基本不等式与余弦定理综合求解三角形面积的最值探究知识讲解

合集下载

利用正余弦定理、基本不等式解决三角形面积的最值问题

利用正余弦定理、基本不等式解决三角形面积的最值问题

利用正余弦定理解决三角形面积的范围/最值问题题型一:已知一角和对边例1、△ABC中,角A,B,C的对边分别为a,b,c, 已知A=π3, a=2,求△ABC面积的取值范围.解法一:利用正弦定理、两角和的正弦公式、二倍角公式及辅助角公式,转化为三角函数求范围/最值.因为S=12bcsinA=√34bc=√34(asinA)2sinBsinC=4√33sinBsinC =4√3sinBsin(π+B)=4√3(√3sinBcosB+1sin2B) =sin2B−√3cos2B+√3=2√3sin (2B−π6)+√3又∵A=π3∴B∈(0,2π3) ∴2B−π6∈(−π6,7π6) ∴sin (2B−π6)∈(−12,1]因此,S∈(0,√3].解法二:利用余弦定理和基本不等式,进而求范围/最值.因为S=12bcsinA=√34bc由余弦定理cosA=b 2+c2−a22bc=12得b2+c2−a2=bc又b2+c2≥2bc(当且仅当b=c时取等号),故b2+c2−a2=bc≥2bc−a2,即bc≤a2=4故S=√34bc≤√3. 又S>0, 从而S∈(0,√3].解法三:借助三角形的外接圆进行观察,进而求范围/最值.A'由左图可知,在A靠近B、C的过程中,S逐渐变小;A 当A趋近B、C时,S趋近于0;当A运动到A'位置时,S取最大值.B C (此时△ABC为等边三角形)变式:锐角△ABC中,角A,B,C的对边分别为a,b,c, 已知A=π3, a=2,求△ABC面积的取值范围.解法一:由例1知S=2√33sin (2B−π6)+√33又∵A =π3且△ABC 为锐角三角形 ∴B ∈(π6,π2) ∴2B −π∈(π6,5π6)∴sin (2B −π6)∈(12,1] 因此,S ∈(2√33,√3]. 解法二:借助三角形的外接圆进行观察,进而求范围/最值. A ' 如图,AC ⊥BC 时AC =2√33,S=12×2×2√33=2√33;A 当A 运动到A '位置时,S 取最大值√3.(此时△ABC 为等边三角形)B DC 因此,S ∈(2√33,√3]. 题型二:已知一角和邻边例2、 锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c , 已知A =π3, b =2,求△ABC 面积 的取值范围.解法一:利用正弦定理及两角和的正弦公式,转化为三角函数求范围/最值.因为S =12bcsinA =√32c =√32bsinBsinC =√3sinCsinB =√3sin(π3+B)sinB=3√32+12sinB sinB =√3(√32tanB +12)=32tanB +√32又∵A =π3且△ABC 为锐角三角形 ∴B ∈(π6,π2) ∴tanB ∈(√33,+∞], 1tanB ∈(0,√3) 因此,S ∈(√32,2√3).解法二:寻找临界位置(直角三角形)C 如图, 当点B 在B 1位置时∠CB 1A =90°,AB 1=1,S =√32; 当点B 在B 2位置时∠ACB 2=90°,B 2C=2√3,S =2√3;A B 1 B B 2 显然点B 位于B 1与B 2之间, 故S ∈(√32,2√3).巩固练习1、△ABC 中,角A,B,C 的对边分别为a,b,c ,且sin 2B−C 2+sinBsinC =34.(1)求角A ;(2)若a =4,且△ABC 为锐角三角形,求△ABC 面积的取值范围; (3)若c =4,且△ABC 为锐角三角形,求△ABC 面积的取值范围.2、△ABC 中,角A,B,C 的对边分别为a,b,c .且√3asinAcosB −bcos 2A +b =0. (1)求角B ;(2)若b =6,求BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的最小值; (3)若b =2√3,求△ABC 面积的最大值. 3、设双曲线x 2−y 23=1的左、右焦点分别为F 1、F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是 4、锐角△ABC 的内角A,B,C 的对边分别为a,b,c .已知sin A+C 5=bsinA a, BA ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =2√2c , 则△ABC 面积的取值范围是( ) A.(13,43) B.(√3,4√33) C.(√3,2√3) D.(1,2)参考答案 1. (1)A =π3;(2) (8√33,4√3];(3)( 2√3,8√3)2. (1)B =2π3;(2)﹣6;(3) √33. (2√7,8)4. B。

基本不等式三角形面积最大值

基本不等式三角形面积最大值

基本不等式三角形面积最大值
得嘞,咱今儿聊点实打实的,就说这三角形面积的最大值跟基本不等式的关系。

咱知道,三角形面积跟底和高有关,面积公式就是底乘以高再除以二。

但咱今儿不这么直接来,咱得从基本不等式这儿找找门道。

基本不等式,那就是个好东西,它告诉咱两数乘积在什么时候最大。

咱把三角形的底和高看成两个数,那面积不就是这俩数的乘积再除以二么?
那咱就说了,要让三角形面积最大,底和高的乘积就得最大。

这时候基本不等式就派上用场了,它告诉咱两数之和定,乘积有最大值,那两数得相等。

也就是说,咱这三角形要是底和高相等,那面积就最大了。

这道理简单明了,跟咱平时说的“等底等高,面积最大”一个意思。

但咱也得明白,这只是理论上的最大值,实际中还得看条件。

比如说,给定了周长或者某个角的大小,那底和高就不能随意取了,得根据条件来。

但不管咋说,基本不等式给咱指了条明路,让咱知道三角形面积最大的时候是个啥情况。

这就是咱今天聊的,三角形面积的最大值与基本不等式的关系,简单明了,没毛病。

基本不等式解决解三角形面积最值问题

基本不等式解决解三角形面积最值问题

基本不等式解决解三角形面积最值问题1.引言解决三角形面积最值问题是数学中的经典问题之一,而基本不等式是解决这类问题的重要工具。

本文将介绍基本不等式的概念和基本性质,并通过实例演示如何利用基本不等式解决解三角形面积最值问题。

2.基本不等式定义三角形的基本不等式基本不等式是指数学中一类带有不等号的基本关系式,其中最常见的就是,即三边关系式的不等式形式。

3.三角形的基本不等式对于任意三角形A BC,其三边长度分别为a、b、c,我们有以下基本不等式成立:三角不等式-:$a+b>c$,$b+c>a$,$c+a>b$角边不等式-:对于锐角三角形,有$a>b>c$,$si nA>s in B>s in C$,$c os A<co sB<c os C$,$tg A>tg B>tg C$;对于钝角三角形,有$a<b<c$,$s in A<si nB<s in C$,$co sA>c os B>co sC$,$tg A<tg B<tg C$4.利用三角形的基本不等式求解面积最值问题下面通过具体实例,演示如何利用三角形的基本不等式求解解三角形面积最值问题。

问题:求解一个等边三角形的最大面积。

解答:对于等边三角形A BC,三边长度均相等,记为$a$。

根据基本不等式,我们有$a+a>a$,即$2a>a$,所以$a>0$。

进一步,我们利用三角形的面积公式$S=\fr ac{1}{2}\cd o ta\c do th$,其中$h$为等边三角形的高,可以根据勾股定理求解,得$h=\sq rt{a^2-(\fr ac{a}{2})^2}=\fr ac{a\s qr t{3}}{2}$。

将$h$代入面积公式得$S=\fr ac{1}{2}\cd o ta\c do t\fr ac{a\s qr t{3}}{2}=\fra c{a^2\s qr t{3}}{4}$。

解三角形中的最值与取值范围问题课件-高三数学一轮复习

解三角形中的最值与取值范围问题课件-高三数学一轮复习
A__x001B_2_x001B_ 的取值范围.
【解析】 设∠ADB = θ ,由题意可知0 < θ <
π
.
2
在△ ABD中,由余弦定理得
AB2 = 22 + ( 3)2 −2 × 2 × 3cos θ = 7 − 4
在△ ACD中,∠ADC = θ +
2
2
2
3cos θ .
π
,由余弦定理得
2
AC = 2 + 1 − 2 × 2 × 1 × cos(θ +
2
0<A<
sin A+sin B
.又sin C
sin C
=
3
1
a+b
cos A + sin A,所以
2
2
c
= 3sin A + cos A =

,所以当A
3
=
=
2 3
3
(sin A + cos
3
2
π
2sin(A + ),又
6
π
a+b
时, 取得最大值,为2.
3
c
由余弦定理得16 = a2 + b2 − ab ≥
=
4 3
.
3
16 = a2 + b2 − ab ≥ 2ab − ab = ab,当且仅当a = b = 4时,等
号成立,即ab ≤ 16,所以△ ABC面积的最大值
1
π
Smax = × 16sin = 4 3.
2
3
a+b
由正弦定理得
c
C

sin B =

应用基本不等式,破解三角形最值

应用基本不等式,破解三角形最值

2024年3月上半月㊀学习指导㊀㊀㊀㊀应用基本不等式,破解三角形最值◉河南省固始县高级中学㊀沈玉洁㊀㊀利用基本不等式破解三角形中的角㊁边㊁周长㊁面积以及相应代数式等的最值及其综合应用问题,一直是高考命题中的一个重点与难点,交汇点多,综合性强,难度较大,灵活多样,备受各方关注.本文中结合实例,合理通过基本不等式的巧妙放缩,得以确定相应的最值.1角的最值问题利用基本不等式求解三角形中角的最值问题,是高考的一个考点.解决这类问题的关键是,利用正㊁余弦定理及基本不等式求出三角形中相应内角的某一三角函数值的取值范围或进一步利用三角函数的单调性求出角的最值等.例1㊀在әA B C 中,已知0<A <π2,0<B <π2,2s i n A =c o s (A +B )s i n B ,则t a n A 的最大值为.解析:由2s i n A =c o s (A +B )s i n B =-c o s C s i n B 及正弦定理和余弦定理,可得2a =-a 2+b 2-c22a bˑb ,化简可得5a 2+b 2=c 2.而t a n 2A =s i n 2A c o s 2A =1c o s 2A-1,又A 为锐角,可得c o s A >0,t a n A >0,因此只要求出c o s A 的最小值,就可求得t a n A 的最大值.结合基本不等式,利用余弦定理有c o s A =b 2+c 2-a 22b c =3b 2+2c 25b c ȡ23b 2ˑ2c 25b c =265,当且仅当3b 2=2c2,即c =62b 时等号成立,所以t a n 2A =1c o s 2A -1ɤ1(265)2-1=124,解得t a n A ɤ612,则t a n A 的最大值为612.点评:解决本题的关键是利用正弦定理㊁余弦定理化角为边的关系式,并结合基本不等式与余弦定理求出角A 的余弦值的取值范围,然后利用三角关系式的变形与转化,以及不等式的性质来确定角A 的正切值的平方的最值,进而获解.2边的最值问题求解三角形中边(或对应的线段长度等)的最值问题是高考的一个基本考点,解决这类问题的关键是利用余弦定理表示出所要求的边,然后利用基本不等式或三角形的三边关系等条件求出边的最值.例2㊀在әA B C 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3a c o s C -a s i n C =3b .(1)求角A 的大小;(2)若D 为B C 的中点,且A D =2,求a 的最大值.解析:(1)由3a c o s C -a s i n C =3b ,结合正弦定理,可得3s i n A c o s C -s i n A s i n C =3s i n B =3s i n (A +C ),整理可得-s i n A s i n C =3c o s A s i n C ,即t a n A =-3.又A ɪ(0,π),所以A =2π3.(2)由于D 为B C 的中点,可得2A D ң=A B ң+A C ң,式子两边同时平方,有4A D ң2=AB ң2+2A Bң A C ң+A C ң2,又A D =2,所以16=c 2+b 2+2b c c o s A =c 2+b 2-b c ,即b 2+c 2=16+b c .而结合余弦定理,可得a 2=b 2+c 2-2b c c o s A =b 2+c 2+b c =16+2b c .由基本不等式,可得2b c ɤb 2+c 2=16+b c ,解得b c ɤ16,当且仅当b =c 时等号成立,所以2b c +16ɤ48,即a 2=16+2b c ɤ48,解得a ɤ43,当且仅当b =c ,即әA B C为等腰三角形时,等号成立.所以a 的最大值为43.点评:利用平面向量的线性关系的两边平方处理以及余弦定理的应用,用b 2+c 2及b c 的线性关系式表示出a 2是解决本题的关键,同时注意利用基本不等式来合理放缩b 2+c 2与b c 之间的不等关系,为确定边的最值奠定基础.3三角形周长的最值问题三角形周长的最值问题是高考的一个热点与常见题型,这类问题一般可以求出一条边(或已知一边),然后利用余弦定理表示出另两条边满足的关系式,最后利用基本不等式求出周长的最值.例3㊀在әA B C 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知c o s B a b +c o s C a c +2c o s Ab c=0.54学习指导2024年3月上半月㊀㊀㊀(1)求A ;(2)若a =23,求әA B C 周长的取值范围.解析:(1)由c o s B a b +c o s C a c +2c o s Ab c=0及正弦定理,可得c o s B s i n A s i n B +c o s C s i n A s i n C +2c o s A s i n B s i n C=0.整理得s i n C c o s B +s i n B c o s C +2s i n A c o s A =0,即s i n (B +C )=-2s i n A c o s A .在әA B C 中,s i n (B +C )=s i n A ʂ0,所以可得c o s A =-12,而A ɪ(0,π),可得A =2π3.(2)由(1)及余弦定理可得a 2=b 2+c 2-2b c c o s A =(b +c )2-2b c +b c =(b +c )2-b c ,合理变形并结合基本不等式,可得(b +c )2=a 2+b c ɤa 2+(b +c2)2,当且仅当b =c 时等号成立,所以(b +c )2ɤ43a 2=43ˑ(23)2=16,解得b +c ɤ4.又利用三角形的基本性质有b +c >a =23,即b +c ɪ(23,4].所以әA B C 周长的取值范围为(43,4+23].点评:涉及三角形周长的最值问题,经常在已知或已求得其中一边的基础上,通过另外两边之和的最值转化来综合,而这时往往需要借助基本不等式来合理放缩与应用,同时也离不开三角形的基本性质等.4三角形面积的最值问题三角形面积的最值问题一直是高考命题的一个热点,解决这类问题的关键是找出两边(这两边的夹角往往已知或可求)之积满足的不等关系式,借助基本不等式合理放缩,再利用三角形面积公式解决问题.例4㊀在әA B C 中,D ,E 分别是线段A C ,B D 的中点,øB A C =120ʎ,A E =4,则әA B C 面积的最大值为.(323)解析:略.点评:解决本题的关键是利用余弦定理,或利用平面向量中的线性运算,或利用坐标运算等表示出b ,c 满足的关系式,然后利用基本不等式求出b c 满足的不等关系,最后利用三角形面积公式解决问题.5涉及角或边的代数式的最值问题关于三角形中的边长或角的代数式的最值问题是新课标高考的一个新趋向,创新新颖,变化多端,解决这类问题的关键是消元 消边或消角,对元素进行统一化处理,然后利用基本不等式求出最值即可.例5㊀记әA B C 的内角A ,B ,C 的对边分别为a ,b ,c ,已知c o s A 1+s i n A =s i n 2B1+c o s 2B.(1)若C =2π3,求B ;(2)求a 2+b 2c2的最小值.解析:(1)利用二倍角公式,可得c o s A1+s i n A=s i n 2B 1+c o s 2B =2s i n B c o s B 2c o s 2B =s i n Bc o s B ,则有s i n B =c o s A c o s B -s i n A s i n B =c o s (A +B )=-c o s C =-c o s 2π3=12,而0<B <π3,所以B =π6.(2)由(1)可得-c o s C =s i n B >0,则知c o s C <0,则有C ɪ(π2,π),于是有B =C -π2,可得s i n A =s i n (B +C )=s i n (2C -π2)=-c o s 2C .结合基本不等式,利用正弦定理可得㊀㊀㊀㊀a 2+b 2c 2=s i n 2A +s i n 2Bs i n 2C=c o s 22C +c o s 2C s i n 2C=(1-2s i n 2C )2+(1-s i n 2C )s i n 2C=4s i n 4C -5s i n 2C +2s i n 2C=4s i n 2C +2s i n 2C-5ȡ24s i n 2C ˑ2s i n 2C -5=42-5,当且仅当4s i n 2C =2s i n 2C ,即s i n C =142时,等号成立.所以a 2+b 2c 2的最小值为42-5.点评:解决本题中涉及边的代数式的最值问题的关键在于利用正弦定理化边为角,结合诱导公式与二倍角公式的转化,综合三角关系式的恒等变形,利用基本不等式来确定相应的最值问题.当然,除了巧妙利用基本不等式的放缩来确定三角形中的角㊁边㊁周长㊁面积以及相应的代数式等的最值及其综合应用,还可以利用平面几何图形的直观性质㊁三角函数的有界性㊁函数与方程的基本性质以及导数等相关知识来解决.而这当中基本不等式的放缩与应用是最简单有效的一种方法,也是最常见的,要结合问题的实质加以合理转化,巧妙构建 一正㊁二定㊁三相等 的条件,为利用基本不等式来处理三角形最值问题提供条件.Z64。

解三角形中的最值、范围问题--高考数学【解析版】

解三角形中的最值、范围问题--高考数学【解析版】

专题25 解三角形中的最值、范围问题近几年高考对解三角形问题考查,大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式.与平面几何相结合的问题,要注重几何图形的特点的利用.由于新教材将正弦定理、余弦定理列入平面向量的应用,与平面向量相结合的命题将会出现.另外,“结构不良问题”作为实验,给予考生充分的选择空间,充分考查学生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象.同时,也增大了解题的难度.【重点知识回眸】(一) 余弦定理变形应用:变式()()2221cos a b c bc A =+-+在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值(二)三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:sin sin cos cos a b A B A B A B >⇔>⇔>⇒<其中由cos cos A B A B >⇔<利用的是余弦函数单调性,而sin sin A B A B >⇔>仅在一个三角形内有效.(三)解三角形中处理不等关系的几种方法 1.三角形中的最值、范围问题的解题策略和步骤(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值 (3)①定基本量:根据题意或几何图形厘清三角形中边、角的关系,利用正、余弦定理求出相关的边、角或边角关系,并选择相关的边、角作为基本量,确定基本量的范围.②构建函数:根据正、余弦定理或三角恒等变换将待求范围的变量用关于基本量的函数解析式表示.③求最值:利用基本不等式或函数的单调性等求最值. 2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解,已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.【典型考题解析】热点一 三角形角(函数值)相关的最值(范围)问题【典例1】(2021·山西·祁县中学高三阶段练习(理))在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若sin a c B =,则tan A 的最大值为( ) A .1 B .32C .43D .54【答案】C【分析】先由正弦定理化简得111tan tan C B+=,结合基本不等式求得tan tan 4B C ≥,再由正切和角公式求解即可.【详解】在ABC 中,sin a c B =,所以sin sin sin A C B =,又()sin sin A B C =+,整理得:sin cos cos sin sin sin B C B C B C +=,又sin sin 0B C ≠,得到111tan tan C B+=,因为角A 、B 、C 为锐角,故tan A 、tan B 、tan C 均为正数, 故112tan tan B C≥整理得tan tan 4B C ≥,当且仅当tan tan 2B C ==时等号成立,此时tan tan tan tan 1tan tan()11tan tan 1tan tan 1tan tan B C B CA B C B C B C B C+⋅=-+=-=-=---⋅,当tan tan B C 取最小值时,1tan tan B C 取最大值,11tan tan B C-取最小值,故111tan tan B C-⋅的最大值为43,即当tan tan 2B C ==时,tan A 的最大值为43.故选:C .【典例2】(2021·河南·高三开学考试(文))ABC 的内角,,A B C 的对边分别为,,a b c ,若sin tan sin sin A A B C =,则cos A 的最小值为________. 【答案】23【分析】先根据题目条件和正弦定理得到2cos a A bc=,结合cos A 的余弦定理表达式,得到,,a b c 的关系,利用此关系求cos A 的最小值.【详解】由条件可知,2sin cos sin sin A A B C=,由正弦定理得2cos a A bc =,由余弦定理得,2222cos 2b c a a A bc bc +-==,化简可得2223a b c =+.所以222222223cos 2333b c b c b c bc A bc bc bc ++-+==≥=,当且仅当b c =时取得等号,cos A 取得最小值23. 故答案为:23【典例3】(2020·浙江·高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 30b A a =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围. 【答案】(I )3B π=;(II )3132⎤+⎥⎝⎦ 【解析】 【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B 的大小;(II )方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A 的三角函数式,然后由三角形为锐角三角形确定角A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围. 【详解】 (I )[方法一]:余弦定理由2sin 3b A a =,得222233sin 4a a A b ==⎝⎭,即22231cos 4a A b -=.结合余弦定222cos 2b c a A bc +-=,∴2222223124b c a a bc b ⎛⎫+--= ⎪⎝⎭,即224442222222242223b c b c a b c b a c a a c ----++=, 即444222222220a b c a c a b b c +++--=, 即44422222222222a b c a c a b b c a c +++--=,即()()22222a c b ac +-=,∵ABC 为锐角三角形,∴2220a c b +->, ∴222a c b ac +-=,所以2221cos 22a c b B ac +-==,又B 为ABC 的一个内角,故3B π=.[方法二]【最优解】:正弦定理边化角由2sin 3b A a =,结合正弦定理可得:32sin sin 3,sin B A A B =∴=ABC 为锐角三角形,故3B π=.(II )[方法一]:余弦定理基本不等式 因为3B π=,并利用余弦定理整理得222b a c ac =+-,即223()ac a c b =+-.结合22a c ac +⎛⎫≤ ⎪⎝⎭,得2a c b +≤. 由临界状态(不妨取2A π=)可知3a cb+= 而ABC 为锐角三角形,所以3a cb+> 由余弦定理得2222221cos cos cos 222b c a a b c A B C bc ab+-+-++=++, 222b a c ac =+-,代入化简得1cos cos cos 12a c A B C b +⎛⎫++=+⎪⎝⎭ 故cos cos cos A B C ++的取值范围是3132⎤+⎥⎝⎦.[方法二]【最优解】:恒等变换三角函数性质 结合(1)的结论有: 12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭131cos cos 22A A A =-+311cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则3sin 6A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,1313sin 622A π⎤+⎛⎫++∈⎥ ⎪⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是3132⎤+⎥⎝⎦.【整体点评】(I )的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得222a c b ac +-=,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II )的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解. 【总结提升】求角(函数值)的最值(范围)问题一般先将边转化为角表示,再根据三角恒等变换及三角形内角和定理转化为一个角的一个三角函数表示,然后求解. 热点二 三角形边(周长)相关的最值(范围)【典例4】(2018·北京·高考真题(文))若ABC 2223)a c b +-,且∠C 为钝角,则∠B =_________;ca的取值范围是_________. 【答案】 60 (2,)+∞ 【解析】 【分析】根据题干结合三角形面积公式及余弦定理可得tan 3B =3B π∠=;再利用()sin sin C A B =+,将问题转化为求函数()f A 的取值范围问题. 【详解】)22231sin 2ABC S a c b ac B ∆=+-=, 22223a c b ac +-∴=cos 3B =sin 3,cos 3B B B π∴∠=,则231sin cos sin sin 311322sin sin sin tan 2A A Ac C a A A A A π⎛⎫⎛⎫---⋅ ⎪ ⎪⎝⎭⎝⎭====+, C ∴∠为钝角,,036B A ππ∠=∴<∠<,)31tan ,3,tan A A ⎛∴∈∈+∞ ⎝⎭,故()2,ca∈+∞.故答案为3π,()2,+∞. 【典例5】(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________. 31##3-【解析】 【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++, 在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-++-===-+++++++ ()44233211m m ≥=-+⋅+, 当且仅当311m m +=+即31m =时,等号成立, 所以当ACAB取最小值时,31m =. 31.【典例6】(2018·江苏·高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【答案】9 【解析】 【详解】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c =++=,因此11444(4)()5529,c a c a a c a c a c a c a c+=++=++≥+⋅当且仅当23c a ==时取等号,则4a c +的最小值为9.【典例7】(2020·全国·高考真题(理))ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求ABC 周长的最大值. 【答案】(1)23π;(2)33+ 【解析】 【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果. 【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:3AC AB +≤AC AB =时取等号),ABC ∴周长323L AC AB BC =++≤+ABC ∴周长的最大值为33+[方法二]:正弦化角(通性通法) 设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知23sin sin sin a b cA B C===23(sin sin )b c B C +=+23sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦233α=≤当且仅当0α=,即6B C π==时,等号成立.此时ABC 周长的最大值为33+ [方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c .令13sin ,20,223b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin 3b c θθ+==23236πθ⎛⎫+≤ ⎪⎝⎭6C π=时,max ()23b c +=所以ABC 周长的最大值为323+ 【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值. 方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.【典例8】(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c+的最小值. 【答案】(1)π6;(2)425. 【解析】 【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B=++化成()cos sin A B B +=,再结合π02B <<,即可求出; (2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B +-,然后利用基本不等式即可解出. (1) 因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B B A B B B ===++,即()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=, 而π02B <<,所以π6B =;(2)由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<, 而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-. 所以222222222sin sin cos 21cos sin cos a b A B B Bc C B+++-==()2222222cos11cos 24cos 5285425cos cos B BB BB-+-==+-≥=. 当且仅当22cos B =222a b c +的最小值为425.【规律方法】求边(周长)的最值(范围)问题一般通过三角中的正、余弦定理将边转化为角的三角函数值,再结合角的范围求解,有时也可将角转化为边,利用均值不等式或函数最值求解. 热点三 求三角形面积的最值(范围)【典例9】(2023·山西大同·高三阶段练习)在ABC 中,角,,A B C 的对边分别为,,a b c ,且2cos 2b A a c =+,且2b =,则ABC 面积的最大值为___________. 3133【分析】利用余弦定理进行角化边后,结合基本不等式,三角形面积公式求解.【详解】由余弦定理,2cos 2b A a c =+可化为222222b c a b a c bc +-⋅=+,整理可得2224c a ac b ++==,由余弦定理2221cos 22a cb B ac +-==-,又(0,)B π∈,故23B π=,根据基本不等式22423a c ac ac ac ac =++≥+=,23a c ==取得等号,故133sin 243ABC S ac B ac ==≤,即ABC 面积的最大值为33. 故答案为:33. 【典例10】(2022·全国·高三专题练习)已知A ,B ,C 分别是椭圆22143x y +=上的三个动点,则ABC 面积最大值为_____________. 【答案】92##4.5【分析】作变换'2'3x x y y =⎧⎪⎨=⎪⎩之后椭圆变为圆,方程为224x y '+'=,A B C '''是圆的内接三角形,圆的内接三角形面积最大时为等边三角形,则ABC A B C S bS a'''=,求出A B C S ''',代入即可得出答案. 【详解】作变换'2''3x x y y y =⎧⎪⎨==⎪⎩之后椭圆变为圆,方程为224x y '+'=, A B C '''是圆的内接三角形,设A B C '''的半径为R ,设,,A B C '''所对应边长为,,a b c ''',所以 211sin 2sin 2sin sin 2sin sin sin 22A B C Sa b C R A R B C R A B C ''''''''''==⋅⋅⋅=⋅⋅'' 32sin sin sin 23A B C R ++⎛⎫≤ ⎝''⎪⎭',当且仅当3A B C π===时取等, 因为sin y x =在()0,π上为凸函数,则sin sin sin sin 33A B C A B C ''''+'+≤'++,3332222sin sin sin 3322sin 2sin 3334A B C A B C A B C SR R R R π'''++++⎛⎫'⎛⎫⎛⎫=≤==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭''''',当且仅当3A B C π===时取等, 所以圆的内接三角形面积最大时为等边三角形,因此2333343344A B C S R '''==⨯=,又因为ABC A B C S b S a '''=, ∴393322ABC A B C b SS a'''==⨯=. 故答案为:92.【典例11】(2019·全国·高考真题(理))ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【答案】(1) 3B π=;(2)33(). 【解析】 【分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABCSac B =⋅,又根据正弦定理和1c =得到ABCS 关于C 的函数,由于ABC 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABCS C 的值域.【详解】 (1)根据题意sin sin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sinsin 2A CB +=. 0<B π<,02AC π+<<因为故2A C B +=或者2A C B π++=,而根据题意A B C π++=,故2A CB π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=, 故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 33sin sin sin 222sin sin ABCC a A Sac B c B c B c C Cπ-=⋅=⋅=⋅22sincos cos sin 3321231333(sin cos )sin 3tan 38tan C CC C C ππππ--= 又因3,tan 62C C ππ<<>331338tan C << 33ABCS <<. 故ABCS的取值范围是33(【典例12】(2021·河北省曲阳县第一高级中学高三阶段练习)在ABC 中,内角,,A B C 的对边分别是,,a b c ,)sin 3cos b C a b C =-.(1)求角B 的大小;(2)若点D 满足=a AD cDC ,且||23BD =ABC 面积的最小值. 【答案】(1)π3B = (2)43【分析】(1)由正弦定理把边化为角,再结合三角恒等变换即可求解;(2)由题意得||||=a DC c AD ,进而利用三角面积可转化1sin ||21||sin 2⋅⋅⋅∠===⋅⋅⋅∠△△BCD ABD BC BD DBC DC S BC S AB AD AB BD ABD ,从而有sin sin ∠=∠DBC ABD ,再由面积公式与基本不等式求解即可(1)因为()sin 3cos b C a b C =-,所以()sin sin 3sin sin cos B C A B C =-. 因为sin sin()sin cos cos sin A B C B C B C =+=+,所以sin sin 3(sin cos cos sin sin cos )3cos sin =+-=B C B C B C B C B C . 因为sin 0C ≠, 所以tan 3B =. 又因为0πB <<, 所以π3B =.(2)因为=a AD cDC , 所以点D 在线段AC 上,且||||=a DC c AD . 因为1sin ||21||sin 2⋅⋅⋅∠===⋅⋅⋅∠△△BCDABDBC BD DBC DC S BC S AB AD AB BD ABD , 所以sin sin ∠=∠DBC ABD , 即BD 为ABC ∠的角平分线. 由(1)得π3B =, 所以π6ABD CBD ∠=∠=. 由ABC ABD BCD S S S =+△△△,得1π1π1πsin sin sin 232626ac a BD c BD =⋅+⋅,即2()4=+≥ac a c ac ,得16≥ac ,当且仅当a c =时,等号成立,11sin 16sin 432323=≥⨯=△ABC S ac ππ.故ABC 面积的最小值为43. 【规律方法】求三角形面积的最值(范围)的两种思路(1)将三角形面积表示为边或角的函数,再根据条件求范围.(2)若已知三角形的一个内角(不妨设为A),及其对边,则可根据余弦定理,利用基本不等式求bc 的最值从而求出三角形面积的最值.【精选精练】一、单选题1.(2022·上海市松江一中高三阶段练习)在ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边,B 是A 、C 的等差中项,则a c +与2b 的大小关系是( )A .2a c b +>B .2a c b +<C .2a c b +≥D .2a c b +≤【答案】D【分析】根据等差中项的性质及内角和的性质求出B ,再由余弦定理及基本不等式计算可得.【详解】解:依题意,在ABC 中B 是A 、C 的等差中项,所以2A+C =B , 又A C B π++=,所以3B π=,由余弦定理2222cos b a c ac B =+-()22222233a c ac a c ac ac a c ac =+-=++-=+-,又22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c =时取等号,所以2332a c ac +⎛⎫-≥- ⎪⎝⎭,所以()()()222213324a c a c ac a c a c +⎛⎫+-≥+-=+ ⎪⎝⎭,即()2214b ac ≥+,即()224b a c ≥+,所以2a c b +≤; 故选:D2.(2022·贵州贵阳·高三开学考试(理))已知ABC 的内角,,A B C 对应的边分别是,,a b c , 内角A 的角平分线交边BC 于D 点, 且 4=AD .若(2)cos cos 0b c A a C ++=, 则ABC 面积的最小值是( ) A .16 B .3C .64 D .643【答案】B【分析】利用正弦定理及诱导公式可得23A π=,然后利用三角形面积公式及基本不等式即得. 【详解】∵(2)cos cos 0b c A a C ++=, ∴2sin cos sin cos sin cos 0B A C A A C ++=, 即()2sin cos sin 2sin cos sin 0B A C A B A B ++=+=, 又()0,B π∈,sin 0B >,∴2cos 10A +=,即1cos 2A =-,又()0,A π∈,∴23A π=, 由题可知ABCABDACDS SS=+,4=AD ,所以1211sin4sin 4sin 232323bc c b πππ=⨯+⨯,即()4bc b c =+, 又()48bc b c bc =+≥,即64bc ≥, 当且仅当b c =取等号,所以1213sin 641632322ABCSbc π=≥⨯⨯=. 故选:B.3.(2022·河南·郑州四中高三阶段练习(理))在等腰ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则ABC 的面积的最大值是( ) A .6 B .12C .18D .24【答案】A【分析】利用余弦定理得到边长的关系式,然后结合勾股定理和基本不等式即可求得ABC 面积的最大值. 【详解】设2AB AC m ==,2BC n =,由于ADB CDB π∠=-∠,在ABD △和BCD △中应用余弦定理可得:2222949466m m m n m m+-+-=-,整理可得:2292m n =-,结合勾股定理可得ABC 的面积:22222111()2434222S BC AC BC n m n n n =⨯-=⨯⨯-=- 222243(43)62n n n n +-=-≤⨯=,当且仅当22n =时等号成立. 则ABC 面积的最大值为6. 故选:A.4.(2023·全国·高三专题练习)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒ ,∠ABC 的平分线交AC 于点D ,且BD =1,则4a c + 的最小值为( ) A .8 B .9 C .10 D .7【答案】B【分析】根据三角形面积可得到111a c +=,将4a c +变为11(4)()a c a c++,展开后利用基本不等式,即可求得答案.【详解】由题意得111sin120sin 60sin60222ac a c =+ ,即ac a c =+ ,得111a c+=,得 114(4)()a c a c a c +=++45c a a c =++≥425459c aa c⋅+=+=, 当且仅当4c aa c=,即23c a ==时,取等号, 故选:B . 二、多选题5.(2020·全国·高三专题练习)如图,ABC 的内角,,A B C 所对的边分别为),,3cos cos 2sin a b c a C c A b B +=,且3CAB π∠=.若D 是ABC 外一点,1,3DC AD ==,则下列说法中正确的是( )A .ABC 的内角3B π= B .ABC 的内角3C π=C .四边形ABCD 533 D .四边形ABCD 面积无最大值 【答案】AB【分析】根据正弦定理进行边化角求角B ,从而判断选项A ,B 正确;把四边形ABCD 的面积表示成ADC ∠的三角函数,从而根据三角函数求最值 【详解】因为()3cos cos 2sin a C c A b B +=,所以由正弦定理,得()23sin cos sin cos 2sin A C C A B +=,所以()23sin 2sin A C B +=,又因为A B C π++=,所以()sin sin A C B +=,所以23sin 2sin B B = 因为sin 0,B ≠所以3sin 2B =, 又因为3CAB π∠=,所以20,3B π⎛⎫∈ ⎪⎝⎭, 所以3B π=,所以3C A B ππ=--=,因此A ,B 正确;四边形ABCD 面积等于231sin 42ABC ACDS SAC AD DC ADC +=+⋅⋅∠()22312cos sin 42AD DC AD DC ADC AD DC ADC =⨯+-⋅⋅∠+⋅⋅∠ ()31916cos 3sin 42ADC ADC =⨯+-⋅∠+⨯∠ 533sin 23ADC π⎛⎫=+∠- ⎪⎝⎭, 所以当32ADC ππ∠-=即sin 13ADC π⎛⎫∠-= ⎪⎝⎭时,ABCACDSS+取最大值5332+, 所以四边形ABCD 面积的最大值为5332+, 因此C ,D 错误 故选:AB6.(2022·云南·高三阶段练习)如图,在长方体1111ABCD A B C D -中,4AB AD ==,13AA =,点M 满足12A M MA =,点P 在底面ABCD 的边界及其内部运动,且满足4AMP π∠≤,则下列结论正确的是( )A .点P 所在区域面积为4πB .线段1PC 17C .有且仅有一个点P 使得1MP PC ⊥D .四面体11P A CD -的体积取值范围为[6,8]【答案】AD【分析】A 选项,由1MA AP ==时,MP 与底面ABCD 的所成角4πθ=求解判断; B 选项,若PC 取最小值时,则线段1PC 长度最小,由A ,P ,C 三点共线求解判断; C 选项,由点P 与点F 重合,由点P 与点E 重合,利用余弦定理求解判断;,D 选项,由点P 位于AE 上时,此时点P 到平面11A CD 的距离最大,当P与点F 重合时,此时点P 到平面11A CD 的距离最小求解判断. 【详解】如图所示:A 选项,当1MA AP ==时,MP 与底面ABCD 的所成角4πθ=,故点P 所在区域为以A 为圆心,1为半径的圆在正方形ABCD 内部部分(包含边界弧长),即圆的14,面积为211144π⨯=π,A 正确;B 选项,当PC 取最小值时,线段1PC 长度最小,由三角形两边之和大于第三边可知:当A ,P ,C 三点共线时,PC 取得最小值,即min ||421PC =-,则221min (421)34282PC =-+=-,B 错误; C 选项,不妨点P 与点F 重合,此时2221134PC FB BC C C =++=,由余弦定理得:1cos MFC ∠=22211123436022234MF C F C M MF C F +-+-==⋅⨯⨯,则12MFC π∠=,同理可得:12MEC π∠=,故多于一个点P 使得1MP PC ⊥,C 错误;D 选项,当点P 位于AE 上时,此时点P 到平面11A CD 的距离最大,最大距离341255AH ⨯==,此时四面体11P A CD -的体积为11111124583325A CD S AH ⋅=⨯⨯⨯⨯=△,当P 与点F 重合时,此时点P 到平面11A CD 的距离最小,最小距离为FK ,因为BFK BAH ∽△△,所以34FK AH =,所以最小体积为3864⨯=,故四面体11P A CD -的体积取值范围为[]6,8 ,D 正确, 故选:AD . 三、填空题7.(2022·贵州遵义·高三开学考试(文))在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin sin 2B Cb a B +=,2a =△ABC 周长的最大值为________.【答案】32【分析】根据正弦定理,结合三角恒等变换可得3A π=,再根据余弦定理与基本不等式求解周长最大值即可.【详解】由正弦定理,sin sin 2B C b a B +=即sin sin sin sin 22A B A B π⎛⎫-= ⎪⎝⎭,又sin 0B ≠,故sin sin 22A A π⎛⎫-= ⎪⎝⎭,即cossin 2AA =. 由二倍角公式有cos2sin cos 222A A A =,因为0,22A π⎛⎫∈ ⎪⎝⎭,故cos 02A ≠,所以1sin 22A =,所以26A π=,即3A π=.由余弦定理22222cos 3b c bc π=+-,结合基本不等式有()()2222332b c b c bc b c +⎛⎫=+-≥+-⨯ ⎪⎝⎭,即()2124b c +≤,()28b c +≤,故22b c +≤,当且仅当2b c ==时取等号. 故△ABC 周长的最大值为a b c ++的最大值为22232+=. 故答案为:328.(2021·江西南昌·高三阶段练习)已知ABC 的内角,,A B C 所对应的边分别为,,a b c ,且满足2224,4c c a b ==+, 则ABC 的面积取得最大值时,cos C =______.【答案】33434-【分析】根据余弦定理结合同角三角函数的关系可得sin C ,进而表达出ABCS ,结合基本不等式求解ABCS的最值,进而求得cos C 即可.【详解】由余弦定理,()222222243cos 222a b a b a b c b C ab ab a+-++-===-,又()0,C π∈,故2222349sin 1cos 122b a b C C a a -⎛⎫=-=--=⎪⎝⎭,故 2222114949sin 2224ABCa b b a b Sab C ab a --===. 又222416a b c +==,故()2222416496425564254420ABCb b b b b b b S----===222564258405b b +-≤=,当且仅当22256425b b =-,即425b =时取等号. 此时2322721642525a =-⨯=,即4175a =. 故ABC 的面积取得最大值时,42333345cos 23441725b C a ⨯=-=-=-⨯. 故答案为:33434-【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方9.(2021·河南·高三开学考试(理))ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若sin tan sin sin A A B C =,则sin A 的最大值为________,此时cos B =________. 【答案】5366【分析】由已知条件结合正余弦定理可得2223b c a +=,再利用余弦定理结合基本不等式可求出cos A 的最小值,从而可求出sin A 的最大值,则可求出cos2B ,再利用二倍角公式可求出cos B . 【详解】由条件可知,2sin cos sin sin AA B C=,由正弦定理得2cos a A bc =,由余弦定理得,2222cos 2b c a a A bc bc+-==,则2223a b c =+. 所以222222223cos 2333b c b c b c bc A bc bc bc ++-+==≥=, 当且仅当b c =时取得等号,cos A 取得最小值23. 因为()0,A π∈, 所以25sin 1cos 3A A =-≤,当且仅当b c =时取得等号, 故sin A 的最大值为53. 此时B C =,所以2cos2cos()cos 3B A A π=-=-=-,所以222cos 13B -=-,因为角B 为锐角, 所以6cos 6B =. 故答案为:53,66 10.(2022·全国·高三专题练习)ABC 的外接圆半径为1,角A B C ,,的对边分别为a b c ,,,若cos cos 3a B b A +=0CA CB ⋅<,则C ∠=________;32a b +的最大值为_________【答案】23π27 【分析】由余弦定理求得c ,由向量数量积可得C 为锐角,再由正弦定理结合外接圆半径可求得C ,用正弦定理把32a b +表示为A 的三角函数,利用两角和与差的正弦公式变形化函数为一个角的一个三角函数形式,然后利用正弦函数性质得最大值.【详解】222222cos cos 322a c b c b a a B b A a b c ac cb+-+-+=⋅+⋅==,又22sin c R C ==,所以3sin 2C =, 0CA CB ⋅<,所以C 是钝角,所以23C π=, 由2sin sin a bA B==得2sin a A =,2sin b B =, 326sin 4sin 6sin 4sin()3a b A B A A π+=+=+-316sin 4(cos sin )4sin 23cos 22A A A A A =+-=+2327(sin cos )77A A =+, 设2cos 7ϕ=,3sin 7ϕ=(ϕ为锐角),则3227sin()a b A ϕ+=+,由23C π=得03A π<<,31sin 27ϕ=>,ϕ为锐角,则62ππϕ<<, 所以2A πϕ=-时,32a b +取得最大值27.故答案为:23π;27. 四、解答题11.(2022·湖北·襄阳五中高三阶段练习)在ABC 中,4tan ,3CAB D ∠=为BC 上一点,32=AD(1)若D 为BC 的中点,32BC =ABC 的面积;(2)若45DAB ∠=︒,求ABC 的面积的最小值. 【答案】(1)9 (2)92【分析】(1)根据中线向量公式可得,b c 关系,结合余弦定理可求452bc =,从而可求面积. (2)根据不同三角形的面积关系可得34355b c bc +=,利用基本不等式可求bc 的最小值,从而可求面积的最小值. (1)因为D 为BC 的中点,所以()12AD AB AC =+, ()222124AD AB AC AB AC ∴=++⋅. 记角,,A B C 的对边分别为,,a b c , 因为4tan 3A =,故A 为锐角,所以43sin ,cos 55CAB CAB ∠∠==, 则221318245c b bc ⎛⎫=++⋅ ⎪⎝⎭. 又由余弦定理得:2231825c b bc =+-⋅两式联立解得:452bc =,所以11454sin 92225ABCS bc CAB ∠==⨯⨯=. (2)445,tan 3DAB A ∠==,()41113tan tan ,sin 475213CAD CAB DAB CAD ∠∠∠∠-∴=-===+, 1132sin 32sin 22ABCCAD BADSSSb CADc DAB ∠∠=+=⋅+⋅ 1sin 2bc CAB ∠=, 即34355b c bc +=, 即34345323,5554b c bc b c bc +=≥⋅≥(当且仅当153,22b c ==时取得最小值)所以114549sin 22452ABCSbc CAB ∠=≥⨯⨯=.12.(2022·广东广州·高三开学考试)在ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c ,且满足()2a b b c +=.(1)求证:2C B =; (2)求4cos a bb B+的最小值. 【答案】(1)证明见解析 (2)43【分析】(1)由已知及余弦定理可推出2cos b a b C =-,利用正弦定理边化角结合两角和差的正弦公式化简可得()sin sin B C B =-,即可证明结论; (2)利用(1)的结论将4cos a b b B +边化角,结合三角恒等变换可得43=4cos cos cos a b B b B B++,由基本不等式可求得答案. (1)证明:在ABC 中,由已知及余弦定理,得()2222cos a b b c a b ab C +==+-,即2cos b a b C =-,由正弦定理,得sin sin 2sin cos B A B C =-,又()πA B C =-+, 故()sin sin 2sin cos sin cos cos sin 2sin cos B B C B C B C B C B C =+-=+-cos sin sin cos B C B C =-()sin C B =-.∵()0sin sin B C B <=-,∴0πC B C <-<<, ∵()πB C B C +-=<,∴B C B =-,故2C B =. (2)由(1)2C B =得()30,πB C B +=∈,∴π0,3B ⎛⎫∈ ⎪⎝⎭,1cos ,12B ⎛⎫∈ ⎪⎝⎭,由(1)()12cos a b C =+,2C B =得()2522cos 1452cos 52cos 2cos cos cos cos B a b C B b B B B B+-+++===334cos 24cos 43cos cos B B B B =+≥⋅=, 当且仅当ππ0,63B ⎛⎫=∈ ⎪⎝⎭时等号成立, 所以当π6B =时,4cos a bb B+的最小值为43.13.(2022·广东·高三开学考试)已知锐角ABC 中,角A 、B 、C 所对边为a 、b 、c ,tan tan 33B C ++=(1)求角A ;(2)若4a =,求b c +的取值范围. 【答案】(1)π3A = (2)(43,8⎤⎦【分析】(1)利用两角和的正切公式及诱导公式计算可得;(2)利用正弦定理将边化角,再转化为关于B 的三角函数,根据B 的取值范围及正弦函数的性质计算可得. (1)解:因为tan tan 33tan tan B C B C++=,所以tan tan 33tan tan B C B C ++=,所以tan tan 3(tan tan 1)B C B C +=-,从而tan tan 31tan tan B CB C +=--, 即tan()3B C +=-,所以tan 3A =,因为(0,π)A ∈,所以π3A =. (2)解:因为4a =,π3A =,由正弦定理,有83sin sin sin 3b c a B C A ===所以83sin 3b B =,83832π833143sin sin cos sin 4cos sin 3333223c C B B B B B ⎛⎫⎛⎫==-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以π43sin 4cos 8sin 6b c B B B ⎛⎫+=+=+ ⎪⎝⎭,又因为ABC 为锐角三角形,所以π022ππ032B B ⎧<<⎪⎪⎨⎪<-<⎪⎩,即ππ62B <<,所以ππ2π363B <+<,所以3πsin 126B ⎛⎫<+≤ ⎪⎝⎭,从而b c +的取值范围为(43,8⎤⎦. 14.(2022·河南·高三开学考试(文))已知,,a b c 分别为ABC 的内角,,A B C 所对的边,且()()sin sin sin sin a c b A C B c B +--+=(1)求角A 的大小;(2)若23a =ABC 面积的最大值.【答案】(1)3π; (2)33.【分析】(1)由正弦定理化角为边,再利用余弦定理及特殊角的三角函数即得;(2)由余弦定理表示出,a b 关系,再由基本不等式得出ab 的最大值,从而可得面积最大值;或利用正弦定理边角互化,然后利用三角恒等变换及三角函数的性质即得. (1)在ABC 中,由题意及正弦定理得()()a c b a c b bc +--+=, 整理得222b c a bc +-=,由余弦定理得2221cos 222b c a bc A bc bc +-===, 因为0A π<<, 所以3A π=;(2)方法一:由(1)知,3A π=,又23a =,所以22122b c bc bc bc bc =+--=,所以12bc ,当且仅当23b c ==时,等号成立, 所以()max 113sin 1233222ABC Sbc A ==⨯⨯=; 方法二:由(1)知,3A π=,又23a =,所以由正弦定理,知234sin sin sin sin3a b c A B C π====, 所以4sin ,4sin b B c C ==, 所以13sin 8sin sin 43sin sin 22ABCSbc A B C B C ==⨯=, 又因为23B C π+=, 所以23143sin sin 43sin sin 43sin cos sin 322B C B B B B B π⎛⎫⎛⎫=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭31cos223sin222B B ⎛⎫-=+= ⎪ ⎪⎝⎭23sin 236B π⎛⎫-+ ⎪⎝⎭,因为23B C π+=,所以270,23666B B ππππ<<-<-<,所以当262B ππ-=,即3B π=时,ABC 的面积取得最大值,最大值为33.15.(2022·上海·模拟预测)在如图所示的五边形中,620AD BC AB ===,,O 为AB 中点,曲线CMD 上任一点到O 距离相等,角120DAB ABC ∠=∠=︒,P ,Q 关于OM 对称;(1)若点P 与点C 重合,求POB ∠的大小; (2)求五边形MQABP 面积S 的最大值, 【答案】(1)33arcsin 14(2)2874【分析】(1)利用余弦定理求出OC ,再利用正弦定理即可得出答案; (2)根据题意可得,QOMPOMAOQBOPS SSS==,则()2AOQQOMMQABP S SS=+五边形,设QOM POM α∠=∠=,则2AOQ BOP πα∠=∠=-,根据三角形的面积公式结合三角函数的性质即可得出答案.(1)解:若点P 与点C 重合,连接OC ,10,6,120OB BC BP ABC ===∠=︒,在OBP 中,2222cos 1003660196OC OB BP OB BP OBP =+-⋅∠=++=, 所以14OC =, 因为sin sin BC OCPOB OBP=∠∠,所以36sin 332sin 1414BC OBPPOB OC ⨯⋅∠∠===, 所以33arcsin14POB ∠=;(2)解:连接,,,QA PB OQ OP ,因为曲线CMD 上任一点到O 距离相等, 所以14OP OQ OM OC ====, 因为P ,Q 关于OM 对称, 所以,QOMPOMAOQBOPSSSS==,设QOM POM α∠=∠=,则2AOQ BOP πα∠=∠=-,则()2AOQQOMMQABP S SS=+五边形112sin sin 222OQ OA OQ OM παα⎡⎤⎛⎫=⋅⋅-+⋅ ⎪⎢⎥⎝⎭⎣⎦196sin 140cos αα=+()2874sin αϕ=+,其中5tan 7ϕ=, 当()sin 1αϕ+=时,MQABP S 五边形取得最大值2874, 所以五边形MQABP 面积S 的最大值为2874.16.(2022·广东·广州市真光中学高三开学考试)在平面四边形ABCD 中,30CBD ∠=,4BC =,23BD = (1)若ABD △为等边三角形,求ACD △的面积. (2)若60BAD ∠=,求AC 的最大值. 【答案】(1)3 (2)232+【分析】(1)利用余弦定理求出CD 的长,结合勾股定理可知90BDC ∠=,进而可求得ADC ∠的大小,利用三角形的面积公式可求得ACD △的面积;(2)设()0120ADB αα∠=<<,利用正弦定理可得出AD ,利用余弦定理可得出2AC 关于α的表达式,利用三角恒等变换结合正弦型函数的基本性质可求得AC 的最大值. (1)解:在BCD △中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅⋅∠. 即231612242342CD =+-⨯⨯⨯=,所以2CD =, 所以222BD CD BC +=,因此90BDC ∠=,因为ABD △为等边三角形,所以60ADB ∠=,23AD BD ==,所以150ADC ∠=.所以111sin 2323222ACD S AD CD ADC =⋅⋅⋅∠=⨯⨯⨯=△.(2)解:设()0120ADB αα∠=<<,则120ABD α∠=-, 在ABD △中,由正弦定理得sin sin AD BDABD BAD=∠∠,即()23sin60sin 120AD α=-,所以()4sin 120AD α=-. 在ACD △中,由余弦定理,得2222cos AC AD CD AD CD ADC =+-⋅⋅∠, ()()()224sin 120424sin 1202cos 90AC ααα⎡⎤=-+-⨯-⨯⨯+⎣⎦ 231314cos sin 16cos sin sin 483sin2162222αααααα⎡⎤⎛⎫⎛⎫=++++=+⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 0120α<<,则02240α<<,故当290α=时,即当45α=时,2AC 取到最大值8316+,即AC 的最大值为232+.17.(2023·河北·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4b =,在 ①()(sin sin )(sin sin )b c B C A C a +-=-,②cos2()3cos 1A C B ++= 两个条件中任选一个完成以下问题: (1)求B ;(2)若D 在AC 上,且BD AC ⊥,求BD 的最大值. 【答案】(1)π3B = (2)23【分析】(1)选①,利用正弦定理得到222a c b ac +-=,再利用余弦定理求出π3B =;选②:利用诱导公式和二倍角公式得到1cos 2B =,从而求出π3B =;(2)法一:利用余弦定理得到2216a c ac =+-,利用基本不等式求出16ac ≤,求出面积的最大值,从而求出BD 的最大值;法二:利用正弦定理ABC 外接圆的直径,进而利用正弦定理表示面积,利用三角函数的有界性求出面积最大值,进而求出BD 的最大值. (1)若选①,由正弦定理得,()()()b c b c a c a +-=- 即222b c a ac -=-,即222a c b ac +-= ∴2221cos 222a cb ac B ac ac +-===, ∵(0,π)B ∈,∴π3B =, 若选②,∵cos 2()3cos cos 2(π)3cos cos 23cos 1A C B B B B B ++=-+=+=, ∴22cos 13cos 1B B -+=,即22cos 3cos 20B B +-=, 即cos 2B =-(舍)或1cos 2B =, ∵(0,π)B ∈,∴π3B =, (2)∵BD AC ⊥,BD 为AC 边上的高,当面积最大时,高取得最大值 法一:由余弦定理得,22222162cos b a c ac B a c ac ==+-=+-, 由重要不等式得162ac ac ac ≥-=, 当且仅当a c =时取等, 所以1sin 432ABC S ac B =≤△ 所以AC 边上的高的最大值为432312b = 法二:由正弦定理得ABC 外接圆的直径为832sin 3b R B ==, 利用正弦定理表示面积得:118383sin sin sin sin 2233ABC S ac B A C B ==⋅△ 1838332π1632πsin sin sin sin 2332333A A A A ⎛⎫⎛⎫=⋅⋅⋅-=- ⎪ ⎪⎝⎭⎝⎭。

正余弦定理求面积最大值[001]

正余弦定理求面积最大值[001]

正余弦定理求面积最大值面积最大化问题是数学中一个重要的优化问题,在实际生活和工作中具有广泛的应用。

而正余弦定理是解决三角形问题的重要工具之一,它们的结合可以帮助我们寻找三角形的最大面积。

首先,我们来了解一下正余弦定理的原理。

正余弦定理是基于三角形中的正弦、余弦函数的性质推导出来的。

在任意三角形ABC中,我们可以利用正余弦定理来求解未知的边长和角度。

正弦定理公式为:a/sinA = b/sinB = c/sinC。

余弦定理公式为:a^2 = b^2 + c^2 - 2bc*cosA。

在理解了正余弦定理的基本原理后,我们接下来可以利用它们来解决面积最大化问题。

假设我们已知了三角形的两条边a和b,以及它们之间的夹角C。

现在的问题是,如何确定第三边c,使得三角形的面积最大化?我们知道,三角形的面积可以通过以下公式来计算:S = (1/2) * a * b * sinC。

为了使得面积最大化,我们可以通过求解面积的导数来找到面积取得最大值时的条件。

将上述面积公式代入,我们有:dS/dc = (1/2) * a * b * cosC。

当面积取得最大值时,导数dS/dc必须为0。

由于a、b为已知量,我们可以得到cosC = 0,即C = 90°。

这意味着,当三角形的两边相互垂直时,它的面积将取得最大值。

也就是说,如果我们希望通过调整三角形的边长来最大化面积,我们可以将其中两边调整为相互垂直。

在具体问题中,我们可以根据实际情况设定已知条件来求解面积最大化。

无论是在建筑设计中寻找最大的可用土地面积,还是在工程规划中寻找最大的有效工作区域,都可以利用正余弦定理和面积最大化原理来进行分析和计算。

总结起来,正余弦定理可以帮助我们求解三角形的边长和角度,而结合面积最大化原理,我们可以通过调整三角形的边长来使得面积最大化。

这一原理在实际生活和工作中有着广泛的应用,帮助我们寻找最优解,提高效率,实现最大的价值。

利用余弦定理、基本不等式解决多边形面积的最值问题

利用余弦定理、基本不等式解决多边形面积的最值问题

利用余弦定理、基本不等式解决多边形面积的最值问题概述本文将介绍如何利用余弦定理和基本不等式来解决多边形面积的最值问题。

通过这些数学方法,我们可以有效地求解多边形的面积,并找到使得面积最大或最小的情况。

余弦定理余弦定理是三角形中的一个重要定理,它描述了三角形的边长和夹角之间的关系。

对于一个任意的三角形ABC,余弦定理可以表示为:c^2 = a^2 + b^2 - 2ab * cos(C)其中,a、b为两边的边长,c为第三边的边长,C为a和b之间的夹角。

多边形面积的计算对于一个由n个顶点组成的多边形,我们可以通过以下公式来计算其面积:S = 1/2 * (x1y2 + x2y3 + ... + xn-1yn + xn*y1 - x2y1 - x3y2 - ... - xny1)其中,x1y2、x2y3等表示相邻两个顶点的坐标乘积,xn表示最后一个顶点的x坐标,yn表示最后一个顶点的y坐标。

多边形面积的最值问题当我们希望求解多边形面积的最值问题时,可以利用余弦定理和基本不等式的性质来求解。

首先,我们需要确定多边形的约束条件,例如多边形的边长范围或顶点的坐标范围。

然后,我们可以通过枚举多边形的边长或顶点坐标来计算多边形的面积,并利用余弦定理和基本不等式来判断面积的大小。

通过遍历所有可能的情况,我们可以找到使得面积最大或最小的解。

总结通过利用余弦定理和基本不等式,我们可以解决多边形面积的最值问题。

这些数学方法在求解多边形面积时非常有效,可以帮助我们找到使得面积最大或最小的情况。

尽管这些方法提供了一种数学的途径来解决问题,但在实际应用中,我们应充分考虑其他因素,并结合实际情况进行分析和决策。

希望本文对你理解如何利用余弦定理和基本不等式解决多边形面积的最值问题有所帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式与余弦定理综合求解三角形面积的最值探究
基本不等式与余弦定理综合求解三角形面积的最值探究
建水县第二中学: 贾雪光
从最近几年高考试题的考查情况看,解三角形部分的考查中主要是对用正、余弦定理来求解三角形、实际应用问题, 这两种常见考法中,灵活应用正余弦定理并结合三角形中的内角和定理,大边对大角,等在三角形中进行边角之间的相互转化,以及与诱导公式特别是
C B A sin )sin(=+、C B A sin 2
cos =+的联系是关键。

于是多数教师在复习备考过程中,往往都会将大量的时间和精力花在对正余弦定理的变形,转化,变式应用上,当然这也无可厚非,但是我在高考备考复习教学中发现了这样一类题目,如: 1、在锐角△ABC 中,a, b, c 分别为内角A, B, C 的对边,且A A 22sin 2
1cos =+,7=a 求△ABC 的面积的最大值;2、已知向量)2
1,(sin A M =与)cos 3sin ,3(A A N +=共线,其中A 是△ABC 的内角,(1)求角A 的大小;(2)若BC=2,求△ABC 的面积S 的最大值。

3、△ABC 中,a, b, c 分别为内角A, B, C 的对边,向量)2cos ,2(cos ),1,4(2A A N M =-=,2
7=•N M ,(1)求角A 的大小;(2)若3=a 是判断当c b ⋅取得最大值时△ABC 的形状。

面对这样的问题,我们如何来引导学生很自然的过度,用一种近乎水到渠成的方法来求解呢?
实际上我们在教学和学习的过程中往往会忽略一个很明显的问题,那就是余弦定理与基本不等式的综合,如果我们在讲授正余弦定理的时候能在引入正课时多下一点功夫,我们就会有意外的收获哦。

我在教学中是这样处理的:实际上在余弦定理中我们总有这样一组公式:
A bc c b a cos 2222⋅-+=,
B ac c a b cos 2222⋅-+=,
C ab b a c cos 2222⋅-+=
同时在基本不等式中我们总有这样一组公式:bc c b 222≥+,ac c a 222≥+ ,ab a b 222≥+在三角形中各边都是正数,所以上面三个式子在a 、 b 是三角形的三边时总是成立的,如果我们将两组公式综合后会发现这样的一组公式即:)cos 1(22A bc a -⋅≥,)cos 1(22C ac b -⋅≥
)cos 1(22c ab c -⋅≥于是我们就有方程等式,得到了一组不等式,而在涉及到最值得求解时,我们
常用的处理方法是,一求函数值域;二、导函数;三、基本不等式即均值定理;但是前两种方法显然都不可能用于求解上面两个题目类型的求解,于是在涉及到与解三角形有关的三角形的面积的最大值时我们就只能考虑用均值定理了,自然也就要用到上面我们推导得出的这一组公式罗。

于是我没有:
例1:在锐角△ABC 中,a, b, c 分别为内角A, B, C 的对边,且A A 22sin 21cos =+,7=a 求△ABC 的面积的最大值。

解析:由已知条件A A 22sin 21cos =+有21sin cos 22-=-A A 即212cos -=A 所以知道2A=32π解得A=3
π,同时由于A bc c b a cos 2222⋅-+=、bc c b 222≥+知3cos 27222π⋅-+=bc c b 即有:bc bc -≥27也就是有7≤bc 同时又因为237213sin 21sin 21⋅⋅≤==
∆πbc A bc S ABC 于是有:437≤
∆ABC S 即△ABC 的面积的最大值是437 例2:已知向量)2
1,(sin A M =与)cos 3sin ,3(A A N +=共线,其中A 是△ABC 的内角,(1)求角A 的大小;(2)若BC=2,求△ABC 的面积S 的最大值。

解析:由两向量共线知:3sin cos 3sin 22=+A A A 即:32sin 32cos 1=+-A A 也就是说 22cos 2sin 3=-A A 有辅助角公式可知2)62sin(2=-πA 即有1)62sin(=-πA 解得角3π
=A , 又由于:A bc c b a cos 2222⋅-+=、bc c b 222≥+知3cos
22222π⋅-+=bc c b 即有:bc bc -≥24也就是有4≤bc 同时又因为2
34213sin 21sin 21⋅⋅≤==∆πbc A bc S ABC 于是有:34
34=≤
∆ABC S 即△ABC 的面积的最大值是3 3、△ABC 中,a, b, c 分别为内角A, B, C 的对边,向量)2cos ,2
(cos ),1,4(2A A N M =-=,2
7=•N M ,(1)求角A 的大小;(2)若3=a 是判断当c b ⋅取得最大值时△ABC 的形状。

解析:(1)由27=•N M 解得21cos =A 所以3
π=A
(2)在△ABC 中A bc c b a cos 2222⋅-+=且3=a 3π=
A bc c b 222≥+所以有bc c b bc c b -+=⋅-+=222223cos 23π
即有3≤bc 当且仅当c b =时取等号,此时有c b a ==所以

△ABC 面积最大时,三角形式正三角形。

从以上三个例子中我们可以发现,在解三角形的过程中,如果涉及到要求三角形面积的最大值时,可以考虑余弦定理与基本不等式综合,用基本不等式来构造不等关系,从而求解最值,以上是我在教学实践中所发现的点滴规律,展示出来供各位奋斗在教学一线的数学教师参考,与各位辛勤的同仁分享,希望能对你的教学有所帮助。

相关文档
最新文档