,最大值为③由①知,BC 所在直线为:5y x =-,所以点A 到直线BC的距离d =N 作x轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN为等腰直角三角形,即NQ PQ ==4PN =,Ⅰ.4NH HP +=,所以265(5)4m m m -+---=解得11m =(舍去),24m =,Ⅱ.4NH HP +=,()25654m m m ---+-=解得152m +=,252m =(舍去),Ⅲ.4NH HP -=,()265[(5)]4m m m --+----=,解得152m =(舍去),252m =.【详解】解:①∵点B 、C 在直线为y x n =+上, ∴B(﹣n ,0)、C (0,n ), ∵点A (1,0)在抛物线上,∴250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩, ∴1a =-,6b =,∴抛物线解析式:265y x x =-+-;②由题意,得,4PB t =-,2BE t =,由①知,45OBC ︒∠=,∴点P 到BC 的高h 为sin 45)2BP t ︒=-,∴211(4)2(2)2222PBE S BE h t t t ∆=⋅=⨯-⨯=-+当2t =时,△PBE 的面积最大,最大值为③由①知,BC 所在直线为:5y x =-,∴点A 到直线BC 的距离d =过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN 为等腰直角三角形,即NQ PQ ==∴4PN =,Ⅰ.4NH HP +=,∴265(5)4m m m -+---=解得11m =,24m =,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,∴4m =;Ⅱ.4NH HP +=,∴()25654m m m ---+-=解得152m =,252m =, ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,5m >,∴m =,Ⅲ.4NH HP -=,∴()265[(5)]4m m m --+----=,解得1m =,2m = ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,0m <,∴52m =,综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4或52或52-. 【点睛】本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.4.(1)224233y x x =-++,对称轴1x =;(2)11,4D ⎛⎫ ⎪⎝⎭;(3)面积有最大值是4948,755,424E ⎛⎫ ⎪⎝⎭;(4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,()2,2M 或104,3M ⎛⎫- ⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭. 【解析】【分析】(1)将点A (-1,0),B (3,0)代入y=ax 2+bx+2即可;(2)过点D 作DG ⊥y 轴于G ,作DH ⊥x 轴于H ,设点D (1,y ),在Rt △CGD 中,CD 2=CG 2+GD 2=(2-y )2+1,在Rt △BHD 中,BD 2=BH 2+HD 2=4+y 2,可以证明CD=BD ,即可求y 的值; (3)过点E 作EQ ⊥y 轴于点Q ,过点F 作直线FR ⊥y 轴于R ,过点E 作FP ⊥FR 于P ,证明四边形QRPE 是矩形,根据S △CEF =S 矩形QRPE -S △CRF -S △EFP ,代入边即可;(4)根据平行四边形对边平行且相等的性质可以得到存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形,点M (2,2)或M (4,-103)或M (-2,-103); 【详解】 解:(1)将点()()1,0,3,0A B -代入22y ax bx =++, 可得24,33a b =-=, 224233y x x ∴=-++; ∴对称轴1x =;(2)如图1:过点D 作DG y ⊥轴于G ,作DH x ⊥轴于H ,设点()1,D y ,()()0,2,3,0C B ,∴在Rt CGD ∆中,()222221CD CG GD y =+=-+,∴在Rt BHD ∆中,22224BD BH HD y =+=+,在BCD ∆中,DCB CBD ∠=∠CD BD ∴=,22CD BD ∴=()22214y y ∴-+=+14y ∴=, 11,4D ⎛⎫∴ ⎪⎝⎭;(3)如图2:过点E 作EQ y ⊥轴于点Q ,过点F 作直线FR y ⊥轴于R ,过点E 作FP FR ⊥于P ,90EQR QRP RPE ︒∴∠=∠=∠=,∴四边形QRPE 是矩形,CEF CRF EFP QRPE S S S S ∆∆∆=--矩形,()()(),,0,2,1,1E x y C F ,111•222CEF SEQ QR EQ QC CR RF FP EP ∴=⋅-⨯⋅-⋅- ()()()()111121111222CEF S x y x y x y ∆∴=----⨯⨯--- 224233y x x =-++, 21736CEF S x x ∆∴=-+ ∴当74x =时,面积有最大值是4948, 此时755,424E ⎛⎫ ⎪⎝⎭; (4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,设()()1,,,N n M x y ,①四边形CMNB 是平行四边形时,1322x += 2x ∴=-102,3M ⎛⎫∴-- ⎪⎝⎭ ②四边形CNBM 时平行四边形时,3122x += 2x ∴=,()2,2M ∴;③四边形CNNB 时平行四边形时,1322x +=, 4x ∴=,104,3M ⎛⎫∴- ⎪⎝⎭; 综上所述:()2,2M 或104,3M ⎛⎫-⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭; 【点睛】本题考查了待定系数法求二次函数解析式,二次函数的图象及性质,勾股定理,平行四边形的判定与性质,及分类讨论的数学思想.熟练掌握二次函数的性质、灵活运用勾股定理求边长、掌握平行四边形的判定方法是解题的关键.5.(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点, //PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,AM ∴=在Rt ABC ∆中,10AB AC ==,AN =MN ∴==最大,22211114922242PMN S PM MN ∆∴==⨯=⨯=最大.方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.6.(1)y =(x ﹣1)2;(2)点C 的坐标为(2,1);(3)1【分析】(1)将点(3,4)代入解析式求得a 的值即可;(2)设点C 的坐标为(x 0,y 0),其中y 0=(x 0﹣1)2,作CF ⊥x 轴,证△BDO ∽△DCF 得BO DF DO CF=,即1=00x 1y -=()01x 1-,据此求得x 0的值即可得; (3)过点D 作x 轴的垂线交直线PQ 于点G ,则DG =4,根据S △PDQ =12DG•MN 列出关于k 的等式求解可得.【详解】解:(1)将点(3,4)代入解析式,得:4a =4,解得:a =1,所以抛物线解析式为y =(x ﹣1)2;(2)由(1)知点D 坐标为(1,0),设点C 的坐标为(x 0,y 0),(x 0>1、y 0>0),则y 0=(x 0﹣1)2,如图1,过点C 作CF ⊥x 轴,∴∠BOD =∠DFC =90°,∠DCF+∠CDF =90°,∵∠BDC =90°,∴∠BDO+∠CDF =90°,∴∠BDO =∠DCF ,∴△BDO ∽△DCF , ∴BO DF DO CF=, ∴1=00x 1y -=()01x 1-,解得:x 0=2,此时y 0=1,∴点C 的坐标为(2,1).(3)设点P 的坐标为(x 1,y 1),点Q 为(x 2,y 2),(其中x 1<1<x 2,y 1>0,y 2>0), 如图2,分别过点P 、Q 作x 轴的垂线,垂足分别为M 、N ,由y=(x-1)2 ,y=kx+1-k ,得x 2﹣(2+k )x+k =0.∴x 1+x 2=2+k ,x 1•x 2=k .∴MN =|x 1﹣x 2|=|2﹣k|.则过点D作x轴的垂线交直线PQ于点G,则点G的坐标为(1,1),所以DG=1,∴S△PDQ=12DG•MN=12×1×|x1﹣x2|=12|2﹣k|,∴当k=0时,S△PDQ取得最小值1.【点睛】本题主要考查二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析式、相似三角形的判定与性质及一元二次方程根与系数的关系等知识点.7.(1)y=﹣x2+2x+3;(2)t=32时,△PAE的面积最大,最大值是278;(3)t的值为1.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线的对称性可求得E点坐标,从而可求得直线EA的解析式,作PM∥y轴,交直线AE于点M,则可用t表示出PM的长,从而可表示出△PAE的面积,再利用二次函数的性质可求得其最大值即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.【详解】解:(1)由题意得:0 4233a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:123abc=-⎧⎪=⎨⎪=⎩,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴抛物线对称轴为x=1,∴E(3,0),设直线AE的解析式为y=kx+3,∴3k+3=0,解得,k=﹣1,∴直线AE的解析式为y=﹣x+3,如图1,作PM∥y轴,交直线AE于点M,设P(t,﹣t2+2t+3),M(t,﹣t+3),∴PM=﹣t2+2t+3+t﹣3=﹣t2+3t,∴12PAE PMA PMES S S PM OE=+=⋅=()21332t t⨯⨯-+=23327228t⎛⎫--+⎪⎝⎭,∴t=32时,△PAE的面积最大,最大值是278.(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t =﹣t 2+2t+3﹣3,即﹣t 2+t =0,解得t =1或t =0(舍去), ②当∠APE =90°时,如图3,作PK ⊥x 轴,AQ ⊥PK ,则PK =﹣t 2+2t+3,AQ =t ,KE =3﹣t ,PQ =﹣t 2+2t+3﹣3=﹣t 2+2t , ∵∠APQ+∠KPE =∠APQ+∠PAQ =90°, ∴∠PAQ =∠KPE ,且∠PKE =∠PQA , ∴△PKE ∽△AQP , ∴PK KEAQ PQ=, ∴222332t t t t t t-++-=-+,即t 2﹣t ﹣1=0,解得:t 或t 0(舍去),综上可知存在满足条件的点P ,t 的值为1或12+. 【点睛】本题考查了待定系数法求二次函数解析式、二次函数与几何面积最值问题以及二次函数与特殊三角形的问题,解题的关键是灵活运用二次函数的性质及几何知识.8.(1)成立,证明见解析;(2)DF=DE .(3)当x=0时,y 最小值 【分析】(1)如图1,连接BD .根据题干条件首先证明∠ADF=∠BDE ,然后证明△ADF ≌△BDE (ASA ),得DF=DE ;(2)如图2,连接BD .根据题干条件首先证明∠ADF=∠BDE ,然后证明△ADF ≌△BDE(ASA ),得DF=DE ;(3)根据(2)中的△ADF ≌△BDE 得到:S △ADF =S △BDE ,AF=BE .所以△DEF 的面积转化为:y=S △BEF +S △ABD .据此列出y 关于x 的二次函数,通过求二次函数的最值来求y 的最小值. 【详解】(1)DF=DE .理由如下: 如图1,连接BD .∵四边形ABCD 是菱形, ∴AD=AB . 又∵∠A=60°,∴△ABD 是等边三角形, ∴AD=BD ,∠ADB=60°, ∴∠DBE=∠A=60° ∵∠EDF=60°, ∴∠ADF=∠BDE . ∵在△ADF 与△BDE 中,ADF BDE AD BDA DBE ∠=⎧∠=∠=∠⎪⎨⎪⎩, ∴△ADF ≌△BDE (ASA ), ∴DF=DE ;(2)DF=DE .理由如下: 如图2,连接BD .∵四边形ABCD 是菱形, ∴AD=AB . 又∵∠A=60°,∴△ABD 是等边三角形, ∴AD=BD ,∠ADB=60°, ∴∠DBE=∠A=60° ∵∠EDF=60°, ∴∠ADF=∠BDE . ∵在△ADF 与△BDE 中,ADF BDE AD BDA DBE ∠=⎧∠=∠=∠⎪⎨⎪⎩, ∴△ADF ≌△BDE (ASA ), ∴DF=DE ;(3)由(2)知,△ADF ≌△BDE .则S △ADF =S △BDE ,AF=BE=x . 依题意得:y=S △BEF +S △ABD =12(2+x )xsin60°+12×2×2sin60°x+1)2.即x+1)20, ∴该抛物线的开口方向向上, ∴当x=0即点E 、B 重合时,y 最小值=29.(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7【分析】(1)由DE ∥BC ,得到DB ECAB AC=,结合AB=AC ,得到DB=EC ; (2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可. 【详解】[初步感知](1)∵DE ∥BC , ∴DB ECAB AC=, ∵AB=AC , ∴DB=EC , 故答案为:=, (2)成立.理由:由旋转性质可知∠DAB=∠EAC , 在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ), ∴DB=CE ;[深入探究](3)如图③,设AB ,CD 交于O ,∵△ABC 和△ADE 都是等边三角形, ∴AD=AE ,AB=AC ,∠DAE=∠BAC=60°,∴∠DAB=∠EAC , 在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ), ∴DB=CE ,∠ABD=∠ACE , ∵∠BOD=∠AOC , ∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形, ∴∠AED=45°, ∴∠AEC=135°, 在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ), ∴∠ADB=∠AEC=135°,BD=CE , ∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高, ∴AM=EM=MD , ∴AM+BD=CM ;故答案为:90°,AM+BD=CM ; 【拓展提升】 (5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变, △ADE 与△ADC 面积的和达到最大, ∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变, ∴要△ADC 面积最大, ∴点D 到AC 的距离最大, ∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+12×AC×AD=5+2=7, 故答案为7. 【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.10.(1)m=6,()2,0;(2)当a=1时,ODE 面积的最大值为278【分析】(1)将点34,2A ⎛⎫ ⎪⎝⎭代入反比例函数解析式求出m ,根据坐标中点公式求出点C 的横坐标即可;(2)由AC 两点坐标求出直线AB 的解析式为3342y x =-,设D 坐标为33,(04)42D a a a ⎛⎫-<≤ ⎪⎝⎭,则6,E a a ⎛⎫⎪⎝⎭,进而得到2327(1)88ODESa =--+,即可解答【详解】解:(1)把点34,2A ⎛⎫ ⎪⎝⎭代入反比例函数(0)m y x x=>,得:324m =,解得:m=6,∵A 点横坐标为:4,B 点横坐标为0,故C 点横坐标为:4022+=, 故答案为:6,(2,0);(2)设直线AB 对应的函数表达式为y kx b =+.将34,2A ⎛⎫ ⎪⎝⎭,(2,0)C 代入得34220k b k b ⎧+=⎪⎨⎪+=⎩,解得3432k b ⎧=⎪⎪⎨⎪=-⎪⎩. 所以直线AB 对应的函数表达式为3342y x =-. 因为点D 在线段AB 上,可设33,(04)42D a a a ⎛⎫-<≤ ⎪⎝⎭, 因为//DE y 轴,交反比例函数图像于点E .所以6,E a a ⎛⎫ ⎪⎝⎭. 所以221633333273(1)2428488ODESa a a a a a ⎛⎫=⋅⋅-+=-++=--+ ⎪⎝⎭. 所以当a =1时,ODE 面积的最大值为278. 【点睛】本题考查了函数与几何综合,涉及了待定系数法求函数解析式、三角形面积、坐标中点求法、二次函数的应用等知识点,解题关键是用函数解析式表示三角形面积.11.(1)y =﹣x 2+2x +3;(2)S 与m 的函数表达式是S =252m m --,S 的最大值是258,此时动点M 的坐标是(52,74);(3)点M在整个运动过程中用时最少是3秒. 【分析】(1)首先求出B 点的坐标,根据B 点的坐标即可计算出二次函数的a 值,进而即可计算出二次函数的解析式;。