2018年高考试题:正余弦定理解三角形

合集下载

2018版高考数学(江苏专用理科)专题复习:专题专题4 三角函数、解三角形 第28绬 Word版含解析

2018版高考数学(江苏专用理科)专题复习:专题专题4 三角函数、解三角形 第28绬 Word版含解析

1.(2016·隆化期中)在△ABC 中,如果sin A ∶sin B ∶sin C =2∶3∶4,那么cos C =________.2.(2016·银川月考)如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离为50m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点间的距离为______________m.3.(2016·安庆检测)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c .若a 2-c 2=3bc ,sin B =23sin C ,则A =________.4.(2016·苏北四市一模)在△ABC 中,已知AB =3,A =120°,且△ABC 的面积为1534,那么边BC 的长为________.5.(2016·常州一模)在△ABC 中,已知内角A ,B ,C 的对边分别为a ,b ,c .若tan A=7tan B ,a 2-b 2c =3,则c =________.6.(2016·东营期中)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,S 表示△ABC 的面积,若a cos B +b cos A =c sin C ,S =14(b 2+c 2-a 2),则B =________.7.(2016·南京、盐城、徐州二模)如图,在△ABC 中,D 是BC 边上一点,已知∠B =60°,AD =2,AC =10,DC =2,那么AB =________.8.已知点O 是△ABC 的外接圆圆心,且AB =3,AC =4.若存在非零实数x ,y ,使得AO→=xAB →+yAC →,且x +2y =1,则cos ∠BAC 的值为________. 9.△ABC 中,A 、B 、C 是其内角,若sin2A +sin(A -C )-sin B =0,则△ABC 的形状是________________三角形.10.(2016·惠州二调)在△ABC 中,设角A ,B ,C 的对边分别是a ,b ,c ,且∠C =60°,c =3,则a +23cos A sin B=________. 11.(2016·佛山期中)如图,一艘船以每小时15km 的速度向东航行,船在A 处看到一灯塔M 在北偏东60°方向,行驶4h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.12.(2016·吉安期中)在△ABC 中,D 为BC 边上一点,若△ABD 是等边三角形,且AC =43,则△ADC 的面积的最大值为________.13.(2016·如东高级中学期中)在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a =8,b =10,△ABC 的面积为203,则△ABC 的最大角的正切值是________.14.(2016·南通二模)若一个钝角三角形的三个内角成等差数列,且最大边与最小边之比为m ,则实数m 的取值范围是________.答案精析1.-14 2.502 3.π6 4.7 5.46.45°解析 由正弦定理可知a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c sin C =2R sin C ·sin C ,∴sin C =1,C =90°.∴S =12ab =14(b 2+c 2-a 2),解得a =b ,因此B =45°. 7.263解析 在△ADC 中,AD =2,AC =10,DC =2,则cos ∠ADC =-22,所以∠ADC =135°,从而在△ABD 中,∠ADB =45°.又因为∠B =60°,由正弦定理得AD sin B =AB sin ∠ADB ,即232=AB 22,解得AB =263. 8.23解析 设线段AC 的中点为点D ,则直线OD ⊥AC .因为AO→=xAB →+yAC →,所以AO →=xAB →+2yAD →. 又x +2y =1,所以点O 、B 、D 三点共线,即点B 在线段AC 的中垂线上,则AB =BC =3.在△ABC 中,由余弦定理,得cos ∠BAC =32+42-322×3×4=23. 9.等腰或直角解析 因为sin2A +sin(A -C )-sin B=sin2A +sin(A -C )-sin(A +C )=2sin A cos A -2sin C cos A=2cos A (sin A -sin C )=0,所以cos A =0或sin A =sin C ,所以A =π2或A =C .故△ABC 为等腰或直角三角形.10.4解析 由正弦定理知a sin A =c sin C =2,所以a =2sin A ,代入得原式=2sin A +23cos A sin B=4·sin (A +60°)sin B =4.11.30 2解析 依题意有AB =15×4=60,∠MAB =30°,∠AMB =45°,在△AMB 中,由正弦定理得60sin45°=BM sin30°,解得BM =30 2.12.4 3解析 在△ACD 中,cos ∠ADC =AD 2+DC 2-AC 22AD ·DC =AD 2+DC 2-482AD ·DC =-12,整理得AD 2+DC 2=48-AD ·DC ≥2AD ·DC ,∴AD ·DC ≤16,当且仅当AD =CD 时等号成立,∴△ADC 的面积S =12AD ·DC ·sin ∠ADC =34AD ·DC ≤4 3.13.533解析 由题意得203=12×8×10×sin C ⇒sin C =32⇒C =π3或C =2π3(舍),由余弦定理得c 2=82+102-2×8×10×12=84,由三角形中大边对大角知角B 最大,则cos B =82+84-1022×8×84=384,所以tan B =533. 14.(2,+∞)解析 设A 为钝角,C 为最小角,则A +C =120°,C ∈(0°,30°),由正弦定理得m=a c =sin A sin C =sin (120°-C )sin C =32tan C +12.而0<tan C <33,∴1tan C >3,则m >2.。

2018年高考试题:正余弦定理解三角形

2018年高考试题:正余弦定理解三角形

2018年高考试题训练一:2018年高考理科数学新课标Ⅰ卷第17题:在平面四边形ABCD 中,090=∠ADC ,045=∠A ,2=AB ,5=BD 。

(Ⅰ)求ADB ∠cos ;(Ⅱ)若22=DC ,求BC 。

本题解析:(Ⅰ)本题目是正弦定理已知两边和其中一边对角的经典题型。

如下图所示:根据正弦定理得到:A AB ADB BD ADBAB A BD sin sin sin sin ⋅=∠⋅⇒∠=525222sin sin =⨯=⋅=∠⇒BD A AB ADB 。

根据三角函数同角之间的基本关系得到:ADBADB ∠-=∠22sin 1cos 25232521=-=。

根据大边对大角得到:ADBADB A ADB BC AB ∠⇒<∠⇒<∠⇒<045为锐角523cos 0cos =∠⇒>∠⇒ADB ADB 。

(Ⅱ)本题目是标准的余弦定理已知两边和两边夹角的经典题型。

在BCD Rt ∆中:5=BD ,22=CD ,ADBBDC ∠-=∠090)90cos(cos 0ADB BDC ∠-=∠⇒。

诱导公式:090终边在y 轴正半轴ADB ∠-⇒090是第一象限角cos ⇒在第一象限为正,090是090的奇数倍cos ⇒名称改为sin 名称。

52sin )90cos(cos 0=∠=∠-=∠ADB ADB BDC 。

根据余弦定理得到:BDCBD DC BD DC BC ∠⋅⋅⋅-+=cos 2222525833525222258=⇒=-=⋅⋅⋅-+=BC 。

训练二:2018年高考文科数学新课标Ⅰ卷第16题:ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知C B a B c C b sin sin 4sin sin =+,8222=-+a c b ,则ABC ∆的面积为。

本题解析:本题目是边角转化与余弦定理综合题型。

边角转化:方程中每一项都有边,每一项中的边次数相加相等,可以把方程每一项的边全部转化为对角正弦,保持次数不变。

2018高考数学真题 文科 4.6考点1 利用正、余弦定理解三角形

2018高考数学真题 文科 4.6考点1 利用正、余弦定理解三角形

第四章 三角函数与解三角形第六节 正弦定理和余弦定理考点1 利用正、余弦定理解三角形(2018·浙江卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,C .若a =√7,b =2,A =60°,则sin B =________,c =________.【解析】如图,由正弦定理asin A =bsin B ,得sin B =b a ·sin A =√7×√32=√217. 由余弦定理a 2=b 2+c 2-2bc ·cos A ,得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 【答案】√217 3(2018·天津卷(文))在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,C .已知b sin A =a cos (B −π6).(1)求角B 的大小;(2)设a =2,c =3,求b 和sin (2A -B )的值.【解析】(1)在△ABC 中,由正弦定理a sin A =bsin B ,可得b sin A =a sinB .又由b sin A =a cos (B −π6),得a sin B =a cos (B −π6),即sin B =cos (B −π6),可得tan B =√3. 又因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3, 得b 2=a 2+c 2-2ac cos B =7,故b =√7.由b sin A =a cos (B −π6),可得sin A =√217 .因为a <c ,所以cos A =2√77.因此sin 2A =2sin A cos A =4√37, cos 2A =2cos 2A -1=17. 所以sin (2A -B )=sin 2A cos B -cos 2A sin B=4√37×12-17×√32=3√314.【答案】见解析(2018·全国卷Ⅲ(文))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2−c 24,则C等于( )A .π2B .π3C .π4D .π6 【解析】∵S =12ab sin C =a 2+b 2−c 24=2ab cos C 4=12ab cos C , ∴sin C =cos C ,即tan C =1.∵C ∈(0,π),∴C =π4.【答案】C(2018·全国Ⅱ卷(文))在△ABC 中,cos C 2=√55,BC =1,AC =5,则AB 等于( ) A .4√2B .√30C .√29D .2√5 【解析】∵cos C 2=√55, ∴cos C =2cos 2C 2-1=2×(√55)2-1=-35.在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos C =52+12-2×5×1×(−35)=32,∴AB =√32=4√2.【答案】A(2018·全国Ⅱ卷(文))如图,在三棱锥P -ABC 中,AB =BC =2√2,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.【解析】(1)证明 因为P A =PC =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2√3.如图,连接OB .因为AB =BC =√22AC ,所以△ABC 为等腰直角三角形,所以OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB .因为OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,OB ,AC ⊂平面ABC ,所以PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H ,作CH ⊥OM ,垂足为H ,又由(1)可得OP ⊥CH ,因为OM ∩OP =P ,OM ,OP ⊂平面POM ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题意可知OC =12AC =2,CM =23BC =4√23,∠ACB =45°,所以在△OMC 中,由余弦定理可得,OM =2√53, CH =OC·MC sin ∠ACB OM =4√55.所以点C 到平面POM 的距离为4√55.【答案】见解析(2018·全国Ⅰ卷(文))△ABC 的内角A ,B ,C 的对边分别为a ,b ,C .已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC 的面积为________.【解析】∵b sin C +c sin B =4a sin B sin C ,∴由正弦定理得sin B sin C +sin C sin B =4sin A sin B sinC .又sin B sin C >0,∴sin A =12.由余弦定理得cos A =b 2+c 2−a 22bc =82bc =4bc >0, ∴cos A =√32,bc =4cos A =8√33, ∴S △ABC =12bc sin A =12×8√33×12=2√33. 【答案】2√33 (2018·北京卷(文))若△ABC 的面积为√34(a 2+c 2-b 2),且∠C 为钝角,则∠B =________;c a 的取值范围是________.【解析】由余弦定理得cos B =a 2+c 2−b 22ac ,∴a 2+c 2-b 2=2ac cosB .又∵S =√34(a 2+c 2-b 2),∴12ac sin B =√34×2ac cos B ,∴tan B =√3,又∠B ∈(0,π),∴∠B =π3. 又∵∠C 为钝角,∴∠C =2π3-∠A >π2, ∴0<∠A <π6. 由正弦定理得c a =sin(2π3−∠A)sin A=√32cos A+12sin A sin A =12+√32·1tan A .∵0<tan A <√33,∴1tan A >√3, ∴c a >12+√32×√3=2, 即c a >2.∴c a 的取值范围是(2,+∞).【答案】π3 (2,+∞)。

解三角形、数列2018年全国数学高考分类真题(含答案)

解三角形、数列2018年全国数学高考分类真题(含答案)

解三角形、数列2018年全国高考分类真题(含答案)一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.23.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4 4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解三角形、数列2018年全国高考分类真题(含答案)参考答案与试题解析一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.3.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=3.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为a n=6n﹣3.【解答】解:∵{a n}是等差数列,且a1=3,a2+a5=36,∴,解得a1=3,d=6,∴a n=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.∴{a n}的通项公式为a n=6n﹣3.故答案为:a n=6n﹣3.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=﹣63.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,当n≥2时,S n=2a n﹣1+1,②,﹣1由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S6==﹣63,故答案为:﹣63三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【解答】解:(Ⅰ)等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2(舍去),则q的值为2;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得c n=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1,上式对n=1也成立,则(b n﹣b n)a n=4n﹣1,+1﹣b n=(4n﹣1)•()n﹣1,即有b n+1可得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=1+3•()0+7•()1+…+(4n﹣5)•()n﹣2,b n=+3•()+7•()2+…+(4n﹣5)•()n﹣1,相减可得b n=+4[()+()2+…+()n﹣2]﹣(4n﹣5)•()n﹣1=+4•﹣(4n﹣5)•()n﹣1,化简可得b n=15﹣(4n+3)•()n﹣2.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).【解答】(Ⅰ)解:设等比数列{a n}的公比为q,由a1=1,a3=a2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故.设等差数列{b n}的公差为d,由a4=b3+b5,得b1+3d=4,由a5=b4+2b6,得3b1+13d=16,∴b1=d=1.故b n=n;(Ⅱ)(i)解:由(Ⅰ),可得,故=;(ii)证明:∵==.∴==﹣2.16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【解答】解:(1)∵等比数列{a n}中,a1=1,a5=4a3.∴1×q4=4×(1×q2),解得q=±2,当q=2时,a n=2n﹣1,当q=﹣2时,a n=(﹣2)n﹣1,∴{a n}的通项公式为,a n=2n﹣1,或a n=(﹣2)n﹣1.(2)记S n为{a n}的前n项和.当a1=1,q=﹣2时,S n===,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n===2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.。

2018年高中数学—解三角形

2018年高中数学—解三角形

2018年高中数学—解三角形【高考会这样考】1.考查正、余弦定理的推导过程.2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法.4.考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.知识点总结1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.面积公式:S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角 A 为钝角或直角图形关系 式 a <b sin A a =b sin Ab sin A <a <b a ≥b a >b a ≤b解的 个数无解 一解 两解 一解 一解 无解5.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.6.实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图(2)). (3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等. (4)坡度:坡面与水平面所成的二面角的度数.考向探究题型一 正弦余弦定理运用【例题1】在△ABC 中,已知a=3,b=2,B=45°,求A 、C 和c.【例题2】 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-ca b2.(1)求角B 的大小;(2)若b=13,a+c=4,求△ABC 的面积.【例题3】(14分)△ABC中,角A,B,C的对边分别为a,b,c,且b2+c2-a2+bc=0. (1)求角A的大小;(2)若a=3,求bc的最大值;(3)求cb Ca--︒)30sin(的值.【变式】1.△ABC的内角A、B、C的对边分别为a、b、c,若c=2,b=6,B=120°,则a= .2.(1)△ABC中,a=8,B=60°,C=75°,求b;(2)△ABC中,B=30°,b=4,c=8,求C、A、a.3.在△ABC中,A=60°,AB=5,BC=7,则△ABC的面积为 .4.已知△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且2S=(a+b)2-c2,求tanC的值.5.在△ABC中,角A、B、C所对的边分别为a、b、c.若(3b-c)cosA=acosC,则cosA= .6. 在△ABC中,角A、B、C的对边分别为a、b、c,若(a2+c2-b2)tanB=3ac,则角B的值为 .7.在△ABC中,内角A、B、C对边的边长分别是a、b、c.已知c=2,C=3π.(1)若△ABC的面积等于3,求a、b的值;(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.题型二判断三角形形状【例题】在△ABC中,a、b、c分别表示三个内角A、B、C的对边,如果(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断三角形的形状.【变式】已知△ABC的三个内角A、B、C的对边分别为a、b、c,若a、b、c成等差数列,且2cos2B-8cosB+5=0,求角B的大小并判断△ABC的形状.题型三测量距离问题【例题】如图所示,为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.【变式】如图,A,B,C,D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B,D的距离.题型四测量高度问题【例题】如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.【变式】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C 与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.题型五正、余弦定理在平面几何中的综合应用【例题】如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.【变式】如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.课堂训练1.在△ABC 中,若2cosBsinA=sinC,则△ABC 一定是 三角形.2.在△ABC 中,A=120°,AB=5,BC=7,则CB sin sin 的值为 .3.已知△ABC 的三边长分别为a,b,c,且面积S △ABC =41(b 2+c 2-a 2),则A= .4.在△ABC 中,BC=2,B=3,若△ABC 的面积为23,则tanC 为 .5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= .8.某人向正东方向走了x 千米,他右转150°,然后朝新方向走了3千米,结果他离出发点恰好3千米,那么x 的值是 . 9.下列判断中不正确的结论的序号是 . ①△ABC 中,a=7,b=14,A=30°,有两解 ②△ABC 中,a=30,b=25,A=150°,有一解 ③△ABC 中,a=6,b=9,A=45°,有两解 ④△ABC 中,b=9,c=10,B=60°,无解10. 在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状.11. 在△ABC 中,cosB=-135,cosC=54.(1)求sinA 的值;(2)△ABC 的面积S △ABC =233,求BC 的长.12.已知a 、b 、c 是△ABC 的三边长,关于x 的方程ax 2-222b c - x-b=0 (a >c >b)的两根之差的平方等于4,△ABC 的面积S=103,c=7. (1)求角C ; (2)求a ,b 的值.13. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a+b=5,c=7,且4sin 22B A +-cos2C=27.(1)求角C 的大小; (2)求△ABC 的面积.14.(人教A 版教材习题改编)如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( ).A .50 2 mB .50 3 mC .25 2 m D.2522 m15.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ). A .α>β B .α=β C .α+β=90° D .α+β=180° 16.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ).A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°17.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A.5海里 B.53海里C.10海里 D.103海里18.海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC=75°,则B,C间的距离是________海里.19.如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?参考答案例题答案题型一 正弦、余弦定理 【例题1】 解 ∵B=45°<90°且asinB <b <a,∴△ABC 有两解.由正弦定理得sinA=b B a sin =245sin 3︒=23, 则A 为60°或120°.①当A=60°时,C=180°-(A+B)=75°, c=B C b sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=226+.②当A=120°时,C=180°-(A+B)=15°, c=B C b sin sin =︒︒45sin 15sin 2=︒︒-︒45sin )3045sin(2=226-.故在△ABC 中,A=60°,C=75°,c=226+或 A=120°,C=15°,c=226-. 【例题2】 解(1)由余弦定理知:cosB=acb c a 2222-+,cosC=ab c b a 2222-+.将上式代入C B cos cos =-c a b+2得:ac b c a 2222-+·2222cb a ab -+=-c a b +2 整理得:a 2+c 2-b 2=-ac∴cosB=acb c a 2222-+=ac ac2- =-21 ∵B 为三角形的内角,∴B=32π.(2)将b=13,a+c=4,B=32π代入b 2=a 2+c 2-2accosB,得b 2=(a+c)2-2ac-2accosB ∴b 2=16-2ac ⎪⎭⎫ ⎝⎛-211,∴ac=3.∴S △ABC =21acsinB=433. 【例题3】解(1)∵cosA=bca cb 2222-+=bc bc2-=-21,又∵A ∈(0°,180°),∴A=120°.(2)由a=3,得b 2+c 2=3-bc,又∵b 2+c 2≥2bc (当且仅当c=b 时取等号),∴3-bc ≥2bc(当且仅当c=b 时取等号). 即当且仅当c=b=1时,bc 取得最大值为1. (3)由正弦定理得:===CcB b A a sin sin sin 2R,∴CR B R C A R c b C a sin 2sin 2)30sin(sin 2)30sin(--︒=--︒=CB C A sin sin )30sin(sin --︒ =C C C C sin )60sin()sin 23cos 21(23--︒-C C C C sin 23cos 23)sin 43cos 43--==21【变式】1.22. 解(1)由正弦定理得BbA a sin sin =. ∵B=60°,C=75°,∴A=45°,∴b=︒︒⨯=45sin 60sin 8sin sin A B a =46. (2)由正弦定理得sinC=430sin 8sin ︒=b B c =1. 又∵30°<C <150°,∴C=90°.∴A=180°-(B+C)=60°,a=22b c -=43. 3. 1034. 解 依题意得absinC=a 2+b 2-c 2+2ab, 由余弦定理知,a 2+b 2-c 2=2abcosC. 所以,absinC=2ab(1+cosC), 即sinC=2+2cosC,所以2sin2C cos 2C =4cos 22C 化简得:tan 2C=2.从而tanC=2tan 12tan22C C -=-34. 5.336. 3π或32π7. 解 (1)由余弦定理及已知条件,得a 2+b 2-ab=4.又因为△ABC 的面积等于3, 所以21absinC=3,所以ab=4. 联立方程组⎪⎩⎪⎨⎧==-+,4,422ab ab b a 解得⎩⎨⎧==22b a .(2)由题意得sin(B+A)+sin(B-A)=4sinAcosA,即sinBcosA=2sinAcosA, 当cosA=0时,A=2π,B=6π,a=334,b=332. 当cosA ≠0时,得sinB=2sinA,由正弦定理得b=2a,联立方程组⎪⎩⎪⎨⎧==-+,2,422a b ab b a 解得⎪⎪⎩⎪⎪⎨⎧==.334332b ,a所以△ABC 的面积S=21absinC=332. 题型二 判断三角形形状【例题】 解方法一 已知等式可化为a 2[sin (A-B )-sin (A+B )]=b 2[-sin (A+B )-sin(A-B)] ∴2a 2cosAsinB=2b 2cosBsinA 由正弦定理可知上式可化为: sin 2AcosAsinB=sin 2BcosBsinA ∴sinAsinB(sinAcosA-sinBcosB)=0 ∴sin2A=sin2B,由0<2A,2B <2π 得2A=2B 或2A=π-2B, 即A=B 或A=2π-B,∴△ABC 为等腰或直角三角形. 方法二 同方法一可得2a 2cosAsinB=2b 2sinAcosB 由正、余弦定理,可得 a 2bbc a c b 2222-+= b 2a acb c a 2222-+∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2)即(a 2-b 2)(a 2+b 2-c 2)=0 ∴a=b 或a 2+b 2=c 2∴△ABC 为等腰或直角三角形.【变式】 解 方法一 ∵2cos2B-8cosB+5=0, ∴2(2cos 2B-1)-8cosB+5=0. ∴4cos 2B-8cosB+3=0, 即(2cosB-1)(2cosB-3)=0.解得cosB=21或cosB=23(舍去).∴cosB=21. ∵0<B <π,∴B=3π.∵a ,b ,c 成等差数列,∴a+c=2b. ∴cosB=acbc a 2222-+=acc a c a 2)2(222+-+=21, 化简得a 2+c 2-2ac=0,解得a=c. 又∵B=3π,∴△ABC 是等边三角形. 方法二 ∵2cos2B-8cosB+5=0, ∴2(2cos 2B-1)-8cosB+5=0. ∴4cos 2B-8cosB+3=0, 即(2cosB-1)(2cosB-3)=0.解得cosB=21或cosB=23(舍去). ∴cosB=21,∵0<B <π,∴B=3π,∵a,b,c 成等差数列,∴a+c=2b.由正弦定理得sinA+sinC=2sinB=2sin 3π=3. ∴sinA+sin ⎪⎭⎫⎝⎛-A 32π=3, ∴sinA+sin A cos 32π-cos A sin 32π=3. 化简得23sinA+23cosA=3,∴sin ⎪⎭⎫ ⎝⎛+6πA =1. ∴A+6π=2π,∴A=3π, ∴C=3π,∴△ABC 为等边三角形.题型三 测量距离问题【例题】解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45° 在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a . 在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a . 【变式】解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =ACsin ∠ABC ,所以AB =AC sin 60°sin 15°=32+620(km),同理,BD =32+620(km).故B 、D 的距离为32+620 km.题型四 测量高度问题【例题】解 如图,设CD =x m , 则AE =x -20 m ,tan 60°=CD BD, ∴BD =CDtan 60°=x 3=33x (m).在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m. 【变式】解 在△BCD 中,∠CBD =π-α-β, 由正弦定理得BC sin ∠BDC =CDsin ∠CBD ,所以BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin α+β在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin α+β.题型五 正、余弦定理在平面几何中的综合应用 【例题】解 在△ABC 中,AB =5,AC =9,∠BCA =30°. 由正弦定理,得AB sin ∠ACB =ACsin ∠ABC ,sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC , 于是sin ∠BAD =sin ∠ABC =910. 同理,在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°,由正弦定理:AB sin ∠BDA =BDsin ∠BAD,解得BD =922.故BD 的长为922.【变式】解 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°, 由正弦定理得AB sin ∠ADB =ADsin B,∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6课堂训练1. 等腰;2.53;3. 45°;4. 33;5. 60°;6. 45°或135°;7. 65π; 8. 3或23;9. ①③④10.(1)证明 因为a 2=b(b+c),即a 2=b 2+bc, 所以在△ABC 中,由余弦定理可得, cosB=ac b c a 2222-+=acbc c 22+=a cb 2+=ab a 22=b a 2=BA sin 2sin , 所以sinA=sin2B,故A=2B. (2)解 因为a=3b,所以ba=3, 由a 2=b(b+c)可得c=2b, cosB=ac b c a 2222-+=22223443b b b b -+=23,所以B=30°,A=2B=60°,C=90°. 所以△ABC 为直角三角形.11. 解 (1)由cosB=-135,得sinB=1312, 由cosC=54,得sinC=53.所以sinA=sin(B+C)=sinBcosC+cosBsinC=6533. (2)由S △ABC =233,得21×AB×AC×sinA=233. 由(1)知sinA=6533,故AB×AC=65.又AC=CB AB sin sin ⨯=1320AB, 故1320AB 2=65,AB=213. 所以BC=C A AB sin sin ⨯=211.12. 解 (1)设x 1、x 2为方程ax 2-222b c -x-b=0的两根,则x 1+x 2=a b c 222-,x 1·x 2=-ab.∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=222)(4a b c -+ab4=4. ∴a 2+b 2-c 2=ab.又cosC=abc b a 2222-+=ab ab 2=21,又∵C ∈(0°,180°),∴C=60°. (2)S=21absinC=103,∴ab =40 ……① 由余弦定理c 2=a 2+b 2-2abcosC, 即c 2=(a+b)2-2ab(1+cos60°). ∴72=(a+b)2-2×40×⎪⎭⎫⎝⎛+211.∴a+b=13.又∵a >b ……②∴由①②,得a=8,b=5.13. 解 (1)∵A+B+C=180°,由4sin 22B A +-cos2C=27, 得4cos 22C-cos2C=27,∴4·2cos 1C +-(2cos 2C-1)=27,整理,得4cos 2C-4cosC+1=0,解得cosC=21, ∵0°<C <180°,∴C=60°.(2)由余弦定理得c 2=a 2+b 2-2abcosC, 即7=a 2+b 2-ab,∴7=(a+b)2-3ab , 由条件a+b=5,得7=25-3ab,ab=6, ∴S △ABC =21absinC=21×6×23=233. 14.解析 由正弦定理得AB sin ∠ACB =ACsin B,又∵B =30°∴AB =AC ·sin ∠ACBsin B =50×2212=502(m).答案 A15.解析 根据仰角与俯角的定义易知α=β.答案 B 16.解析 如图.答案 B17.解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里), 于是这艘船的速度是50.5=10(海里/时). 答案 C18.解析 由正弦定理,知BC sin 60°=ABsin 180°-60°-75° .解得BC =56(海里).答案 5 619.如图,连接A 1B 2由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20, ∠B 1A 1B 2=105°-60°=45°,(8分)在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2.因此,乙船的速度为10220×60=302(海里/时).(12分)。

高考数学黄金100题系列第35题应用正弦定理和余弦定理解三角形理(2021学年)

高考数学黄金100题系列第35题应用正弦定理和余弦定理解三角形理(2021学年)

2018年高考数学黄金100题系列第35题应用正弦定理和余弦定理解三角形理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学黄金100题系列第35题应用正弦定理和余弦定理解三角形理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学黄金100题系列第35题应用正弦定理和余弦定理解三角形理的全部内容。

第 35题 应用正弦定理和余弦定理解三角形I.题源探究·黄金母题【例1】在△A BC 中,cm c cm b cm a 15,10,9===,解三角形.【解析】由余弦定理得:bc a c b C 2cos 222-+==109215109222⨯⨯-+=—4511=—0.2444,∴C ≈104°,∴B A ,都是锐角,由正弦定理得AB sin 9sin 10104sin 15==︒,∴15104sin 10sin ︒=B =0.6468,∴B =40°,∴C B A --︒=180=36°. 精彩解读【试题来源】人教版A 版必修5第10页A 组第4题(1).【母题评析】本题考查利用正余弦定理解三角形. 【思路方法】已知三角形三边解三角形问题,先用余弦定理求出最大边所对的角,再用正弦定理解出其余两角. I I.考场精彩·真题回放【例2】【2017山东,理9】在C ∆AB 中,角A ,B ,C的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,则下列等式成立的是A.2a b = B.2b a = C.2A =B D.2B =A 【答案】A 【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.【例3】【2017浙江,14】已知△ABC ,AB =A C=【命题意图】本类题问题主要考查利用正弦定理、余弦定理解三角形,考查考生运算求解能力.【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,难度中等偏易,考查基础知识的识记与理解.【难点中心】解答此类问题的关键是正余弦定理,注意确定一解还是两解.4,B C=2. 点D 为AB 延长线上一点,B D=2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.【答案】24【解析】取B C中点E ,DC 中点F ,由题意:,AE BC BF CD⊥⊥,△A BE中,1cos 4BE ABC AB ∠==,1cos ,sin 44DBC DBC ∴∠=-∠=,BC 1sin 2D S BD BC DBC ∴=⨯⨯⨯∠=△ 又21cos 12sin ,sin 4DBC DBF DBF ∴∠=-∠=-∴∠=,cos sin 4BDC DBF ∴∠=∠=,综上可得,△BCD 面积为2,cos 4BDC ∠=.【例4】【2017课标1,理17】△A BC 的内角A,B ,C的对边分别为a ,b ,c,已知△AB C的面积为23sin a A.(1)求sin B sin C ;(2)若6co sBcos C =1,a=3,求△ABC 的周长. 【解析】试题分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC △的周长为3试题解析:(1)由题设得21sin 23sin a ac B A =,即1sin 23sin ac B A=. 由正弦定理得1sin sin sin 23sin A C B A =.故2sin sin 3B C =.(2)由题设1cos cos 6B C =及(1)得1cos cos sin sin 2B C B C -=-,即1cos()2B C +=-.所以2π3B C +=,故π3A =.由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即2()39b c bc +-=,得b c +=ABC △的周长为3【例5】【2017课标II ,理17】ABC ∆的内角A B C 、、所对的边分别为,,a b c ,已知()2sin 8sin 2B AC +=, (1)求cos B ;(2)若6a c +=,ABC ∆的面积为2,求b . 【答案】(1)15cos 17B =; (2)2b =. 【解析】试题分析:利用三角形内角和定理可知A C B π+=-,再利用诱导公式化简sin()A C +,利用降幂公式化简21cos sin 22B B -=,结合22sin cos 1B B +=求出cos B ;利用(1)中结论090B =,利用勾股定理和面积公式求出a c ac +、,从而求出b .试题解析:(1)由题设及A B C π++=,2sin 8sin 2BB =,故()sin 41cos B B =-.上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15cos 17B =. (2)由15cos 17B =得8sin 17B =,故ABC 14=sin 217S ac B ac =△.又ABC =2S △,则172ac =.由余弦定理及6a c +=得:()()22222cos 21cos 171536214217b a c ac B a c ac B =+-=+-+⎛⎫=-⨯⨯+= ⎪⎝⎭所以b=2.III.理论基础·解题原理 考点一 正弦定理及其变形1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等2sin sin sin a b cR A B C===.(R 为外接圆半径) 2.变形:①2sin a R A =,2sin b R B =,2sin c R C =;②sin ,sin ,sin 222a b cA B C R R R===; ③::sin :sin :sin a b c A B C =;④2sin sin sin sin a b c aR A B C A++==++.考点二 余弦定理1.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍2222cos a b c bc A =+-;2222cos b a c ac B =+-;2222cos c a b ab C =+-.2.推论:222cos 2b c a A bc +-=;222cos 2a c b B ac+-=;222cos 2a b c C ab +-=.3.变形:2222cos bc A b c a =+-;2222cos ac B a c b =+-;2222cos ab C a b c =+-.IV .题型攻略·深度挖掘 【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,一般难度较小,考查对基础知识的识记与理解,考查考生基本计算能力. 【技能方法】1.解三角形中正余弦定理选择(1)已知三角形中的两角和一角的对边,利用正弦定理解三角形.(2)已知三角形两边和一边的对角可以利用正弦定理解三角形也可以用余弦定理解三角形,注意判定三角(3)若已知三边或已知两边和夹角,用余弦定理解三角形. 2.形解得情况,如在△AB C中,已知a 、b 和A 时,解的情况如下:3.注意利用三角形内角和定理:π=++C B A 沟通三个内角的关系.4.常用结论:sin()sin A B C +=;cos()cos A B C +=-;tan()tan A B C +=-sin cos 22A B C +=;2sin 2cos ,2cos 2sinCB AC B A =+=+; 【易错指导】在利用正弦定理解三角形时,注意判定三角形解得个数,常用大边对大角,判定一解还是两解,A 为锐角A为钝角或直角图形关系 式 a <b si n A a=b sin Ab sin A<a <ba ≥b a >ba≤b解的 个数无解 一解 两解一解 一解 无解要熟记上边表格中解得个数的判定方法.V.举一反三·触类旁通 考向1 正弦定理应用【例6】【2017课表1,文11】△ABC 的内角A、B 、C 的对边分别为a 、b、c.已知sin sin (sin cos )0B A C C +-=,a=2,c=2,则C=A.π12ﻩﻩﻩ B.π6C .π4ﻩﻩﻩ D.π3【答案】B 【解析】【考点】解三角形【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.【例7】【2017课标3,文15】△ABC 的内角A,B,C 的对边分别为a,b ,c.已知C=60°,b6c=3,则A=_________.【答案】75°【解析】由题意:sin sin b c B C= ,即36sin 22sin 32b C Bc === ,结合b c < 可得45B = ,则18075A B C =--=.【考点】正弦定理【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.【例8】【2017北京,理15】在△A BC 中,A ∠ =60°,c=37a . (Ⅰ)求s in C 的值;(Ⅱ)若a=7,求△AB C的面积. 【答案】(Ⅰ)3314;(Ⅱ)934.试题解析:解:(Ⅰ)在△ABC 中,因为60A ∠=︒,37c a =, 所以由正弦定理得sin 3333sin 7c A C a ===.(Ⅱ)因为7a =,所以3737c =⨯=.由余弦定理2222cos a b c bc A =+-得222173232b b =+-⨯⨯, 解得8b =或5b =-(舍).所以△ABC 的面积113sin 83322S bc A ==⨯⨯= 【考点】1.正余弦定理;2.三角形面积;3.三角恒等变换.【名师点睛】高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式【跟踪训练】1.【2017届广东珠海市高三9月摸底考试数学】在ABC ∆中,角C B A ,,的对边分别为c b a ,,.已知 45,3,2===A b a ,则角B 大小为( )A . 60 B. 120 C. 60或 120 D . 15或 75 【答案】C【解析】由正弦定理可得:B sin 345sin 20=,由此可得23sin =B ,因a b >,故=B 60或 120,所以应选C .2.【2018辽宁模拟】在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若cos cos 23sin 3sin B C Ab c C+=, cos 3sin 2B B +=,则a c +的取值范围( ) A .3,32⎛⎤ ⎥ ⎝⎦ B.3,32⎛⎤ ⎥⎝⎦ C .3,32⎡⎤⎢⎥⎣⎦D.3,32⎡⎤⎢⎥⎣⎦ 【答案】B13cos 3sin 2cos sin 2sin 2226B B B B B π⎛⎫⎛⎫+=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭ 62B ππ∴+=,3B π=,1sin bB= 23A B π∴+=2032C A ππ<<-<,02A π<<62A ππ∴<<233sin sin sin sin sin cos 3sin 3226a c A C A A A A A ππ⎛⎫⎛⎫+=+=+-=+=+ ⎪ ⎪⎝⎭⎝⎭62A ππ<<,33sin 326A π⎛⎫∴-<+≤ ⎪⎝⎭ 故答案选B点睛:在解三角形中求范围问题往往需要转化为角的问题,利用辅助角公式,结合角的范围求得最后结果.在边角互化中,注意化简和诱导公式的运用.3.【2018江西级阶段性检测(二)】黑板上有一道有解的解三角形的习题,一位同学不小心把其中一部分擦去了,现在只能看到:在中,角的对边分别为,已知,解得,根据以上信息,你认为下面哪个选项可以作为这个习题的其余已知条件( )A. B . C.D.【答案】D点睛:根据条件选用正弦定理与余弦定理,一般已知两角一边利用正弦定理,而已知一角两边求第三边或已知三边求一角往往利用余弦定理,利用正弦定理时注意根据边的大小关系确定解的个数,而利用余弦定理时,有时需结合基本不等式求最值,有时需整体转化求范围考向2 余弦定理应用【例9】【2017天津,理15】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =.(Ⅰ)求b 和sin A 的值; (Ⅱ)求πsin(2)4A +的值.【答案】 (1) 13b =.(2)7226【解析】试题分析:利用正弦定理“角转边”得出边的关系2a b =,再根据余弦定理求出cos A ,进而得到sin A ,由2a b =转化为sin 2sin A B =,求出sin B ,进而求出cos B ,从而求出2B 的三角函数值,利用两角差的正弦公式求出结果.试题解析:(Ⅰ)在ABC △中,因为a b >,故由3sin 5B =,可得4cos 5B =.由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以13b =.由正弦定理sin sin a b A B =,得sin 313sin 13a B Ab ==. 所以,b 的值为13,sin A 的值为31313.考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.【跟踪练习】1.【2018河南模拟】在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若22sin sin sin ,65b B c C a A ac b -==,则( )BC【答案】D【解析】正弦定理角化边可得: 2222222,2b c a a c b -=∴+=,且结合余弦定理有则利用两角和差正余弦公式可得D. 2.在斜ABC ∆中,角,,A B C 的对边分别为,,a b c , 2223sin2ab C a b c =+-,则()sin Cπ+=( )C 【答案】B【解析】由题意可得:,ABC 为斜三角形,则cos 0C ≠,据此有: : 本题选择B 选项.3ABC ∆,,A B C 的对边分别为,,a b c ,且12,3,cosC 3a b===,则sin A =____. 【答案】9【解析】2222cos 1349,3c a b ab C c =+-=-==,2994742cos ,sin 1sin 1899A A A +-===-=. 【方法总结】对已知三角形的两边和夹角求其中一边的对角正弦问题,先用余弦定理求出已知角的对角,再用正弦定理求出所求角的正弦值.考向3 正弦定理与余弦定理的综合应用【例10】【2017天津,文15】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,2225()ac a b c =--.(I)求cos A 的值;(I I)求sin(2)B A -的值. 【答案】(Ⅰ)55-;(Ⅱ)255- .试题解析:(Ⅰ)解:由sin 4sin a A b B =,及sin sin a bA B=,得2a b =. 由2225()ac a b c =--,及余弦定理,得222555cos 25b c aA bcac +-===-.(Ⅱ)解:由(Ⅰ),可得25sin A =sin 4sin a A b B =,得sin 5sin 4a A B b == 由(Ⅰ)知,A 为钝角,所以225cos 1sin 5B B =-=.于是4sin 22sin cos 5B B B ==,23cos 212sin 5B B =-=,故4532525sin(2)sin 2cos cos 2sin ()55555B A B A B A -=-=⨯--⨯=-. 【考点】1.正余弦定理;2.三角恒等变换.【名师点睛】高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式【例11】已知AD 为ABC ∆的角平分线,︒=∠==60.3,2A AB AC ,则=AD . 【答案】536【方法点睛】先由余弦定理求出边BC 的长,利用角平分线性质求出CD,利用正弦定理求出C 角,再在△ACD 中运用正弦定理求出AD.【跟踪练习】1.在AB C中,B=120o ,A B2A 的角平分线AD =3则A C=_______. 6【解析】由正弦定理得sin sin AB AD ADB B =∠,即23sin ADB =∠,解得2sin ADB ∠=,45ADB ∠=︒,从而15BAD DAC ∠=︒=∠,所以1801203030C =︒-︒-︒=︒,2cos306AC AB =︒=2.【2108辽宁庄河市高级中学、沈阳市第二十中学第一次联考】已知函数()sin (0)f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦,在区间2,33ππ⎡⎤⎢⎥⎣⎦,四边形OACB中, ,,a b c 为ABC ∆的内角,,A B C 的对边,且满足4cos cos sin sin 3sin cos B CB CA Aω--+=.(1)证明: 2b c a +=;(2)若b c =,设AOB θ∠=, (0)θπ<<, 22OA OB ==,求四边形OACB 面积的最大值. 【答案】(1)见解析;(2)5324+.试题解析:(1)由题意知: 243ππω=,解得: 32ω=, ∵sin sin 2cos cos sin cos B C B CA A+--=,∴sin cos sin cos B A C A += 2sin cos sin cos sin A B A C A --, ∴sinBcosA cosBsinA sinCcosA ++ cos sin 2sin C A A +=, ∴()()2sin A B sin A C sinA +++=. ∴sin sin 2sin 2C B A b c a +=⇒∴+=.(2)因为2b c a +=, b c =,所以a b c ==,所以ABC ∆为等边三角形, OACB OAB ABC S S S ∆∆=+=213•24OA OBsin AB θ+ 3sin 4θ=+()222?OA OB OA OBcos θ+- 5334sin cos θθ=-+532sin 34πθ⎛⎫=-+ ⎪⎝⎭,∵()0,θπ∈,∴2,333πππθ⎛⎫-∈- ⎪⎝⎭, 当且仅当32ππθ-=,即56πθ=时取最大值, OACB S 的最大值为5324+. 考向4 正余弦定理与向量交汇【例12】【2017山东,文17】(本小题满分12分)在△ABC 中,角A,B,C的对边分别为a,b ,c,已知b=3,6AB AC ⋅=-,S△ABC =3,求A 和a.【答案】3=π,=29.4A a 【解析】【考点】解三角形【名师点睛】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.【例13】在ABC ∆中,内角,,C A B 对边分别为,,a b c ,且c a <,已知2CB BA =-,tan 22,b 3B ==.(1)求a 和c 的值; (2)求()sin B C -的值.(2)在ABC ∆中,22122sin 1cos 13B B ⎛⎫=-=-= ⎪⎝⎭,sin 22242sin 339c B C b ===,a b c =>,C 为锐角. 22427cos 1sin 199C C ⎛⎫=--= ⎪ ⎪⎝⎭, ()227142102sin sin cos cos sin 393927B C B C B C -=-=-=【名师点睛】涉及到平面向量的三角形问题,利用平面向量的相关知识,将条件转化为三角形的边角条件,再利用正余弦定理求解.【跟踪练习】1.三角形ABC 中,21,7,53cos -=⋅==BC AB a B ,则角C =_________【答案】4【解析】由题21AB BC ⋅=-,则可得;3cos()7()21,55AB BC c a B c c π⋅=⨯⨯-=⨯-=-= 利用余弦定理可得;23492527532,425b b =+-⨯⨯⨯==, 再由余弦定理可得;2cos 42742C C π===⨯⨯ 2.【2017甘肃模拟】已知向量()cos ,1m x =-, 13sin ,2n x ⎛⎫=- ⎪⎝⎭,设函数()()•f x m n m =+.(1)求函数()f x 的最小正周期;(2)已知,,a b c 分别为三角形ABC 的内角对应的三边长, A 为锐角, 1a =, 3c =,且()f A 恰是函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值,求,A b 和三角形ABC 的面积.【答案】(1)π;(2)6A π=,或, 34S =或32S =.试题解析:(1)4分因为,所以最小正周期.6分(2)由(1)知,当时,.由正弦函数图象可知,当时, ()f x 取得最大值,又A 为锐角所以.8分由余弦定理得,所以或经检验均符合题意. 10分从而当时,△的面积; 11分当时,.12分考点:平面向量的数量积、二倍角公式、两角和的正弦公式、三角函数、余弦定理、三角形面积.考向5 与三角函数交汇【例14】【2017河北沧州一中第一次月考】在ABC ∆中,已知2,3,60AB AC A ===. (1)求BC 的长; (2)求sin 2C 的值.【方法总结】对涉及到三角形角三角函数式求值问题,常利用三角形内角和定理化为某个角的三角函数问题,利用三角函数公式求值.【跟踪练习】1.设锐角ABC ∆的三内角A 、B 、C 所对边的边分别为a 、b 、c ,且1,2a B A ==,则b 的取值范围( )A.(2,3 B .(3 C.)2,2 D.()0,2【答案】A【解析】2B A =,由正弦定理得sin sin 22sin cos ,2cos 2cos B A A A b a A A ====,因为02,024A B A ππ<=<<<,又因为,3,2263A B A A ππππππ<+<<<<<,故64A ππ<<,2cos 2,3A ∈.2.【2018河南中原名校一摸】已知函数22()cos sin 23cos sin (0),()f x x x x x f x ωωωω=-+>的图象的两条相邻对称轴间的距离等于2π,在∆A BC 中,角A , B,C 所对的边依次为a,b,c,若3a =, b+c=3,()1f A =,求∆ABC 的面积.【答案】32试题解析:22π()cos sin 23cos sin cos 23sin 22sin(2),6f x x x x x x x x ωωωωωωω=-+=+=+ 3分0,ω>∴函数()f x 的最小正周期2ππ2T ωω==, 由题意得:π=22T ,即π=π,T ω=解得:=1ω 5分 π()2sin(2)6f x x ∴=+,()1f A =,π1sin(2)62A ∴+=,ππ13π2(,),666A +∈5266A ππ∴+=,即=3A π 7分3,a =∴由余弦定理得:2222cos ,a b c bc A =+-即223b c bc +-= ①, 9分2223,()29b c b c b c bc +=∴+=++= ②,联立①②,解得:2bc =,则13sin .22ABC S bc A ==△ 12分考点:1、二倍角公式和辅助角公式;2、余弦定理;3、三角形面积公式.以上就是本文的全部内容,可以编辑修改。

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3,则A =( )A .π6B .56 πC .π4D .π4 或34 π答案:C解析:由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×323=22 ,又a <b ,∴A为锐角,∴A =π4.2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案:C解析:由正弦定理b sin B =c sin C ,∴sin B =b sin Cc =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6B .π4C .π3D .π2答案:C解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3 =12,又C 为△ABC 内角,∴C =π3 .4.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .2答案:C解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32=3 . 5.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( )A.14 B .6 C .14 D .6 答案:D解析:∵b sin A =3c sin B ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1,由余弦定理得b 2=a 2+c 2-2ac ·cos B =9+1-2×3×23=6,∴b =6 .6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案:B解析:∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.钝角三角形ABC 的面积是12,AB =1,BC =2 ,则AC =( )A .5B .5C .2D .1 答案:B解析:∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos 135°=1+2+2×2 ×22=5,∴AC =5 .8.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522m答案:A解析:由正弦定理得AC sin B =ABsin C,∴AB =AC ·sin Csin B =50×22sin (180°-45°-105°) =502 .9.[2024·全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94ac ,则sin A +sin C =( )A .32 B .2C .72D .32答案:C解析:∵b 2=94 ac ,∴由正弦定理可得sin 2B =94sin A sin C .∵B =60°,∴sin B =32 ,∴34 =94 sin A sin C ,∴sin A sin C =13.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,将b 2=94 ac 代入整理得,a 2+c 2=134ac ,∴由正弦定理得sin 2A +sin 2C =134 sin A sin C ,则(sin A +sin C )2=sin 2A +sin 2C +2sin A sin C =134 sin A sin C+2sin A sin C =214 sin A sin C =214 ×13 =74 ,∴sin A +sin C =72 或-72(舍).故选C.二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.答案:23π解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac =-12 ,又B 为△ABC 的内角,∴B =23π.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13,则cos (π+B )=________.答案:①90° ②-13解析:①∵c =a ·cos B ,∴c =a ·a 2+c 2-b 22ac,得a 2=b 2+c 2,∴∠A =90°;②∵cos B =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.[2023·全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.答案:2 解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC=1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×AD sin30°,所以AD =23AC AC +2 =23×(1+3)3+3=2.方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6AC AC +2 .由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC(AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.[能力提升]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ·cos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形 答案:AB解析:∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin (B +C ),∴2sin A cos C =sin A .∵在△ABC 中,sin A ≠0,∴cos C =12 ,∴C =60°,A 正确.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,C 错误.∴△ABC 的面积S =12 ab sin C =12 ×8×3×32 =63 ,B 正确.又cos A =b 2+c 2-a 22bc=9+49-642×3×7<0,∴A 为钝角,△ABC 为钝角三角形,D 错误. 14.[2023·全国甲卷(理)]已知四棱锥P ­ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .62 答案:C解析:如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ·AC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ·BC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ·BCsin ∠PCB =42 ,故选C.15.[2022·全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =________.答案:3 -1解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC=(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C =________.答案:125解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C +cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125.。

高考数学浙江版5.3 正弦、余弦定理及解三角形

高考数学浙江版5.3 正弦、余弦定理及解三角形

答案 A 本题考查三角公式的运用和正弦定理、余弦定理. 解法一:因为sin B(1+2cos C)=2sin Acos C+cos Asin C, 所以sin B+2sin Bcos C=sin Acos C+sin(A+C), 所以sin B+2sin Bcos C=sin Acos C+sin B, 即cos C(2sin B-sin A)=0, 所以cos C=0或2sin B=sin A, 即C=90°或2b=a, 又△ABC为锐角三角形,所以0°<C<90°,故2b=a.故选A. 解法二:由正弦定理和余弦定理得
(1)求 sin 2sAin2cAos2 A 的值; (2)若B= ,a=3,求△ABC的面积.
4
解析
(1)由tan 4
A

=2,得tan
A= 13 ,
所以 sin 2A
sin 2A cos
2
A
= 2 tan A
2 tan A
1
= 2 .
5
(2)由tan A= 1 ,A∈(0,π),得
答案 A 在△ABC中,设A,B,C所对的边分别为a,b,c,则由c2=a2+b2-2abcos C,得13=9+b2-2×3b×
12

,即b2+3b-4=0,解得b=1(负值舍去),即AC=1.故选A.
评析 本题考查了余弦定理的应用和方程思想,属容易题.
5.(2018课标全国Ⅰ文,16,5分)△ABC的内角A,B,C的对边分别为a,b,c,已知bsin C+csin B=
5
5
又因为sin
B=sin(A+C)=sin 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考试题训练一:2018年高考理科数学新课标Ⅰ卷第17题:在平面四边形ABCD 中,090=∠ADC ,045=∠A ,2=AB ,5=BD 。

(Ⅰ)求ADB ∠cos ; (Ⅱ)若22=DC ,求BC 。

本题解析:(Ⅰ)本题目是正弦定理已知两边和其中一边对角的经典题型。

如下图所示:根据正弦定理得到:A AB ADB BD ADBABA BD sin sin sin sin ⋅=∠⋅⇒∠= 525222sin sin =⨯=⋅=∠⇒BDAAB ADB 。

根据三角函数同角之间的基本关系得到:ADB ADB ∠-=∠22sin 1cos 25232521=-=。

根据大边对大角得到:ADB ADB A ADB BC AB ∠⇒<∠⇒<∠⇒<045 为锐角523cos 0cos =∠⇒>∠⇒ADB ADB 。

(Ⅱ)本题目是标准的余弦定理已知两边和两边夹角的经典题型。

在BCD Rt ∆中:5=BD ,22=CD ,ADB BDC ∠-=∠090)90cos(cos 0ADB BDC ∠-=∠⇒。

诱导公式:090终边在y 轴正半轴ADB ∠-⇒090是第一象限角 cos ⇒在第一象限为正,090是090的奇数倍cos ⇒名称改为sin 名称。

52sin )90cos(cos 0=∠=∠-=∠ADB ADB BDC 。

根据余弦定理得到:BDC BD DC BD DC BC ∠⋅⋅⋅-+=cos 2222525833525222258=⇒=-=⋅⋅⋅-+=BC 。

训练二:2018年高考文科数学新课标Ⅰ卷第16题:ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知C B a B c C b sin sin 4sin sin =+,8222=-+a c b ,则ABC ∆的面积为。

本题解析:本题目是边角转化与余弦定理综合题型。

边角转化:方程中每一项都有边,每一项中的边次数相加相等,可以把方程每一项的 边全部转化为对角正弦,保持次数不变。

C B A B C C B C B a B c C b sin sin sin 4sin sin sin sin sin sin 4sin sin =+⇒=+ 621sin sin 21sin sin sin 4sin sin 2π=⇒=⇒=⇒=⇒A A A C B A C B 或65π=A 根据余弦定理得到:A bc bc bc a c b A ⇒>==-+=04282cos 222是锐角6π=⇒A , 3382346cos 446cos 4cos ===⇒=⇒=ππbc bc bc A 。

3322133821sin 21=⨯⨯==∆A bc S ABC 。

训练三:2018年高考数学新课标Ⅱ卷理科第6题文科第7题:在ABC ∆中,552cos =C ,1=BC , 5=AC ,则=AB ( )A 、24B 、30C 、29D 、52 本题解析:本题目是二倍角公式和余弦定理已知两边和夹角的综合经典题型。

根据三角函数二倍角公式得到:53151212cos 2)22cos(cos 2-=-⨯=-=⋅=C C C 。

根据余弦定理得到:)53(512251cos 2222-⨯⨯⨯-+=⋅⋅⋅-+=C AC BC AC BC AB2432626=⇒=+=AB 。

训练四:2018年高考数学新课标Ⅲ卷理科第9题文科第11题:ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若ABC ∆的面积为4222c b a -+,则=C ( )A 、2π B 、3π C 、4π D 、6π 本题解析:本题目是余弦定理四项式的经典题型。

C ab c b a c b a C ab S ABCsin 24sin 21222222=-+⇒-+==∆。

根据余弦定理得到:C C abCab C ab c b a C sin cos 2sin 2cos 2cos 222=⇒=⇒-+=41tan 1cos sin π=⇒=⇒=⇒C C C C 。

训练五:2018年高考理科数学北京卷第15题:在ABC ∆中,7=a ,8=b ,71cos -=B 。

(Ⅰ)求A ∠;(Ⅱ)求AC 边上的高。

本题解析:(Ⅰ)本题目是正弦定理已知两边和其中一边对角的经典题型。

根据三角函数同角之间的基本关系得到:49484911cos 1sin 22=-=-=B B , 734sin 0sin =⇒>B B 。

根据正弦定理得到:bBa A B a Ab B b A a sin sin sin sin sin sin =⇒=⇒= 32383487347π=⇒==⨯=A 或32π=A 。

根据大边对大角得到:A B A b a ⇒<⇒<是锐角3π=⇒A 。

(Ⅱ)本题目是标准的新旧面积公式计算结果相等的经典题型。

21734)71(23cos sin cos sin )sin(sin ⨯+-⨯=+=+=A B B A B A C1433143431434143=+-=+-=。

根据新三角形面积公式得到:3614338721sin 21=⨯⨯⨯==∆C ab S ABC 。

根据旧三角形面积公式得到:h h h AC S ABC 482121=⨯⨯=⋅⋅=∆。

面积相等得到:233436364==⇒=h h 。

训练六:2018年高考文科数学北京卷第14题:若ABC ∆的面积为)(43222b c a -+,且C ∠为钝角,则=∠B ;ac的取值范围是 。

本题解析:本题目是标准的余弦定理四项式的经典题型。

B ac b c a b c a B ac S ABC sin 332)(43sin 21222222=-+⇒-+==∆。

根据余弦定理得到:acBac B ac bc a B 2sin 332cos 2cos 222=⇒-+=33tan 3cos sin sin 33cos π=⇒=⇒=⇒=⇒B B B B B B 。

本题目是已知一角求另外两角三角函数计算式的取值范围的经典题型。

根据正弦定理得到:ACa c C c A a sin sin sin sin =⇒=。

A A A B B A B A C cos 23sin 21cos sin cos sin )sin(sin +=+=+=。

AA A A A A A AA A C a c tan 2321tan 23tan sin 2cos 3sin sin cos 23sin 21sin sin +=+=+=+==。

根据三角形内角和得到:A C C A B -=⇒=+⇒=32323πππ,)32,0(π∈A 。

C 为钝角)6,3(),2(32πππππ-∈⇒∈-=⇒A A C ,)6,0()32,0(ππ∈⇒∈A A 。

当)6,0(π∈A 时:A y tan =单调递增)332,0(tan 2)33,0(tan ∈⇒∈⇒A A ),2(tan 2321),23(tan 23+∞∈+⇒+∞∈⇒AA 。

训练七:2018年高考数学天津卷理科第15题文科第16题:在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c 。

已知)6cos(sin π-=B a A b 。

(Ⅰ)求角B 的大小;(Ⅱ)设2=a ,3=c ,求b 和)2sin(B A -的值。

本题解析:(Ⅰ)本题目是边角转化的经典题型。

边角转化:方程中每一项都有边,每一项中边次数相加相等,可以把每一项中的 边全部转化为对角的正弦,保持次数不变。

)6cos(sin )6cos(sin sin sin )6cos(sin πππ-=⇒-=⇒-=B B B A A B B a A bB B B B B B sin 21cos 23sin 6sinsin 6coscos sin +=⇒+=⇒ππ3tan 3cos sin cos 3sin cos 23sin 21=⇒=⇒=⇒=⇒B BBB B B B 3π=⇒B 。

(Ⅱ)本题目是余弦定理已知两边和其夹角的经典题型。

根据余弦定理得到:2132294cos 2222⨯⨯⨯-+=-+=B ac c a b 77613=⇒=-=b 。

根据余弦定理得到:77276123724972cos 222==⨯⨯-+=-+=bc a c b A 。

根据三角函数同角之间的基本关系得到:492149281cos 1sin 22=-=-=A A , 721sin 0sin =⇒>A A 。

根据三角函数二倍角公式得到:7727212cos sin 22sin ⨯⨯==A A A 73449374497214=⨯⨯=⨯⨯=。

7149749214928sin cos 2cos 22==-=-=A A A 。

7123217342cos sin cos 2sin )2sin(⨯-⨯=-=-A B B A B A 14331431434=-=。

训练八:2018年高考数学浙江卷第13题:在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若7=a ,2=b ,060=A ,则=B sin ,=c 。

本题解析:本题目是正弦定理已知两边和其中一边对角的经典题型。

根据正弦定理得到:aAb B A b B a B b A a sin sin sin sin sin sin =⇒=⇒= 721737232==⨯=。

根据三角函数同角之间的基本关系得到:492849211sin 1cos 22=-=-=B B 。

B A B a b ⇒<⇒<是锐角772cos 0cos =⇒>⇒B B 。

2172177223cos sin cos sin )sin(sin ⨯+⨯=+=+=A B B A B A C 142131421212=+=。

根据正限定理得到:ACa c C a A c C c A a sin sin sin sin sin sin =⇒=⇒= 3321432123142137=⨯=⨯=。

相关文档
最新文档