中考数学复习指导:解二次函数中三角形面积最值问题
二次函数中三角形面积最大值问题的处理方法

二次函数中三角形面积最大值问题的处理方法二次函数是高中数学中一个经常出现的重要知识点,它在数学中有着广泛的应用,其中一个重要的应用就是处理三角形面积最大值问题。
在本文中,我们将介绍二次函数在处理三角形面积最大值问题中的基本方法和应用技巧。
1. 三角形面积最大值问题的基本原理三角形面积最大值问题指的是给定三边长度为a、b、c,求出以这三条边为边长的三角形的面积最大值。
根据海伦公式,三角形面积公式为:S = √[p(p-a)(p-b)(p-c)]其中p=(a+b+c)/2,是三角形半周长。
我们可以通过求解出上式的最大值来得到三角形的最大面积。
2. 二次函数相关知识介绍二次函数是形如y=ax^2+bx+c的函数,其中a、b、c 是常数,而x是自变量。
二次函数在数学中有着广泛的应用,其标准形式为:y=ax^2+bx+c(a≠0)其中a表示二次函数的开口方向和大小,常被称为二次函数的开口因子;b表示二次函数的对称轴的位置,常被称为二次函数的对称轴;c表示二次函数在y轴上的截距,即当x=0时,二次函数的函数值。
3. 二次函数求解三角形面积最大值的应用在二次函数求解三角形面积最大值的应用中,我们可以将三角形面积公式中的p表示为:p=(a+b+c)/2 = (x+y+z)/2然后使用二次函数y=f(x)表示√[p(p-a)(p-b)(p-c)],其中x、y、z分别表示三角形的三边长度a、b、c。
由于p=(x+y+z)/2是一个常数,因此我们可以将其视为一个固定值,从而将y=f(x)表示为:y=√[(x+y+z)/2(x+y+z)/2-x(x+y+z)/2-y(x+y+z)/2+z(x+y+z)/2]化简得:y=√[xyz(x+y+z)]这就是一个二次函数的标准形式。
通过求解这个二次函数的最大值,我们就可以得到三角形的最大面积。
4. 二次函数求解三角形面积最大值的具体方法为了求解上述的二次函数的最大值,我们需要使用二次函数y=f(x)的顶点公式:x=-b/2a,y=f(-b/2a)其中x=-b/2a即为二次函数的对称轴坐标,f(-b/2a)即为二次函数的顶点坐标。
2023年中考数学总复习专题5二次函数与面积最值定值问题(学生版)

专题5二次函数与面积最值定值问题面积是平面几何中一个重要的概念,关联着平面图形中的重要元素边与角,由动点而生成的面积问题,是抛物线与直线形结合的觉形式,常见的面积问题有规则的图形的面积(如直角三角形、平行四边形、菱形、矩形的面积计算问题)以及不规则的图形的面积计算,解决不规则的图形的面积问题是中考压轴题常考的题型,此类问题计算量较大。
有时也要根据题目的动点问题产生解的不确定性或多样性。
解决这类问题常用到以下与面积相关的知识:图形的割补、等积变形、等比转化等数学方法.面积的存在性问题常见的题型和解题策略有两类:一是先根据几何法确定存在性,再列方程求解,后检验方程的根.二是先假设关系存在,再列方程,后根据方程的解验证假设是否正确.解决动点产生的面积问题,常用到的知识和方法,如下:如图1,如果三角形的某一条边与坐标轴平行,计算这样“规则”的三角形的面积,直接用面积公式.如图2,图3,三角形的三条边没有与坐标轴平行的,计算这样“不规则”的三角形的面积,用“割”或“补”的方法.图1 图2 图3计算面积长用到的策略还有:如图4,同底等高三角形的面积相等.平行线间的距离处处相等.如图5,同底三角形的面积比等于高的比.如图6,同高三角形的面积比等于底的比.图4 图5 图6【例1】(2022•青海)如图1,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)若点E是抛物线的对称轴与直线BC的交点,点F是抛物线的顶点,求EF的长;(3)设点P是(1)中抛物线上的一个动点,是否存在满足S△P AB=6的点P?如果存在,请求出点P的坐标;若不存在,请说明理由.(请在图2中探讨)【例2】(2022•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.(1)直接写出抛物线的解析式;(2)如图2,连接AC,当点P在直线AC上方时,求四边形P ABC面积的最大值,并求出此时P点的坐标;(3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.【例3】(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.(1)当k=2时,求A,B两点的坐标;(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;(3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.【例4】(2022•岳阳)如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A(﹣3,0)和点B(1,0).(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN面积的最大值.1.(2022•金坛区二模)如图,在平面直角坐标系xOy中,二次函数y=x2+bx﹣2的图象与x轴交于点A (3,0),B(点B在点A左侧),与y轴交于点C,点D与点C关于x轴对称,作直线AD.(1)填空:b=;(2)将△AOC平移到△EFG(点E,F,G依次与A,O,C对应),若点E落在抛物线上且点G落在直线AD上,求点E的坐标;(3)设点P是第四象限抛物线上一点,过点P作x轴的垂线,垂足为H,交AC于点T.若∠CPT+∠DAC=180°,求△AHT与△CPT的面积之比.2.(2022•罗城县模拟)如图,已知抛物线y=ax2+b经过点A(2,6),B(﹣4,0),其中E、F(m,n)为抛物线上的两个动点.(1)求抛物线的解析式并写出其顶点坐标;(2)若C(x,y)是抛物线上的一点,当﹣4<x<2且S△ABC最大时,求点C的坐标;(3)若EF∥x轴,点A到EF的距离大于8个单位长度,求m的取值范围.3.(2022•老河口市模拟)在平面直角坐标系中,抛物线y=﹣x2+2mx的顶点为A,直线l:y=x﹣1与x轴交于点B.(1)如图,已知点A的坐标为(2,4),抛物线与直线l在第一象限交于点C.①求抛物线的解析式及点C的坐标;②点M为线段BC上不与B,C重合的一动点,过点M作x轴的垂线交x轴于点D,交抛物线于点E,设点M的横坐标t.当EM>BD时,求t的取值范围;(2)过点A作AP⊥l于点P,作AQ∥l交抛物线于点Q,连接PQ,设△APQ的面积为S.直接写出①S 关于m的函数关系式;②S的最小值及S取最小值时m的值.4.(2022•新吴区二模)如图,已知抛物线y=+bx过点A(﹣4,0)、顶点为B,一次函数y=x+2的图象交y轴于M,对称轴与x轴交于点H.(1)求抛物线的表达式;(2)已知P是抛物线上一动点,点M关于AP的对称点为N.①若点N恰好落在抛物线的对称轴上,求点N的坐标;②请直接写出△MHN面积的最大值.5.(2022•开福区校级二模)如图,抛物线y=(x+1)(x﹣a)(其中a>1)与x轴交于A、B两点,交y轴于点C.(1)直接写出∠OCA的度数和线段AB的长(用a表示);(2)如图①,若a=2,点D在抛物线的对称轴上,DB=DC,求△BCD与△ACO的周长之比;(3)如图②,若a=3,动点P在线段OA上,过点P作x轴的垂线分别与AC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△BPM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.6.(2022•官渡区二模)抛物线交x轴于A、B两点,交y轴正半轴于点C,对称轴为直线.(1)如图1,若点C坐标为(0,2),则b=,c=;(2)若点P为第二象限抛物线上一动点,在(1)的条件下,求四边形ABCP面积最大时,点P坐标和四边形ABCP的最大面积;(3)如图2,点D为抛物线的顶点,过点O作MN∥CD别交抛物线于点M,N,当MN=3CD时,求c 的值.7.(2022•徐州二模)如图,四边形ABCD中,已知AB∥CD,动点P从A点出发,沿边AB运动到点B,动点Q同时由A点出发,沿折线AD﹣DC﹣CB运动点B停止,在移动过程中始终保持PQ⊥AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ的面积为y,已知y与x之间函数关系如图②,其中MN为线段,曲线OM,NK为抛物线的一部分,根据图中信息,解答下列问题:(1)图①AB=,BC=;(2)分别求线段MN,曲线NK所对应的函数表达式;(3)当x为何值,△APQ的面积为6?8.(2022•茌平区一模)如图,已知二次函数的图象交x轴于点B(﹣8,0),C(2,0),交y轴点A.(1)求二次函数的表达式;(2)连接AC,AB,若点P在线段BC上运动(不与点B,C重合),过点P作PD∥AC,交AB于点D,试猜想△P AD的面积有最大值还是最小值,并求出此时点P的坐标.(3)连接OD,在(2)的条件下,求出的值.9.(2022•碑林区校级模拟)抛物线W1:y=a(x+)2﹣与x轴交于A(﹣5,0)和点B.(1)求抛物线W1的函数表达式;(2)将抛物线W1关于点M(﹣1,0)对称后得到抛物线W2,点A、B的对应点分别为A',B',抛物线W2与y轴交于点C,在抛物线W2上是否存在一点P,使得S△P A′B′=S△P A'C,若存在,求出P点坐标,若不存在,请说明理由.10.(2021秋•钦北区期末)如图,抛物线y=ax2+bx+6与直线y=x+2相交于A(,)、B(4,6)两点,点P是线段AB上的动点(不与A、B两点重合),过点P作PC⊥x轴于点D,交抛物线于点C,点E是直线AB与x轴的交点.(1)求抛物线的解析式;(2)当点C是抛物线的顶点时,求△BCE的面积;(3)是否存在点P,使得△BCE的面积最大?若存在,求出这个最大值;若不存在,请说明理由.11.(2022•保定一模)如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B (1,﹣5),D(4,0).(1)求c,b(含t的代数式表示);(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式.并求t为何值时,△MPN的面积为.12.(2022•黄石模拟)如图,已知抛物线与x轴交于A(2,0),B两点,与y轴交于点C(0,﹣4),直线与x轴交于点D,点P是抛物线上的一动点,过点P作PE⊥x 轴,垂足为E,交直线l于点F.(1)求该抛物线的表达式;(2)点P是抛物线上位于第三象限的一动点,设点P的横坐标是m,四边形PCOB的面积是S.①求S 关于m的函数解析式及S的最大值;②点Q是直线PE上一动点,当S取最大值时,求△QOC周长的最小值及FQ的长.13.(2022•哈尔滨模拟)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax+3与x轴的负半轴交于点A,与x的正半轴交于点B,与y轴正半轴交于点C,OB=2OA.(1)求抛物线的解析式;(2)点D是第四象限内抛物线上一点,连接AD交y轴于点E,过C作CF⊥y轴交抛物线于点F,连接DF,设四边形DECF的面积为S,点D的横坐标的t,求S与t的函数解析式;(3)在(2)的条件下,过F作FM∥y轴交AD于点M,连接CD交FM于点G,点N是CE上一点,连接MN、EG,当∠BAD+2∠AMN=90°,MN:EG=,求点D的坐标.14.(2022•利川市模拟)如图,等腰直角三角形OAB的直角顶点O在坐标原点,直角边OA,OB分别在y 轴和x轴上,点C的坐标为(3,4),且AC平行于x轴.(1)求直线AB的解析式;(2)求过B,C两点的抛物线y=﹣x2+bx+c的解析式;(3)抛物线y=﹣x2+bx+c与x轴的另一个交点为D,试判定OC与BD的大小关系;(4)若点M是抛物线上的动点,当△ABM的面积与△ABC的面积相等时,求点M的坐标.15.(2021•襄阳)如图,直线y=x+1与x,y轴分别交于点B,A,顶点为P的抛物线y=ax2﹣2ax+c过点A.(1)求出点A,B的坐标及c的值;(2)若函数y=ax2﹣2ax+c在3≤x≤4时有最大值为a+2,求a的值;(3)连接AP,过点A作AP的垂线交x轴于点M.设△BMP的面积为S.①直接写出S关于a的函数关系式及a的取值范围;②结合S与a的函数图象,直接写出S>时a的取值范围.16.(2021•辽宁)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点C(﹣1,0),与y轴交于点B(0,3),连接AB,BC,点P是抛物线第一象限上的一动点,过点P作PD⊥x轴于点D,交AB于点E.(1)求抛物线的解析式;(2)如图1,作PF⊥PD于点P,使PF=OA,以PE,PF为邻边作矩形PEGF.当矩形PEGF的面积是△BOC面积的3倍时,求点P的坐标;(3)如图2,当点P运动到抛物线的顶点时,点Q在直线PD上,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围.17.(2021•贺州)如图,抛物线y=x2+bx+c与x轴交于A、B两点,且A(﹣1,0),对称轴为直线x=2.(1)求该抛物线的函数表达式;(2)直线l过点A且在第一象限与抛物线交于点C.当∠CAB=45°时,求点C的坐标;(3)点D在抛物线上与点C关于对称轴对称,点P是抛物线上一动点,令P(x P,y P),当1≤x P≤a,1≤a≤5时,求△PCD面积的最大值(可含a表示).18.(2021•常德)如图,在平面直角坐标系xOy中,平行四边形ABCD的AB边与y轴交于E点,F是AD 的中点,B、C、D的坐标分别为(﹣2,0),(8,0),(13,10).(1)求过B、E、C三点的抛物线的解析式;(2)试判断抛物线的顶点是否在直线EF上;(3)设过F与AB平行的直线交y轴于Q,M是线段EQ之间的动点,射线BM与抛物线交于另一点P,当△PBQ的面积最大时,求P的坐标.19.(2021•福建)已知抛物线y=ax2+bx+c与x轴只有一个公共点.(1)若抛物线过点P(0,1),求a+b的最小值;(2)已知点P1(﹣2,1),P2(2,﹣1),P3(2,1)中恰有两点在抛物线上.①求抛物线的解析式;②设直线l:y=kx+1与抛物线交于M,N两点,点A在直线y=﹣1上,且∠MAN=90°,过点A且与x轴垂直的直线分别交抛物线和l于点B,C.求证:△MAB与△MBC的面积相等.20.(2021•柳州)在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣).(1)求抛物线的函数解析式;(2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的坐标;(3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,求的最大值.21.(2021•聊城)如图,抛物线y=ax2+x+c与x轴交于点A,B,与y轴交于点C,已知A,C两点坐标分别是A(1,0),C(0,﹣2),连接AC,BC.(1)求抛物线的表达式和AC所在直线的表达式;(2)将△ABC沿BC所在直线折叠,得到△DBC,点A的对应点D是否落在抛物线的对称轴上?若点D 在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;(3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,△BPQ的面积记为S1,△ABQ的面积记为S2,求的值最大时点P的坐标.22.(2020•贺州)如图,抛物线y=a(x﹣2)2﹣2与y轴交于点A(0,2),顶点为B.(1)求该抛物线的解析式;(2)若点P(t,y1),Q(t+3,y2)都在抛物线上,且y1=y2,求P,Q两点的坐标;(3)在(2)的条件下,若点C是线段QB上一动点,经过点C的直线y=﹣x+m与y轴交于点D,连接DQ,DB,求△BDQ面积的最大值和最小值.。
2024年中考数学二次函数中三角形面积最值及平行四边形存在性问题(必考知识点)

一、知识梳理1.三角形面积公式:S 2024年中考数学二次函数中三角形面积最值及平行四边形存在性问题(必考知识点)=21×底×高2.平行四边形的性质:对边相等、对角相等、对角线互相平分3.判别式法求最值:通过判别式判断二次方程的根的情况,进而求出最值二、问题分析1.三角形面积最值存在性问题:∙利用二次函数的性质和对称性,找到合适的底和高,计算三角形的面积;∙设置关于底和高的二次方程,利用判别式判断方程的根的情况,进而求出面积的最值。
2.平行四边形存在性问题:∙利用二次函数的对称性和性质,找到满足平行四边形性质的点;∙利用平行四边形的性质证明这些点构成平行四边形。
三、例题解析【例1】已知抛物线y=x2−2x和直线y=2x+b相交于A、B两点,且∠AOB=90°,其中O为坐标原点。
求△AOB的面积。
【答案】联立方程组:y=x2−2x,y=2x+b.消去y得:x2−4x−b=0.由于直线与抛物线有两个交点,所以判别式Δ>0:Δ=16+4b>0⇒b>−4.设交点A、B坐标分别为(x1,y1)和(x2,y2),由韦达定理得:x1+x2=4,x1x2=−b.由于∠AOB=90,所以x1x2+y1y2=0。
代入y1=2x1+b和y2=2x2+b,解得:−b+(2x1+b)(2x2+b)=0.化简得:−b−4b+8b+b2=0⇒b2+3b=0.解得:b=−3或b=0。
当b=0时,A、B坐标分别为(0,0)和(4,8),点A和点O重合,不符合条件。
因此,b =−3,代入方程组得A (1,-1),B (3,3)。
所以,△AOB 的面积为:S =21×∣O A ∣×∣O B ∣=21×2211)()(-+×2233)()(+=21×2×18=3.【例2】抛物线6221y 2--=x x 与x 轴相交于点A 、点B ,与y 轴相交于点C 。
二次函数三角形面积最大值

二次函数三角形面积最大值
二次函数三角形面积的最大值是数学界的一个重要课题,许多算法是建立在此之上的。
该课题涉及多个数学领域,如研究函数最值、极大极小值、极值点、微分及导数的概念等。
有许多方法可用于求解二次函数三角形面积的最大值,包括数学方程法和几何图形法,其中数学方程法比较常用,可将三角形面积公式简化为一个二次函数,并求解函数最值,得出二次函数三角形面积的最大值。
而几何图形法可以通过在二次函数曲线下的三角形的几何关系来证明三角形面积的最大值。
以下是求解二次函数三角形面积最大值的具体步骤:首先令被三角形抹平的坐标轴长度为2a,抹除一条斜边之后,因此确定顶点坐标矩阵A(a, 0),B(-a, 0),C(x, y)。
继而,通过直角三角形斜边两点坐标,可将三角形面积表达式化简为二元二次方程,以此为基础,求出原三角形的最大面积并得到其最大值。
此外,还可以通过比较几何图形下的三角形面积,发现其最大值。
综上所述,求解二次函数三角形面积最大值是一项重要数学课题,有数学方程法与几何图形法可供选择,这需要对数学最值、极大极小值、极值点与微分及导数等概念有所了解,并结合被三角形抹平的坐标轴长度、直角三角形斜边两点坐标与比较几何图形下的三角形面积等内容,从而求出二次函数三角形面积最大值。
最新中考数学专题复习——二次函数的实际应用(面积最值问题11页)及答案

第 1 页二次函数的实际应用——面积最大(小)值问题知识要点:在生活理论中,人们经常面对带有“最〞字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。
求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用根本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度挪动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度挪动,假如P 、Q 两点同时出发,分别到达B 、C 两点后就停顿挪动.〔1〕运动第t 秒时,△PBQ 的面积y(cm²)是多少?〔2〕此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.〔3〕t 为何值时s 最小,最小值时多少?答案:[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门〔木质〕.花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米那么长为:x x 4342432-=+-(米)那么:)434(x x S -= ∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大. [例3]:边长为4的正方形截去一个角后成为五边形ABCDE 〔如图〕,其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,那么矩形PNDM 的面积S=xy 〔2≤x≤4〕易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H那么有△AFB ∽△BHP∴PH BH BF AF =,即3412--=y x , 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】此题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考察学生的综合应用才能.同时,也给学生探究解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖〔如图(1)所示〕是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,假设将此种地砖按图(2)所示的形式铺设,且能使中间的阴影局部组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 那么BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10]当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2021浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米 .2.(2021庆阳市)兰州市“安居工程〞新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);点(x ,y )都在一个二次函数的图像上,(如下图),那么6楼房子的价格为 元/平方米.提示:利用对称性,答案:2080.3.如下图,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2 ∵AD ∥BC ∴△MAD ∽△MBN第 3 页 ∴MB MA BN AD =,即5512x b -=,)5(512x b -= )5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值. 4.(2021湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大〔 C 〕A .7B .6C .5D .45.如图,铅球运发动掷铅球的高度y (m)与程度间隔 x (m)之间的函数关系式是:35321212++-=x x y ,那么该运发动此次掷铅球的成绩是( D ) A .6 m B .12 m C .8 m D .10m解:令0=y ,那么:02082=--x x 0)10)(2(=-+x x〔图5〕 〔图6〕 〔图7〕6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,假如抛物线的最高点M 离墙1 m ,离地面340m ,那么水流落地点B 离墙的间隔 OB 是( B )A .2 mB .3 mC .4 mD .5 m 解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=3 7.(2021乌兰察布)小明在某次投篮中,球的运动道路是抛物线21 3.55y x =-+的一局部,如图7所示,假设命中篮圈中心,那么他与篮底的间隔 L 是〔 B 〕A .4.6mB .4.5mC .4mD .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.假设设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;〔2〕根据〔1〕中求得的函数关系式,描绘其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解:)240(x x y -=)20(22x x --=∵二次函数的顶点不在自变量x 的范围内,而当205.12<≤x 内,y 随x 的增大而减小,∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,假如用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)假如中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比拟(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,那么宽为350x -米,设面积为S 平方米. ∴当25=x 时,3625max =S (平方米) 即:鸡场的长度为25米时,面积最大. (2) 中间有n 道篱笆,那么宽为250+-n x 米,设面积为S 平方米. 那么:)50(212502x x n n x x S -+-=+-⋅= ∴当25=x 时,2625max +=n S (平方米) 由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式. 解:∵∠APQ=90°,∴∠APB+∠QPC=90°.∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90°.∴△ABP ∽△PCQ.11.(2021年南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?解:∵矩形MFGN ∽矩形ABCD∴MF=2MN =2x ∴ EM=10-2x∴S=x 〔10-2x 〕=-2x 2+10x=-2(x-2.5)2+12.5当x=2.5时,S 有最大值12.512.(2021四川内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,那么绳子的最低点距地面的间隔 为 0.5 米.答案:如下图建立直角坐标系那么:设c ax y +=2将点)1,5.0(-,)5.2,1(代入,第 5 页⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2021黑龙江哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.〔1〕求S 与x 之间的函数关系式,并写出自变量x 的取值范围;〔2〕当x 是多少时,矩形场地面积S 最大?最大面积是多少?解:〔1〕根据题意,得x x x x S 3022602+-=⋅-= 自变量的取值范围是〔2〕∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2021年南宁市)随着绿城南宁近几年城市建立的快速开展,对花木的需求量逐年进步.某园林专业户方案投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)〔1〕分别求出利润与关于投资量的函数关系式; 〔2〕假如这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?解:〔1〕设=,由图12-①所示,函数=的图像过〔1,2〕,所以2=, 故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过〔2,2〕,所以,故利润2y 关于投资量的函数关系式是2221x y =; 〔2〕设这位专业户投入种植花卉万元〔〕,那么投入种植树木(x -8)万元, 他获得的利润是万元,根据题意,得∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧,z 随x 的增大而增大所以,当8 x 时,z 的最大值为32.15.(08山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子〔纸板的厚度忽略不计〕.〔1〕要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?〔2〕你感到折合而成的长方体盒子的侧面积会不会有更大的情况?假如有,请你求出最大值和此时剪去的正方形的边长;假如没有,请你说明理由;〔3〕假如把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;假如有,请你求出最大值和此时剪去的正方形的边长;假如没有,请你说明理由.解:〔1〕设正方形的边长为cm , 那么. 即. 解得〔不合题意,舍去〕,. 剪去的正方形的边长为1cm .〔2〕有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2, 那么与的函数关系式为: 即. 改写为. 当时,.即当剪去的正方形的边长为2.25cm 时,长方体盒子的侧面积最大为40.5cm 2.〔3〕有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2.假设按图1所示的方法剪折, 那么与的函数关系式为: 即. 当时,.假设按图2所示的方法剪折, 那么与的函数关系式为:即.当时,.比拟以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm2.16.(08兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m,跨度20m,相邻两支柱间的间隔均为5m.〔1〕将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式;〔2〕求支柱的长度;〔3〕拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:〔1〕根据题目条件,的坐标分别是.设抛物线的解析式为,将的坐标代入,得解得.所以抛物线的表达式是.〔2〕可设,于是从而支柱的长度是米.〔3〕设是隔离带的宽,是三辆车的宽度和,那么点坐标是.过点作垂直交抛物线于,那么.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.第 7 页。
中考二次函数面积最值问题(含答案)

)x 02x 212+-=S (2)∵)∵a=a=21-<0 <0 ∴∴S 有最大值有最大值 ∴0221202a2b x =-´-=-=)( ∴ S 的最大值为200200220212=´+´-=S ∴当x 为20cm 时,三角形面积最大,最大面积是200cm 2。
2.2.如图,矩形如图,矩形ABCD 的两边长AB =18cm =18cm,,AD =4cm =4cm,点,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1cm 的速度匀速运动.设运动时间为x 秒,△PBQ 的面积为y (cm 22).(1)求y 关于x 的函数关系式,并写出x 的取值范围;(2)求△PBQ 的面积的最大值的面积的最大值. .解:(1)∵)∵S S △PBQ =21PB PB··BQ, PB=AB PB=AB--AP=18AP=18--2x 2x,,BQ=x BQ=x,, ∴y=21(1818--2x 2x))x ,即y=y=--x 2+9x +9x((0<x 0<x≤≤4); (2)由()由(11)知:)知:y=y=y=--x 2+9x +9x,,∴y=y=--(x (x--29)2 +481,∵当0<x 0<x≤≤29时,时,y y 随x 的增大而增大,的增大而增大, 而0<x 0<x≤≤4,∴当x=4时,时,y y 最大值=20=20,即△,即△,即△PBQ PBQ 的最大面积是20cm 2.3.如图,在矩形ABCD 中,中,AB=6cm AB=6cm AB=6cm,,BC=12cm BC=12cm,点,点P 从点A 出发,沿AB 边向点B 以 1cm/s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm/s 的速度移动,如的速度移动,如 果P ,Q 两点同时出发,分别到达B ,C 两点后就停止移动.两点后就停止移动.(1)设运动开始后第t 秒钟后,五边形APQCD 的面积为Scm 2,写出S 与t 的函数关的函数关系式,并指出自变量t 的取值范围.的取值范围.(2)t 为何值时,为何值时,S S 最小?最小值是多少?最小?最小值是多少?解:(1)第t 秒钟时,秒钟时,AP=tcm AP=tcm AP=tcm,故,故PB=PB=((6﹣t )cm cm,,BQ=2tcm BQ=2tcm,,故S △PBQ =•(•(66﹣t )•2t=﹣)•2t=﹣t t 22+6t 二次函数最值问题例1、小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(x(单位:单位:单位:cm)cm)cm)的边与这的边与这条边上的高之和为40 cm 40 cm,这个三角形的,这个三角形的,这个三角形的面积面积S(S(单位:单位:单位:cm cm 2)随x(x(单位:单位:单位:cm)cm)cm)的变化而变的变化而变化.化. (1) (1)请直接写出请直接写出S 与x 之间的函数关系式之间的函数关系式((不要求写出自变量x 的取值范围的取值范围));(2) (2)当当x 是多少时,这个三角形面积S 最大最大??最大面积是多少最大面积是多少??21解:(1解:(1)∵四边形ABCD 是矩形,是矩形,∴AB=CD,∴AB=CD,AD=BC AD=BC AD=BC,,∵BC=xm,∵BC=xm,AB+BC+CD=40m AB+BC+CD=40m AB+BC+CD=40m,∴AB=,∴AB=,∴花园的面积为:y=x•=﹣x 2+20x +20x((0<x≤15); ∴y 与x 之间的函数关系式为:之间的函数关系式为:y=y=y=﹣﹣x 2+20x +20x((0<x≤15); (2)∵y=﹣x 22+20x=+20x=﹣﹣(x ﹣2020))22+200+200,, ∵a=﹣<0,∴当x <20时,时,y y 随x 的增大而增大,的增大而增大,∴当x=15时,时,y y 最大,最大值y=187.5y=187.5.. ∴当x 取15时花园的面积最大,最大面积为187.5187.5..5.5.已知边长为已知边长为4的正方形截去一个角后成为五边形ABCDE ABCDE(如图)(如图),其中AF=2AF=2,,BF=1BF=1..试在AB 上求一点P ,使矩形PNDM 有最大面积.有最大面积.解:设矩形PNDM 的边DN=x DN=x,,NP=y NP=y,,则矩形PNDM 的面积S=xy S=xy(2≤x≤4)(2≤x≤4)(2≤x≤4)易知CN=4-x CN=4-x,,EM=4-y EM=4-y..过点B 作BH BH⊥⊥PN 于点H则有△则有△AFB AFB AFB∽△∽△∽△BHP BHP∴PH BH BF AF =,即3412--=y x , ∴521+-=x y ,时,12454212=´+´-=最大S . 6.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.米.∵S 矩形ABCD =6×12=72.∴S=72﹣=6×12=72.∴S=72﹣S S △PBQ =t 22﹣6t+726t+72((0<t <6); (2)∵S=t 2﹣6t+72=6t+72=((t ﹣3)2+63+63,∴当,∴当t=3秒时,秒时,S S 有最小值63cm 63cm..4.在某居民小区要在一块一边靠墙(墙长15m 15m)的空地上修建一个矩形花园)的空地上修建一个矩形花园ABCD ABCD,花园,花园,花园 的一边靠墙,另三边用总长为40m 的栅栏围成如图,若设花园的BC 边长为x (m )花园)花园 的面积为y (m 2)(1)求y 与x 之间的之间的函数函数关系式,并求自变量的x 的范围.的范围.(2)当x 取何值时花园的面积最大,最大面积为多少? x x xy S 5212+-==)42(££x , 此二次函数的图象开口向下,对称轴为x=5x=5,∴当,∴当x≤5时,函数值y 随x 的增大而增大,的增大而增大,对于42££x 来说,当x=4解:解:(1)(1)(1)∵长为∵长为x 米,则宽为350x -米,设面积为S 平方米.平方米. )50(313502x x x x S --=-×=3625)25(312+--=x ∴当25=x 时,3625max =S (平方米平方米) ) ) 即:鸡场的长度为即:鸡场的长度为25米时,面积最大.米时,面积最大. (2) (2) 中间有中间有n 道篱笆,则宽为250+-n x 米,设面积为S 平方米.平方米. 则:)50(212502x x n n x x S -+-=+-×= 2625)25(212++-+-=n x n ∴当25=xA B C DP Q解:∵∠∵∠APQ APQ APQ=90°,=90°,=90°,∴∠∴∠APB APB APB+∠+∠+∠QPC QPC QPC=90°.=90°.=90°.∵∠∵∠APB APB APB+∠+∠+∠BAP BAP BAP=90°,=90°,=90°,∴∠∴∠QPC QPC QPC=∠=∠=∠BAP BAP BAP,∠,∠,∠B B =∠=∠C C =90°=90° ∴△∴△∴△ABP ABP ABP∽△∽△∽△PCQ. PCQ.,86,y x x CQ BP PC AB =-=∴x x y 34612+-=. 8.8.小李想用篱笆围成一个周长为小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(S(单位:平方米单位:平方米单位:平方米))随矩形一边长x(x(单位:米单位:米单位:米))的变化而变化.的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;的取值范围;(2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?最大?最大面积是多少? 解:(1)根据题意,得x x x x S 3022602+-=×-=自变量的取值范围是(2)∵01<-=a ,∴S 有最大值有最大值(1)(1)要使鸡场要使鸡场要使鸡场面积面积最大,鸡场的长度应为多少m ?(2)(2)如果中间有如果中间有n (n 是大于1的整数的整数))道篱笆隔墙,道篱笆隔墙,要使鸡场面积最大,要使鸡场面积最大,要使鸡场面积最大,鸡场的长应为多鸡场的长应为多少米?比较少米?比较(1)(2)(1)(2)(1)(2)的结果,你能得到什么结论?的结果,你能得到什么结论?时,2625max +=n S (平方米平方米) ) 由(1)(2)(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.米.即:使面积最大的x 值与中间有多少道隔墙无关.值与中间有多少道隔墙无关. 7.如图,如图,矩形矩形ABCD 的边AB=6 cm cm,,BC=8cm BC=8cm,,在BC 上取一点P ,在CD 边上取一点Q ,使∠使∠APQ APQ成直角,设BP=x cm BP=x cm,,CQ=y cm CQ=y cm,试以,试以x 为自变量,写出y 与x 的函数关系式.当较难 如图,为坐标原点)方向向∴AB===10=10.时,AQ=2t AQ=2t AQ=2t,,BP=3t BP=3t,则∵PQ∥BO,∴,即,解得t=,t=秒时,PQ∥BO.秒时,PQ∥BO. ①如图②所示,过点P 作∴,即,解得PD=6﹣﹣t S=AQ•PD=•2t•(•2t•(6﹣t =6t﹣﹣t ﹣(﹣)S=﹣﹣(﹣)<)t=秒时,秒时,S 为9. <)。
中考数学二次函数问题中三角形面积最值问题解题策略

中考数学二次函数问题中三角形面积最值问题解题策略考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。
这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。
解决此类题目的基本步骤与思路:1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3. 根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。
例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。
注意事项:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想.3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。
4.利用点坐标表示线段长度时注意要用大的减去小的。
5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。
6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。
原题:在(1)中的抛物线上的第二象限是否存在一点P,使△PBC的面积最大?若存在,求出P点的坐标及△PBC的面积最大值,若没有,请说明理由。
考试题型,大多类似于此。
求面积最大值的动点坐标,并求出面积最大值。
一般解题思路和步骤是,设动点P的坐标,然后用代数式表达各线段的长。
通过公式计算,得出二次函数顶点式,则坐标和最值,即出。
解法一:补形,割形法。
方法要点是,把所求图像的面积适当的割补,转化成有利于面积表达的常规几何图形。
请看解题步骤。
解法二:铅锤定理,面积=铅锤高度×水平宽度÷2。
这是三角形面积表达方法的一种非常重要的定理。
铅锤定理,在教材上没有,但是大多数数学老师都会作为重点,在课堂上讲解。
因为,铅锤定理,在很多地方都用的到。
这里,也有铅锤定理的简单推导,建议大家认真体会。
二次函数与三角形的综合-中考数学函数考点全突破

二次函数与三角形的综合-中考数学函数考点全突破一、考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。
这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。
一解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3.根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。
例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。
注意事项:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。
4.利用点坐标表示线段长度时注意要用大的减去小的。
5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。
6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。
二、二次函数问题中三角形面积最值问题(一)例题演示1.如图,已知抛物线(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)P为直线BD下方的抛物线上的一点,连接PD、PB,求△PBD面积的最大值.DBOAyxC解答:(1)抛物线令y=0,解得x=-2或x=4,∴A(-2,0),B(4,0).∵直线经过点B(4,0),∴,解得,∴直线BD解析式为:当x=-5时,y=3,∴D(-5,3)∵点D(-5,)在抛物线上,∴,∴.∴抛物线的函数表达式为:.(2)设P(m,)∴∴△BPD面积的最大值为.【试题精炼】2.如图,在平面直角坐标系中,抛物线()与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:与y轴交于点C,与抛物线的另一个交点为D,且.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为时,求抛物线的函数表达式;HF解答:1)A(-1,0)∵CD=4AC,∴点D的横坐标为4∴,∴.∴直线l的函数表达式为y=ax+a(2)过点E作EH∥y轴,交直线l于点H设E(x,ax2-2ax-3a),则H(x,ax+a).∴∴.∴△ADE的面积的最大值为,∴,解得.∴抛物线的函数表达式为.【中考链接】3.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;解答:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B (0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∴S=DM•BE+DM•OE=DM(BE+OE)=DM•OB=××3==(m﹣)2+∵0<m<3,∴当m=时,S有最大值,最大值为;二、二次函数问题中直角三角形问题(一)例题演示如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=1上的一个动点,求使△BPC为直角三角形的点P的坐标.解答:(1)依题意得:,解得,∴抛物线解析式为.把B(,0)、C(0,3)分别代入直线y=mx+n,得,解得,∴直线y=mx+n的解析式为y=x+3;(2)设P(,t),又∵B(-3,0),C(0,3),∴BC2=18,PB2=(+3)2+t2=4+t2,PC2=()2+(t-3)2=t26t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2-6t+10解得:t=;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2-6t+10=4+t2解得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2-6t+10=18解得:,.综上所述P的坐标为(,)或(,4)或(,)或(,).【试题精炼】如图,二次函数(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2))求证:为定值;(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接CF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.【答案】(1);(2)证明见解析;(3)以线段GF、AD、AE 的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.【解析】试题分析:(1)将C点代入函数解析式即可求得.(2)令y=0求A、B的坐标,再根据,CD∥AB,求点D的坐标,由△ADM∽△AEN,对应边成比例,将求的比转化成求比,结果不含m即为定值.(3)连接FC并延长,与x轴负半轴的交点即为所求点G..过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH中根据同角的同一个三角函数相等,可求OG(用m表示),然后利用勾股定理求GF和AD(用m表示),并求其比值,由(2)是定值,所以可得AD∶GF∶AE=3∶4∶5,由此可根据勾股定理逆定理判断以线段GF、AD、AE的长度为三边长的三角形是直角三角形,直接得点G的横坐标.试题解析:解:(1)将C (0,-3)代入函数表达式得,∴.(2)证明:如答图1,过点D、E分别作x轴的垂线,垂足为M、N.由解得x1=-m,x2=3m.∴A(-m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,-3).∵AB平分∠DAE.∴∠DAM=∠EAN.∵∠DMA=∠ENA=900,∴△ADM∽△AEN,∴.设点E的坐标为(x,),∴,∴x=4m.∴为定值.(3)存在,如答图2,连接FC并延长,与x轴负半轴的交点即为所求点G.由题意得:二次函数图像顶点F的坐标为(m,-4),过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH 中,∵tan∠CGO=,tan∠FGH=,∴=.∴OG=“3m,“由勾股定理得,GF=,AD=∴.由(2)得,∴AD∶GF∶AE=3∶4∶5.∴以线段GF、AD、AE的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.考点:1.二次函数综合题;2.定值和直角三角形存在性问题;3.曲线上点的坐标与方程的关系;4.二次函数的性质;5.勾股定理和逆定理;6相似三角形的判定和性质;7.锐角三角函数定义.【中考链接】如图所示,在平面直角坐标系中,将一块等腰直角三角板ABC斜靠在两坐标轴上放在第二象限,点C的坐标为(-1,0).B点在抛物线y=x2+x-2的图像上,过点B作BD⊥x轴,垂足为D,且B点的横坐标为-3.(1)求BC所在直线的函数关系式.(2)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.解答:(1)∵C点坐标为(-1,0),∴BD=CO=1.∵B点的横坐标为-3,∴B点坐标为(-3,1)设BC所在直线的函数关系式为y=kx+b,则有,解得∴BC所在直线的函数关系式为y=x.(2)①若以为AC直角边,点C为直角顶点,如图所示,作CP1⊥AC,因为BC⊥AC,所以点P1为直线BC与对称轴直线的交点,即点P1的横坐标为-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解二次函数中三角形面积最值问题
一、灵割巧补,间接转化求最值
这里的割补法分为两部分,割是指将图形分解成几部分分别求解,补是指将所求图形填上一部分然后用补后的图形面积减去所补的部分面积.两种做法的实质都是间接的求出所求图形的面积.
例1 在如图所示的直角坐标系中,有抛物线2424455
y x x =-+.连接AC ,问在直线AC 的下方,是否在抛物线上存在一点N ,使NAC 的面积有最大值?若存在请求出此值;若不存在请说明理由.
解析 设N 点坐标为2424(,4)55
a a a -+,(0,5)a ∈,如图所示过点A 作直线平行于x 轴,过点N 作直线平行于y 轴,与x 轴交于点F ,与AC 相交于点G ,两直线相交于点D .容易求得直线
AC 的方程445y x =-+,得出G 点坐标(4(,4)5a a -+,求出NG 的长为2445
a a -+,111222
ACN ANG CGN S S S NG OF NG CF NG OC =+=⨯+⨯=⨯2210a a =-+,故当52a =时三角形面积有最大值252,此时N 点的坐标为5(,3)2
-. 点拨 本题中将三角形割开求解的方法在应用中是较为常见的,此种方法也可视为是铅垂法,即三角形的面积等于三角形的水平宽与铅垂高的积的一半,本题中就是演示了整个的推理以及求解过程.
二、直线平移,化为切线求最值
切线法体现了数学中最为常见的数形结合思想,即通过平移直线,当直线与抛物线只有一个交点时(此时就是相切)存在长度的极值,借此来直接求出点的坐标.此法不用求出面积的解析式就可直接求解,是解题的新思路.
例2 如图所示,在平面直角坐标系中,有一抛物线2142
y x x =+-,在第三象限的抛物线上是否存在一动点M ,使ABM 面积存在最大值?若存在,求出最值;若不存在,说明理由.
解析 以AB 作为三角形的底,只要求出高的最大值就可以求出面积的最值.将直线AB 平移,与抛物线存在交点时,两直线的距离就是高的长度.观察图形可知,当直线与抛物线相切时有最大值,此时切点即为M 点.直线AB 方程为4y x =--.设平移后的直线方程为y x a =-+,设直线与抛物线的交点(,)M b b a -+,与抛物线联立整理得242(4)0b b a +-+=,相切就是方程有两个相等实根,也就是0=.得6b =-.代入求出交点坐标(2,4)M --.这时可利用上例中提到的割补法求出三角形面积.在做题时灵活运用各种方法往往会使解题过程更加简化.因此有AMB MHOB AMH AOB S S S S =+-
11422444422
=⨯+⨯⨯-⨯⨯=. 点拨 本题中抓住二次函数根的分布规律,利用切线解题,在创新中又不乏对于基础知识的解答.学生不必再去求三角形面积的解析式,这对于激发学生的创新兴趣有很大的帮助,而本题中体现的割补法又是对第一点中介绍的补充,使其更为完善.
三、三角函数,活学活用求最值
对于三角形问题,三角函数的引入可以为求线段长度提供新的解题思路.在直角三角形中只需要知道一边的长度和除直角外任意一个角度就可以表示出其余的边长,这给长度的求解带来极大的便利.
例3 如图所示,在平面直角坐标系中有一抛物线2
23y x x =--+,在第二象限内是否存在一点P ,使PBC 的面积最大?若存在,求出此最大值;不存在请说明理由.
解析 题中BC 的长度是确定的,若求PBC 的面积时以BC 为底,这样就方便很多,
只需要求出高的最值就可以了,此时利用三角函数求长度.设三角形高为PM ,过点P 作PF 垂直于x 轴于点E ,并交BC 于点F .只需要将PM 的长度用三角函数表示出来.设P 点的
坐标为2
(,23)a a a --+,也很容易求出F 点坐标,再求出PF 的长为23a a --.
2sin sin 3)PM PF PFM PF OCB a a =∠=∠=
--.整理可得23327()228S a =-++等故当32a =-时,面积有最大值278
. 点拨 题中通过三角函数的引入以及特殊角的三角函数值巧妙地表示出了PM 的长度,进而得出问题答案.通过上面的求解过程可以看出,此种方法的应用对于题中条件的设定是比较苛刻的,学生要仔细审题,灵活运用此方法.。