面积最值问题

合集下载

如何求解三角函数中的面积最值问题

如何求解三角函数中的面积最值问题

如何求解三角函数中的面积最值问题
三角函数中的面积最值问题是数学中的一个经典问题,可以通过求解函数的导数来找到最值点。

以下是一个简单的步骤来解决这个问题:
1. 确定函数表达式:首先确定你要研究的三角函数,比如正弦函数、余弦函数或者其他函数。

2. 求导:对函数进行求导,得到函数的导数。

3. 解方程:将导数等于零,然后解方程来找到导数的零点或者驻点。

4. 求最值:对于找到的驻点,将其带入原函数,计算得到对应的面积值。

5. 比较结果:比较所有驻点对应的面积值,找到最大值或最小值。

举个例子,假设我们要求解正弦函数sin(x)在区间[0, π]上的面积最大值。

按照上述步骤进行:
1. 函数表达式:该问题中,函数表达式为sin(x)。

2. 求导:对sin(x)求导得到cos(x),即函数的导数。

3. 解方程:将cos(x)等于零,得到x=π/2,在区间[0, π]上找到导数为零的点。

4. 求最值:将x=π/2带入原函数sin(x),计算得到面积值为1。

5. 比较结果:该区间上面积最大值为1,没有更大的值。

通过以上步骤,我们可以求解三角函数中的面积最值问题。

需要注意的是,这个方法只适用于简单的三角函数,对于复杂的函数或更复杂的问题,可能需要使用更高级的数学工具和技巧来求解。

解三角形面积最值问题

解三角形面积最值问题

解三角形面积最值问题概述三角形是我们学习几何学时最常见的图形之一,其面积的计算是一个基本的几何问题。

而解三角形面积最值问题则是在给定一些限制条件下,求解三角形的最大面积或最小面积。

这涉及到数学中最优化的一个重要问题。

限制条件在解三角形面积最值问题时,我们通常会给出一些限制条件,这些条件可能包括角度的大小、边长的关系等。

下面是一些常见的限制条件:1.固定底边:给定三角形的底边长度为a,求使得面积最大或最小的三角形。

2.固定高:给定三角形的高为h,求使得面积最大或最小的三角形。

3.固定边长:给定三角形的两条边长为a和b,求使得面积最大或最小的三角形。

4.固定比例:给定三角形的边长比例为k,求使得面积最大或最小的三角形。

5.固定对角线:给定三角形的对角线长度为d,求使得面积最大或最小的三角形。

求解方法1. 利用面积公式三角形的面积可以通过以下公式来计算:A=12⋅base⋅ℎeigℎt其中A表示三角形的面积,base表示底边的长度,height表示高的长度。

根据给定的限制条件,我们可以通过求导等方法,将面积公式中的变量表示为常量,从而得到面积和其他变量之间的关系。

然后我们可以通过求解极值问题,找到使得面积最大或最小的变量取值。

2. 利用三角形特性三角形的边长、角度和面积之间有很多重要的关系。

利用这些关系,我们可以得到一些有助于解题的结论。

下面是一些常用的结论:1.等边三角形面积最大:当三角形的三条边相等时,三角形的面积最大。

2.高所对边最大:在给定三角形底边的情况下,使得三角形面积最大的情况是:底边为定长,底边两点的连线为垂线。

3.边长相等,角度越大,面积越大:在给定角度的情况下,如果三角形的两条边长相等,则面积最大的情况是这两条边垂直。

4.给定两边,夹角越大,面积越大:在给定两边的情况下,当这两边夹角最大时,三角形的面积最大。

通过利用这些有助于解题的结论,我们可以缩小解题的范围,降低解题的难度。

求解实例例题1:固定底边假设我们需要在给定底边长度为5的情况下,找到一个三角形,使得其面积最大。

与圆相关面积的最值问题

与圆相关面积的最值问题

与圆相关面积的最值问题与圆相关的面积最值问题一、问题的提出在数学中,与圆相关的面积最值问题是一个经典而有趣的问题。

我们常常会遇到这样的情形,给定一个圆和它的半径,然后需要找到这个圆内或者圆外的一个区域,使其面积最大或最小。

这种问题不仅需要我们对圆的基础知识有深入的理解,还需要我们掌握一些重要的数学方法,如微积分等。

二、问题的建模1. 确定变量:首先,我们需要确定与圆相关的面积最值问题的变量。

这些变量通常包括圆的半径和圆内或圆外的某个区域。

2. 建立数学模型:接下来,我们需要建立数学模型。

对于面积的最值问题,我们通常会使用微积分的方法。

微积分可以帮助我们找到函数的最值。

3. 定义约束条件:在解决与圆相关的面积最值问题时,我们还需要考虑一些约束条件。

例如,我们可能需要保证所求的区域是一个凸多边形,或者所求的区域必须满足某种特定的形状。

三、问题的解决1. 确定求解步骤:在解决与圆相关的面积最值问题时,我们需要确定求解的步骤。

通常,我们首先需要确定问题的数学模型,然后应用微积分的方法来找到面积的最值。

2. 进行计算:在确定了求解步骤后,我们需要进行具体的计算。

这些计算可能涉及到一些复杂的数学公式和技巧。

3. 整合答案:最后,我们需要整合答案。

通过对计算结果的分析,我们可以得出与圆相关的面积最值的结论。

同时,我们还需要对这些结论进行解释和讨论。

四、结论与圆相关的面积最值问题是一个有趣而具有挑战性的问题。

通过解决这类问题,我们可以更好地理解圆的性质和特点,同时也可以提高我们的数学思维和计算能力。

在解决这类问题的过程中,我们还需要注意一些关键的技巧和方法,如微积分的运用和约束条件的处理等。

只有这样,我们才能更好地解决与圆相关的面积最值问题。

二次函数的应用(面积最值问题)

二次函数的应用(面积最值问题)

二次函数的应用(面积最值问题)[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少? (2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值X 围.(3)t 为何值时s 最小,最小值时多少? 答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S tt t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道与在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=x x 3442+-=4289)417(42+--=x ∵104340≤-<x∴2176<≤x∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的X 围内, 而当2176<≤x 内,S 随x 的增大而减小,∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x≤4) 易知CN=4-x ,EM=4-y . 过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴PHBHBF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5, ∴当x≤5时,函数值y 随x 的增大而增大, 对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省? 解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点 按顺(逆)时针方向旋转90°后得到的, 故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10])24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008XXXX)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米.2.(2008庆阳市)XX 市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为元/平方米.5 m 12m ABCD提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2∵AD ∥BC ∴△MAD ∽△MBN ∴MB MA BN AD =,即5512x b -=,)5(512x b -= )5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值.4.(2008XXXX)将一X 边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C ) A .7 B .6 C .5 D .45.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是:35321212++-=x x y ,则该运动员此次掷铅球的成绩是( D ) A .6 mB .12 mC .8 mD .10m解:令0=y ,则:02082=--x x 0)10)(2(=-+x xxyOAM (图5) (图7) 6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=37.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B ) A .4.6m B .4.5m C .4m D .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值X 围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少? 解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x ∴205.12<≤x∵二次函数的顶点不在自变量x 的X 围内, 而当205.12<≤x 内,y 随x 的增大而减小, ∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ? (2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x-米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x ∴当25=x 时,3625max =S (平方米)即:鸡场的长度为25米时,面积最大. (2)中间有n 道篱笆,则宽为250+-n x米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米)由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米. 即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.ACD P Q解:∵∠APQ=90°,∴∠APB+∠QPC=90°. ∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90° .∴△ABP ∽△PCQ.,86,yxx CQ BP PC AB =-= ∴x x y 34612+-=.11.(2006年XX 市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少? 解:∵矩形MFGN ∽矩形ABCD ∴MF=2MN =2x ∴ EM=10-2x∴S=x (10-2x )=-2x 2+10x=-2(x-2.5)2+12.5 ∵1020<<x ,∴50<<x当x=2.5时,S 有最大值12.512.(2008XX 内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为0.5 米. 答案:如图所示建立直角坐标系则:设c ax y +=2将点)1,5.0(-,)5.2,1(代入,⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2008XXXX)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值X 围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少? 解:(1)根据题意,得x x x xS 3022602+-=⋅-=自变量的取值X 围是(2)∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2008年XX 市)随着绿城XX 近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉与树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少? 解:(1)设=,由图12-①所示,函数=的图像过(1,2),所以2=,故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过(2,2),所以,故利润2y 关于投资量的函数关系式是2221x y =; (2)设这位专业户投入种植花卉万元(),则投入种植树木(x -8)万元,他获得的利润是万元,根据题意,得 ==+21y y +==∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧, z 随x 的增大而增大所以,当8=x 时,z 的最大值为32.15.(08XX 聊城)如图,把一X 长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.解:(1)设正方形的边长为cm ,则.即.解得(不合题意,舍去),.剪去的正方形的边长为1cm . (2)有侧面积最大的情况.设正方形的边长为cm ,盒子的侧面积为cm 2,则与的函数关系式为:.即.改写为.当时,.即当剪去的正方形的边长为2.25cm 时, 长方体盒子的侧面积最大为40.5cm 2.(3)有侧面积最大的情况.设正方形的边长为cm ,盒子的侧面积为cm 2.若按图1所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=22102)28(2 即.当时,.若按图2所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=2282)210(2. 即.当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm 2.16.(08XX)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式; (2)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:(1)根据题目条件,的坐标分别是.设抛物线的解析式为,将的坐标代入,得解得.所以抛物线的表达式是.(2)可设,于是从而支柱的长度是米.(3)设是隔离带的宽,是三辆车的宽度和,则点坐标是.过点作垂直交抛物线于,则.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.。

二次函数面积最值问题

二次函数面积最值问题

如何求解二次函数中的面积最值问题二次函数中求面积最值问题常用方法:1.补形、割形法2.“铅垂高,水平宽”面积法3.切线法4.三角函数法如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.解答(1)抛物线解析式为y=-x2-2x+3;(2)Q(-1,2);下面着重探讨求第(3)小题中面积最大值的几种方法.一、补形、割形法几何图形中常见的处理方式有分割、补形等,通过对图形的这些直观处理,一般能辅助解题,使解题过程简捷、明快.此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形.方法一如图3,设P点(x,-x2-2x+3)(-3<x<0).方法二如图4,设P点(x,-x2-2x+3)(-3<x<0).(下略.)二、“铅垂高,水平宽”面积法如图5,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”,我们可得出一种计算三角形面积的另一种方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.根据上述方法,本题解答如下:解如图6,作PE⊥x轴于点E,交BC于点F.设P点(x,-x2-2x+3)(-3<x<0).∴点P坐标为(-,)三、切线法若要使△PBC的面积最大,只需使BC上的高最大.过点P作BC的平行线l,当直线l与抛物线有唯一交点(即点P)时,BC上的高最大,此时△PBC的面积最大,于是,得到下面的切线法.解如图7,直线BC的解析式是y=x+3,过点P作BC的平行线l,从而可设直线l的解析式为:y=x+b.=.四、三角函数法本题也可直接利用三角函数法求得.解如图8,作PE⊥x轴交于点E,交BC于点F,怍PM⊥BC于点M.设P点(x,-x2-2x+3)(-3<x<0),则F(x,x+3).从以上四种解法可以看到,本题解题思路都是过点P作辅助线,然后利用相关性质找出各元素之间的关系进行求解.如此深入挖掘一道题的多种解法,可使我们摆脱题海战术,提高解题能力.同时,善于总结一道题的多种解法能加快解题速度,提高解题效率,也有利于培养我们的钻研能力和创新精神.用分割面积法求二次函数动点面积最值考纲解读二次函数动点面积最值1. 二次函数在历年中考中都为重点内容,占分为40%。

“二次函数”面积最值问题的几种解法

“二次函数”面积最值问题的几种解法

“二次函数”面积最值问题的几种解法以微课堂公益课堂,奥数国家级教练与四位特级教师联手执教。

二次函数是初中数学的一个重点、难点,也是中考数学必考的一个知识点。

特别是在压轴题中,二次函数和几何综合出现的题型,才是最大的区分度。

而求三角形面积的最值问题,更是常见。

今天介绍二次函数考试题型种,面积最值问题的4种常用解法。

同学们只要熟练运用一两种解法,炉火纯青,在考试答题的时候,能够轻松答题,就好。

原题:在(1)中的抛物线上的第二象限是否存在一点P,使△PBC的面积最大?若存在,求出P点的坐标及△PBC的面积最大值,若没有,请说明理由。

考试题型,大多类似于此。

求面积最大值的动点坐标,并求出面积最大值。

一般解题思路和步骤是,设动点P的坐标,然后用代数式表达各线段的长。

通过公式计算,得出二次函数顶点式,则坐标和最值,即出。

解法一:补形,割形法。

方法要点是,把所求图像的面积适当的割补,转化成有利于面积表达的常规几何图形。

请看解题步骤。

解法二:铅锤定理,面积=铅锤高度×水平宽度÷2。

这是三角形面积表达方法的一种非常重要的定理。

铅锤定理,在教材上没有,但是大多数数学老师都会作为重点,在课堂上讲解。

因为,铅锤定理,在很多地方都用的到。

这里,也有铅锤定理的简单推导,建议大家认真体会。

解法二:铅锤定理,在求二次函数三角形面积最值问题,运用非常多。

设动点P的坐标,然后用代数式分别表达出铅锤高度和水平宽度,然后利用铅锤定理的计算公式,得出二次函数,必有最大值。

解法三:切线法。

这其实属于高中内容。

但是,基础好的同学也很容易理解,可以看看,提前了解一下。

解法四:三角函数法。

请大家认真看上面的解题步骤。

总之,从以上的四种解法可以得出一个规律。

过点P做辅助线,然后利用相关性质,找出各元素之间的关系。

设动点P的坐标,然后找出各线段的代数式,再通过面积计算公式,得出二次函数顶点式,求出三角形面积的最大值。

对于同学们中考数学来说,只要你熟练掌握解法一和解法二,那么二次函数几何综合题中,求三角形面积最大值问题,就非常简单了。

二次函数面积最大问题专题典型题

二次函数面积最大问题专题典型题

二次函数(面积最值)专题典型题1、用20米材料制作一日字形窗框,窗框的高度为多少时,窗框面积最大,最大面积是多少?2、用20米材料制作一田字形窗框,窗框的高度为多少时,窗框面积最大,最大面积是多少?3、用20米材料制作一如图所示窗框,窗框上半部分框的高度是下半部分框高度的一半,那么窗框的宽度为多少时,窗框面积最大,最大面积是多少?4、用20米材料靠墙围一矩形场地,如图所示其中一边开一1米宽度的门,该矩形场地的一边长x 为多少时,场地面积最大,最大面积是多少?小题(1) 小题(2) 小题(3)5、用20米材料靠墙围一矩形场地,且矩形内分成三个小矩形场地,如图所示其中每个场地均设置一1米宽度的门,该矩形场地的一边长x 为多少时,场地面积最大,最大面积是多少?小题(1) 小题(2)小题(3)6、一直角三角形形状区域,其中两直角边为墙,一墙宽度为10米,另一墙宽度为20米。

在该区域内靠墙用足够多的材料围一矩形场地,矩形场地的长度为多少时,所围面积最大,最大面积是多少?7、一直角梯形形状区域,其中一腰和一底边为墙,梯形上底边宽度为20米,下底边宽度为30米,梯形高度为25米。

在该区域内靠墙用足够多的材料围一矩形场地,矩形场地的长度为多少时,所围面积最大,最大面积是多少?8、用20米的材料制作如图所示一窗框,窗框上半部分为一半圆,下半部分为一矩形,窗框上半部分半径为多少时,窗框透光面积最大,最大面积是多少?9、已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.10、用一张长为4,宽为3的矩形白纸剪一如图所示的平行四边形纸片,其中剪掉的两个小直角三角形为全等等腰三角形,为使所剪得到的纸片面积最大,则小等腰直角三角形的直角边应为多少,此时面积最大为多少?11、在一半径为10的四分之一个圆内围一矩形,矩形一边长为多少时,面积最大,最大面积是多少?12、点P 是抛物线y x 42 上一点,另有两个点A(4,0)和B(0,-3),求三角形PAB 的最小面积。

(完整)圆锥曲线专题——面积最值问题

(完整)圆锥曲线专题——面积最值问题

圆锥曲线专题——面积最值问题
例题8、(11陕西理)已知椭圆C:12222=+b
y a x (a >b >0)的离心率为,36短轴一个端点到右焦点的距离为3。

(Ⅰ)求椭圆C 的方程;
(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为
2
3,求△AOB 面积的最大值。

练习1、(10浙江理)如图,直线y kx b =+与椭圆2
214
x y +=交于A 、B 两点,记ABC ∆的面积为S 。

(Ⅰ)求在0k =,01b <<的条件下,S 的最大值;
(Ⅱ)当12==,S AB 时,求直线AB 的方程.
练习2、(山东09文)已知椭圆的中心在坐标原点O ,焦点在x 轴上,椭圆的短轴端点和焦点所组成的四
边形为正方形,两准线间的距离为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线l过点P(0,2)且与椭圆相交于A、B两点,当ΔAOB面积取得最大值时,求直线l的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

面积最值问题
1题目- 已知四边形ABCD的对角线AC与BD相交于点O,如果三角形AOB 面积为4,三角形COD面积为9,那么,四边形ABCD面积最小值为多少?
变式1、题目条件不变,求三角形AOD和三角形BOC面积和的最小值。

分析、做任意四边形.过O点分别做AB.CD垂线.交AB于F点,CD为G点.当OG.OF 不重合时,产生三角形,所以此时四边形面积不是最小.所以当OG.OF重合时,面积最小.又因AB垂直FG垂直CD.所以AB平行于CD.所以此时四边形面积为1/2*(AB+CD)*(OF+OG)根据相似有AB*OG=OF*CD又有AB*OF=8 CD*OG=18得AB*OG=OF*CD=12代回......
奇迹出现喇......结果为25..................
略解、四边形ABCD,S△COB/S△AOB=CO/AO,S△COB=4*(CO/AO),S△AOD/S △COD=AO/CO,S△AOD=9*(AO/CO),四边形面积=S△AOB+S△COD+S△AOD+S △COB =4+9+S△AOD+S△COB =13+4(CO/AO)+9(AO/CO),设CO/AO=t, 四边形面积=13+4t+9/t ,4t+9/t≥2√(4t*9/t),4t+9/t≥12,(算术平均数大于等于几何平均数),当且仅当4t=9/t时,4t+9/t有最小值为12,所以四边形面积最小值为13+12=25。

解:设三角形AOD和三角形BOC面积分别为s1和s2,根据同高三角形面积的比等于底之比的性质,得s1:9=4:s2;则s1×s2=36,由于(s1-s2)2 ≥0所以(s1-s2)2 +4s1s2≥4s1s2因为(s1-s2)2 +4s1s2=(s1+s2)2所以(s1+s2)2≥4s1s2即(s1+s2)2≥4×36,又s1+s2 >0
4 =12,即△AOD和△BOC面积之和的最小值为12..
所以s1+s2≥36
解答:
设△AOD面积为S1,△BOC面积为S2,由△AOB与△AOD等高,∴面积与底长成正比,得:4/S1=OB/OD.
同理:S2/9=OB/OD,∴4/S1=S2/9,S1·S2=36(1)
设S1+S2=k,S2=k-S1,(2)代入(1)得:S1(k-S1)-36=0,S1²-kS1+36=0,
由S1,S2是方程的实根,由Δ=k²-4×36≥0,得k≥12,由k=S1+S2最小,取k的最小值k=12,(面积最小)∴S1+S2=12∴S四边形min=4+9+12=25.
点评本题考点:此题主要考查了三角形面积的求法、不等式的性质等知识,需要识记的内容有:不等式的性质:a2+b2-2ab=(a-b)2≥0,即a2+b2≥2ab.(即算术平均数与几何平均数的关系)。

相关文档
最新文档