湖北省武汉市东西湖区2021-2022学年八年级上学期期中数学试题(含答案)
2021-2022学年湖北省武汉市江岸区八年级(上)期中数学试卷(含答案)

2021-2022学年湖北省武汉市江岸区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A.1,2,6B.2,2,4C.1,2,3D.2,3,42.(3分)下列图形中是轴对称图形的是( )A.B.C.D.3.(3分)已知三角形的三个内角的度数如图所示.则图中x的值为( )A.25B.30C.35D.404.(3分)工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别C取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C连OC.可知△OMC≌△ONC,OC便是∠AOB的平分线.则△OMC≌△ONC的理由是( )A.SSS B.SAS C.AAS D.HL5.(3分)如图,点B、E、C、F在同一条直线,∠A=∠D,BE=CF,请补充一个条件,使△ABC≌△DEF,可以补充的条件是( )A.AB=DE B.AC=DF C.AB∥DE D.BC=EF6.(3分)在平面直角坐标系中,点P(3,﹣2)关于x轴的对称点的坐标是( )A .(﹣3,﹣2)B .(﹣3,2)C .(3,2)D .(﹣2,3)7.(3分)如图,在△ABC 中D 、E 、F 分别为边AB 、AC 、BC 上的点,且BD =BF ,CF =CE ,∠A =62°,则∠DFE 的度数为( )A .58°B .59°C .62°D .76°8.(3分)如图.AD 为△ABC 的中线.AB =6.AC =3,则AD 的长可能是( )A .1B .1.5C .2.7D .59.(3分)如图,在每个小正方形的边长为1的网格中,△ABC 的的顶点都在格点上.则∠ABC 的度数为( )A .120°B .135°C .150°D .165°10.(3分)如图,在△ABC 中,∠C =90°,∠B =30°,点D 、E 、F 分别为边AC 、AB 、CB 上的点,且△DEF 为等边三角形,若AD =34CD .则AE BE的值为( )A .23B .34C .713D .1117二、填空题(共6小题,每小题3分,共18分)11.(3分)五边形的对角线一共有 条.12.(3分)等腰三角形的两边分别4和9.则这个等腰三角形的周长为 .13.(3分)如图,在△ABC 中,AB =AC .点D 为△ABC 外一点,AE ⊥BD 于E .∠BDC =∠BAC ,DE =3,CD=2,则BE的长为 .14.(3分)在△ABC中,AB=AC,AB的垂直平分线分别交AB和直线AC于D、E两点,且∠EBC=30°,则∠A的度数为 .15.(3分)如图,在四边形ABDE中,点C为BD边上一点.∠ABD=∠BDE=∠ACE=90°,AC=CE,点M为AE中点.连BM.DM,分别交AC,CE于G.H两点下列结论:①AB+DE=BD;②△BDM 为等腰直角三角形:③△BDM≌△AEC;④GH∥BD.其中正确的结论是 .16.(3分)如图在△ABC中.∠B=45°.AB=4.点P为直线BC上一点.当BP+2AP有最小值时,∠BAP 的度数为 .三、解答题(共8小题,共72分)17.(8分)一个多边形的内角和是它外角和的2倍,求这个多边形的边数.18.(8分)如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,求证:BE∥DF.19.(8分)如图,点D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE.20.(8分)如图.在7×7的正方形网格中,点A、B、C都在格点上点D是AB与网格线的交.点且AB=5,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)作AB边上高CE.(2)画出点D关于AC的对称点F;(3)在AB上画点M,使BM=BC;(4)在△ABC内两点P,使S△ABP=S△ACP=S△BCP.21.(8分)如图,CA=CD,CB=CE,∠ACD=∠BCE,AB与DE交于点M.(1)求证:AB=DE;(2)连MC,求证:MC平分∠BMD.22.(10分)已知在△ABC中,∠C=3∠B,AD平分∠BAC交BC于D.(1)如图1.若AE⊥BC于E,∠C=75°,求∠DAE的度数;(2)如图2,若DF⊥AD交AB于F,求证:BF=DF.23.(10分)已知在△ABC中,AB=AC=BD.∠DAC=∠DBC=α.(1)如图1,点D在△ABC内.①若α=10°,求∠BAD的度数;②求证:∠ABD=2∠ACD;(2)如图2.点D在△ABC外.且BC=8.CD=5,直接写出△BCD的面积.24.(12分)在平面直角坐标系中,A(a,0),B(b,0),C(0,c),a≠0且(a+b)2+c―4=0.(1)直接写出△ABC的形状是 .(2)如图1,点D为BC上一点,E为y轴负半轴上一点且∠ACB=120°,∠ADE=60°,CD=2BD,求点E的坐标;(3)如图2,点P在AB的延长线上,过P作PM⊥AC交AC的延长线于M点,交CB的延长线于N 点,且PM=BC.试确定线段CM、BN、PN之间的数量关系,并加以证明.2021-2022学年湖北省武汉市江岸区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A.1,2,6B.2,2,4C.1,2,3D.2,3,4【解答】解:A、1+2<6,不能组成三角形,故此选项错误;B、2+2=4,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、2+3>4,能组成三角形,故此选项正确;故选:D.2.(3分)下列图形中是轴对称图形的是( )A.B.C.D.【解答】解:选项A、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项B能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:B.3.(3分)已知三角形的三个内角的度数如图所示.则图中x的值为( )A.25B.30C.35D.40【解答】解:由题意得:x°+35°+115°=180°.∴x=30.故选:B.4.(3分)工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别C取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C连OC.可知△OMC≌△ONC,OC便是∠AOB的平分线.则△OMC≌△ONC的理由是( )A.SSS B.SAS C.AAS D.HL【解答】解:由题意得:MC=NC.在△OMC和△ONC中,OM=ONOC=OC,MC=NC∴△OMC≌△ONC(SSS).故选:A.5.(3分)如图,点B、E、C、F在同一条直线,∠A=∠D,BE=CF,请补充一个条件,使△ABC≌△DEF,可以补充的条件是( )A.AB=DE B.AC=DF C.AB∥DE D.BC=EF【解答】解:∵BE=CF,∴BE+CE=CF+CE,即BC=EF,A.AB=DE,BC=EF,∠A=∠D不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项不符合题意;B.AC=DF,BC=EF,∠A=∠D不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项不符合题意;C.∵AB∥DE,∴∠B=∠DEF,条件∠B=∠DEF,∠A=∠D,BC=EF符合全等三角形的判定定理,能推出△ABC≌△DEF,故本选项符合题意;D .BC =EF ,∠A =∠D 不符合全等三角形的判定定理,不能推出△ABC ≌△DEF ,故本选项不符合题意;故选:C .6.(3分)在平面直角坐标系中,点P (3,﹣2)关于x 轴的对称点的坐标是( )A .(﹣3,﹣2)B .(﹣3,2)C .(3,2)D .(﹣2,3)【解答】解:点P (3,﹣2)关于x 轴的对称点的坐标为(3,2).故选:C .7.(3分)如图,在△ABC 中D 、E 、F 分别为边AB 、AC 、BC 上的点,且BD =BF ,CF =CE ,∠A =62°,则∠DFE 的度数为( )A .58°B .59°C .62°D .76°【解答】解:△ABC 中,∠B +∠C =180°﹣∠A =180°﹣62°=118°,△BDF 中,BD =BF ,∴∠BFD =12(180°﹣∠B );同理,得:∠CFE =12(180°﹣∠C );∴∠BFD +∠CFE =180°―12(∠B +∠C )=180°―12×118°=121°,∵∠BFD +∠CFE +∠DFE =180°,∴∠DFE =180°﹣121°=59°.故选:B .8.(3分)如图.AD 为△ABC 的中线.AB =6.AC =3,则AD 的长可能是( )A .1B .1.5C .2.7D .5【解答】解:延长AD 至E ,使AD =DE ,连接CE ,如图所示:则AE =2m ,∵AD 是△ABC 的中线,∴BD=CD,在△ADB和△EDC中,AD=ED∠ADB=∠EDCBD=CD,∴△ADB≌△EDC(SAS),∴EC=AB=6,在△AEC中,EC﹣AC<AE<EC+AC,即6﹣3<2AD<6+3,∴32<AD<92,故选:C.9.(3分)如图,在每个小正方形的边长为1的网格中,△ABC的的顶点都在格点上.则∠ABC的度数为( )A.120°B.135°C.150°D.165°【解答】解:延长CB交网格于E,连接AE,由勾股定理得:AE=AB=22+12=5,BC=BE=12+32=10,∴AE2+AB2=BE2,∴△EAB是等腰直角三角形(∠EAB=90°),∴∠EBA =∠AEB =45°,∴∠ABC =180°﹣45°=135°,故选:B .10.(3分)如图,在△ABC 中,∠C =90°,∠B =30°,点D 、E 、F 分别为边AC 、AB 、CB 上的点,且△DEF 为等边三角形,若AD =34CD .则AE BE的值为( )A .23B .34C .713D .1117【解答】解:∵∠C =90°,∠B =30°,设AC =1,则AB =2AC =2,∴BC =AB 2―AC 2=3,∵AD =34CD ,AD +CD =1,∴AD =37,CD =47,过点D 作DH ⊥AB 于H 点,∴∠ADH =90°﹣∠A =30°,∴AH =12AD =314,DH =AD 2―AH 2=3314,∵△DEF 是等边三角形,∴DF =DE ,∠C =∠DHE =90°,∠FDE =60°,∴∠CFD +∠CDF =∠CDF +∠HDE =180°﹣30°﹣60°=90°,∴∠CFD =∠HDE ,∵∠FCD =∠DHE =90°,DF =ED ,∴△DCF ≌△EHD (AAS ),∴CF =DH =3314,HE =CD =47,∴BF =3―3314=11314,BE=2―47―314=1714,AE=47+314=1114,∴AEBE=11141714=1117,故选:D.二、填空题(共6小题,每小题3分,共18分)11.(3分)五边形的对角线一共有 5 条.【解答】解:五边形的对角线共有5×(5―3)2=5;故答案为:512.(3分)等腰三角形的两边分别4和9.则这个等腰三角形的周长为 22 .【解答】解:①当腰长为4时,三角形的三边长为9、4、4,不符合三角形三边关系,因此这种情况不成立;②当腰长为9时,三角形的三边长为9、9、4,能构成三角形,则其周长=9+9+4=22.故答案为:22.13.(3分)如图,在△ABC中,AB=AC.点D为△ABC外一点,AE⊥BD于E.∠BDC=∠BAC,DE=3,CD=2,则BE的长为 5 .【解答】解:方法一:过A作AF⊥CD,交CD的延长线于F,如图所示:则∠AFC=90°,∵AE⊥BD,∴∠AEB=∠AED=90°,∵∠BDC=∠BAC,∴∠ABE=∠ACF,在△ABE和△ACF中,∠AEB=∠AFC=90°∠ABE=∠ACFAB=AC,∴△ABE≌△ACF(AAS),∴BE=CF,AE=AF,在Rt△ADF和Rt△ADE中,AD=ADAF=AE,∴Rt△ADF≌Rt△ADE(HL),∴DF=DE=3,∴CF=CD+DF=5,∴BE=CF=5,故答案为:5.方法二:在BD上截取BN=CD,连接AN,设BD交AC于H,如图2所示:∵∠ABN+∠BAC+∠AHB=180°,∠ACD+∠BDC+∠CHD=180°,∠AHB=∠CHD,∠BDC=∠BAC,∴∠ABN=∠ACD,在△ABN和△ACD中,AB=AC∠ABN=∠ACD,BN=CD∴△ABN≌△ACD(SAS),∴AN=AD,∵AE⊥BD,∴NE=DE,∴BE=BN+NE=CD+DE=2+3=5,故答案为:5.14.(3分)在△ABC中,AB=AC,AB的垂直平分线分别交AB和直线AC于D、E两点,且∠EBC=30°,则∠A的度数为 40°或160° .【解答】解:如图1,∵AB=AC,∴∠ABC=∠ACB,∠ABC+∠ACB+∠A=180°,∵DE垂直且平分AB,∴EA=EB,∴∠ABE=∠A,∴∠ABC=∠ACB=∠ABE+∠EBC=∠A+30°,∴∠A+2(∠A+30°)=180°,解得∠A=40°;如图2,∵AB=AC,∴∠ABC=∠ACB,∵DE垂直且平分AB,∴EA=EB,∴∠ABE=∠BAE,∴∠ABC=∠ACB=∠EBC﹣∠ABE=∠EBC﹣∠BAE=30°﹣∠BAE,∵∠ABC+∠ACB=∠BAE,∴2(30°﹣∠BAE)=∠BAE,解得∠BAE=20°,∴∠A=180°﹣20°=160°.如图3,∵AB=AC,∴∠ABC=∠ACB,∵DE垂直且平分AB,∴EA=EB,∴∠ABE=∠A=ABC+∠EBC=∠ABC+30°,∴∠ABC+30°+∠ABC+∠ABC=180°,∴∠ABC=50°.∴∠A=80°.故答案为:40°或160°或80°.15.(3分)如图,在四边形ABDE中,点C为BD边上一点.∠ABD=∠BDE=∠ACE=90°,AC=CE,点M为AE中点.连BM.DM,分别交AC,CE于G.H两点下列结论:①AB+DE=BD;②△BDM 为等腰直角三角形:③△BDM≌△AEC;④GH∥BD.其中正确的结论是 ①②④ .【解答】解:∵∠ABD=∠BDE=∠ACE=90°,∴∠BCA+∠ECD=90°=∠BCA+∠BAC,∴∠BAC=∠ECD,又∵AC=CE,∴△ACB≌△CED(AAS),∴AB=CD,BC=DE,∴AB+DE=BC+CD=BD,故①正确;如图,连接MC,∵AC=CE,∠ACE=90°,点M是AE的中点,∴AM=CM=ME,∠CAE=∠ACM=∠ECM=45°,∴∠BAM=∠MCD,又∵AB=CD,∴△ABM≌△CDM(SAS),∴∠AMB=∠CMD,BM=DM,∴∠AMB+∠BMC=∠BMC+∠DMC=90°,∴∠BMD=90°,∴△BMD是等腰直角三角形,故②正确;∵点C不是BD的中点,∴BD≠2MC,∴AE≠BD,∴△ACE与△BMD不全等,故③错误;∵△BMD是等腰直角三角形,∴∠MBD=∠MDB=45°,∵∠AMC=∠GMH=90°,∴∠AMG=∠CMH,又∵AM=CM,∠MAG=∠MCH,∴△AMG≌△CMH(ASA),∴MG=MH,∴∠MGH=45°=∠MBD,∴GH∥BD,故④正确;故答案为:①②④.16.(3分)如图在△ABC中.∠B=45°.AB=4.点P为直线BC上一点.当BP+2AP有最小值时,∠BAP 的度数为 15° .【解答】解;如图,以BC为边,作∠CBF=30°,过点P作PH⊥BF于H,∴PH=12 BP,∴BP+2AP=2(12BP+AP)=12(PH+AP),∴当A、P、H三点共线时,PH+AP最小,过点A作AG⊥BF于G,交BC于P',在Rt△ABG中,∠ABG=30°+45°=75°,∴∠BAG=15°,∴当BP+2AP有最小值时,∠BAP的度数为15°,故答案为:15°.三、解答题(共8小题,共72分)17.(8分)一个多边形的内角和是它外角和的2倍,求这个多边形的边数.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=2×360°,解得n=6.答:这个多边形的边数是6.18.(8分)如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,求证:BE∥DF.【解答】证明:∵在四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠ADC=180°,∵BE平分∠B,DF平分∠D,∴∠EBF+∠FDC=90°,∵∠C=90°,∴∠DFC+∠FDC=90°,∴∠EBF=∠DFC,∴BE∥DF.19.(8分)如图,点D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE.【解答】证明:在△ABE与△ACD中,∠A=∠AAB=AC,∠B=∠C∴△ACD≌△ABE(ASA),∴AD=AE(全等三角形的对应边相等).20.(8分)如图.在7×7的正方形网格中,点A、B、C都在格点上点D是AB与网格线的交.点且AB=5,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)作AB边上高CE.(2)画出点D关于AC的对称点F;(3)在AB上画点M,使BM=BC;(4)在△ABC内两点P,使S△ABP=S△ACP=S△BCP.【解答】解:(1)如图,线段CE即为所求;(2)如图,点F即为所求;(3)如图,点M即为所求;(4)如图,点P即为所求.21.(8分)如图,CA=CD,CB=CE,∠ACD=∠BCE,AB与DE交于点M.(1)求证:AB=DE;(2)连MC,求证:MC平分∠BMD.【解答】证明:(1)∵∠ACD=∠BCE,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠BCA=∠ECD,在△ABC和△DEC中,BC=EC∠BCA=∠ECD,AC=DC∴△ABC≌△DEC(SAS),∴AB=DE;(2)过C作CG⊥AB于G,CH⊥DE于H,∵△ABC≌△DEC,∴∠A=∠D,AC=DC,∵∠AGC=∠DHC=90°,在△AGC和△DHC中,∠A=∠D∠AGC=∠DHCAC=DC,∴△AGC≌△DHC(AAS),∴CG=CH,∴MC平分∠BMD.22.(10分)已知在△ABC中,∠C=3∠B,AD平分∠BAC交BC于D.(1)如图1.若AE⊥BC于E,∠C=75°,求∠DAE的度数;(2)如图2,若DF⊥AD交AB于F,求证:BF=DF.【解答】(1)解:∵∠C=3∠B,∠C=75°,∴∠B=25°,∴∠BAC=180°﹣∠B﹣∠C=80°,∵AD平分∠BAC,∴∠BAD=12∠BAC=40°,∴∠ADE=∠BAD+∠B=65°,∵AE⊥BC,∴∠AED=90°,∴∠DAE=90°﹣∠ADE=90°﹣65°=25°,(2)证明:设∠B=α,则∠C=3α,∠BAC=180°﹣∠B﹣∠C=180°﹣4α,∵AD平分∠BAC,∴∠BAD=12∠BAC,∵DF⊥AD,∴∠ADF=90°,∴∠AFD=90°﹣∠BAD=2α,∵∠AFD=∠B+∠BDF,∴∠BDF=α=∠B,∴BF=DF.23.(10分)已知在△ABC中,AB=AC=BD.∠DAC=∠DBC=α.(1)如图1,点D在△ABC内.①若α=10°,求∠BAD的度数;②求证:∠ABD=2∠ACD;(2)如图2.点D在△ABC外.且BC=8.CD=5,直接写出△BCD的面积.【解答】(1)①解:设∠BAD=x,则∠ABD=180°﹣2x,∴2(180°﹣2x+10°)+x+10°=180°,解得:x=70°,∴∠BAD=70°;②证明:在BC取点E,使BE=AD,∵∠DAC=∠DBC,BD=AC,在△ADC和△BED中,BE=AD∠DAC=∠DBC,BD=AC∴△ADC≌△BED(SAS),∴∠BDE=∠ACD,DE=DC,设∠ACD=β,则∠DEC=∠DCE=α+β,∴∠ACB=α+2β,∵∠ABC=∠ACB,∴∠ABD+α=α+2β,∴∠ABD=2β,即∠ABD=2∠ACD;(2)在AD取点F,使AF=BC,过点B作BM⊥DC交DC的延长线于M,同理可得△AFC≌△BCD(SAS),∴∠BDC=∠ACF,CD=CF,设∠BDC=∠ACF=β,则∠CFD=∠CDF=α+β,∴∠ACB=3α+2β,∠BAC=2β,∴2(3α+2β)+2β=180°,∴α+β=30°,∴∠AFC=∠BCD=150°,∴BM=12BC=4,∴S△BCD=12BC⋅DC=10.24.(12分)在平面直角坐标系中,A(a,0),B(b,0),C(0,c),a≠0且(a+b)2+c―4=0.(1)直接写出△ABC的形状是 等腰三角形 .(2)如图1,点D为BC上一点,E为y轴负半轴上一点且∠ACB=120°,∠ADE=60°,CD=2BD,求点E的坐标;(3)如图2,点P在AB的延长线上,过P作PM⊥AC交AC的延长线于M点,交CB的延长线于N 点,且PM=BC.试确定线段CM、BN、PN之间的数量关系,并加以证明.【解答】解:(1)△ABC是等腰三角形,理由如下:∵A(a,0),B(b,0),∴OA=﹣a,OB=b,∵a≠0且(a+b)2+c―4=0,∴a+b=0,c﹣4=0,∴b=﹣a,c=4,∴OA=OB,又∵OC⊥AB,∴AC=BC,∴△ABC是等腰三角形,故答案为:等腰三角形;(2)在CE上取点F,使CF=CD,连接DF,如图1所示:∵AC=BC,∠ACB=120°,∴∠ACO=∠BCO=60°,∴△CDF是等边三角形,∴∠CFD=60°,CD=FD,∴∠EFD=120°,∵∠ACO=∠ADE=60°,∴∠CAD=∠CED,又∵∠ACD=∠EFD=120°,∴△ACD≌△EFD(AAS),∴AC=EF,由(1)得:c=4,∴OC=4,∵∠AOC=90°,∠ACO=60°,∴∠OAC=30°,∴BC=AC=2OC=8,EF=AC=8,∵CD=2BD,∴BD=83,CF=CD=163,∴CE=EF+CF=8+163=403,∴OE=CE﹣OC=403―4=283,∴E(0,―283);(3)CM=BN+PN,证明如下:过A作AQ⊥AM交y轴于Q,过Q作QT⊥MN交MN的延长线于T,连接BQ、NQ,如图2所示:则∠QAC=90°,∴∠ACQ+∠CQA=90°,∵∠AOC=90°,∴∠PAM+∠ACQ=90°,∴∠PAM=∠CQA,∵PM⊥AC,∴∠M=90°=∠QAC,由(1)得:OA=OB,AC=BC,∵PM=BC,∴PM=AC,∴△AMP≌△QAC(AAS),∴AM=QA,∵QT⊥MN,∴∠QTM=90°=∠QAC=∠M,∴四边形AMTQ是矩形,∵AM=QA,∴矩形AMTQ是正方形,∴AM=TM=TQ=AQ=BQ,∵AC=BC,CQ⊥AB,∴△ACQ和△BCQ关于y轴对称,∴AQ=BQ,∠QBC=∠QAC=90°,∴∠QBN=90°,∵QN=QN,∴Rt△QBN≌Rt△QTN(HL),∴BN=TN,∴BN+PN=TN+PN=PT,∵AC=BC,PM=BC,∴AC=PM,∴CM=PT,∴CM=BN+PN.。
2021-2022学年湖北省武汉市武昌区武珞路中学八年级(上)期中数学试卷(含答案)

2021-2022学年湖北省武汉市武昌区武珞路中学八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列大学的校徽图案是轴对称图形的是( )A.清华大学B.北京大学C.中国人民大学D.浙江大学2.(3分)下列图形中,具有稳定性的是( )A.平行四边形B.梯形C.正方形D.直角三角形3.(3分)下列四个图形中,线段BE是△ABC的高的是( )A.B.C.D.4.(3分)已知图中的两个三角形全等,则∠α的度数是( )A.72°B.60°C.58°D.50°5.(3分)如图,数学课上,老师让学生尺规作图画∠MON的角平分线OB.小明的作法如图所示,连接BA、BC,你认为这种作法中判断△ABO≌△CBO的依据是( )A .SSSB .SASC .ASAD .AAS6.(3分)如图,在△ABC 中,AB =AC ,∠C =70°,△AB 'C '与△ABC 关于直线AD 对称,∠CAD =10°,连接BB ',则∠ABB '的度数是( )A .45°B .40°C .35°D .30°7.(3分)如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的最大周长为( )A .20B .22C .23D .248.(3分)下列条件中,能构成钝角△ABC 的是( )A .∠A =∠B =∠CB .∠A +∠C =∠B C .∠B =∠C =14∠AD .∠A =12∠B =13∠C 9.(3分)如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ,在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E …按此做法继续下去,则第2021个三角形中以A 2021为顶点的内角度数是( )A .(12)2019•75°B .(12)2020•75°C .(12)2021•75°D .(12)2022•75°10.(3分)如图,已知在△ABC 中,AB =AC ,∠ACB 和∠BAC 的平分线交于点O ,过点A 作AD ⊥AO 交CO 的延长线于点D ,若∠ACD =α,则∠BDC 度数为( )A.45°﹣αB.90°―α2C.90°﹣2αD.a2二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)已知点A(2,a)与点B(b,4)关于y轴对称,则a+b= .12.(3分)一个正多边形的每一个内角都是108°,则它是正 边形.13.(3分)已知等腰三角形的两边长分别为10和6,则三角形的周长是 .14.(3分)若三角形的一个内角是另一个内角的3倍,我们称此三角形为特异三角形”,若一个“特异三角形”为直角三角形,则这个“特异三角形”最小内角度数为 .15.(3分)如图,已知△ABC中,OE、OF分别是AB、AC的垂直平分线,∠OBC,∠OCB的平分线相交于点I,有如下结论:①AO=CI;②∠ABC+∠ACO=90°;③∠BOI=∠COI;④OI⊥BC.其中正确的结论是 .(填序号)16.(3分)如图,在△ABC中,AH是高,AE∥BC,AB=AE,在AB边上取点D,连接DE,DE=AC,若S△ABC=5S△ADE,BH=1,则BC= .三、解答题(本大题共8个题,共72分)17.(8分)如图,点E,C在线段BF上,∠A=∠D,AB∥DE,BC=EF.求证:AC=DF.18.(8分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.19.(8分)如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,求证:AD=3BD.20.(8分)如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.求证:①AB=AD;②CD平分∠ACE.21.(8分)如图,在下列带有坐标系的网格中,△ABC的顶点都在边长为1的小正方形的顶点上,A(﹣3,3),B(﹣4,﹣2),C(0,﹣1).(1)直接写出△ABC的面积为 ;(2)画出△ABC关于y轴的对称的△DEC(点D与点A对应,点E与点B对应),点E的坐标为 ;(3)用无刻度的直尺,运用所学的知识作图(保留作图痕迹).①作出△ABC的高线AF;②在边BC上确定一点P,使得∠CAP=45°.22.(10分)已知,△ABC中,点D,E分别在边AB,BC上,BD=BE,连接CD.(1)如图1,若∠CAD=∠CED=2∠ADC,求证:AD=DE;(2)如图2,点F在AD上,连接EF,若∠CAD=∠AFE,∠CEF=2∠ADC,求证:AD=EF.23.(10分)已知,点C为线段AB上的一点,以AC为边作等边△ACD,连接BD.(1)如图1,以BC为边在AB的上方作等边△BCE,接AE,交BD于点G,求∠AGB的度数;(2)如图2,在(1)的条件下连接CG,求证:CG+DG+EG=AE;(3)如图3,点K在线段BD上,∠BKC=60°,点H为线段AD上,AH=BC,AK,CH交于点I,BD =a,AK=b,则IK= .(用含a,b的式子表示)24.(12分)在平面直角坐标系中,点A的坐标为(3,0),点B在y轴上,以B为直角顶点;在AB上方作等腰Rt△ABC.(1)如图1,若点B的坐标为(0,1),则C点的坐标是 .(2)如图2,若点B在y轴正半轴上,OD平分∠AOB交AC于D,求证:AD=CD;(3)如图3,若点B为y轴上的一个动点,连接OC,当AC+OC值最小时,求B点坐标.2021-2022学年湖北省武汉市武昌区武珞路中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列大学的校徽图案是轴对称图形的是( )A.清华大学B.北京大学C.中国人民大学D.浙江大学【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:B.2.(3分)下列图形中,具有稳定性的是( )A.平行四边形B.梯形C.正方形D.直角三角形【解答】解:根据三角形具有稳定性,可知四个选项中只有直角三角形具有稳定性的.故选:D.3.(3分)下列四个图形中,线段BE是△ABC的高的是( )A.B.C.D.【解答】解:线段BE是△ABC的高的图是选项D.故选:D.4.(3分)已知图中的两个三角形全等,则∠α的度数是( )A.72°B.60°C.58°D.50°【解答】解:∵两个三角形全等,∴∠α的度数是72°.故选:A.5.(3分)如图,数学课上,老师让学生尺规作图画∠MON的角平分线OB.小明的作法如图所示,连接BA、BC,你认为这种作法中判断△ABO≌△CBO的依据是( )A.SSS B.SAS C.ASA D.AAS【解答】解:由作图可知,OA=OC,AB=CB,在△AOB和△COB中,OA=OCAB=CB,OB=OB∴△AOB≌△COB(SSS),∴∠BOA=∠BOC,故选:A.6.(3分)如图,在△ABC中,AB=AC,∠C=70°,△AB'C'与△ABC关于直线AD对称,∠CAD=10°,连接BB',则∠ABB'的度数是( )A.45°B.40°C.35°D.30°【解答】解:∵AB=AC,∴∠ABC=∠C=70°,∴∠BAC=180°﹣70°﹣70°=40°,∵△AB'C'与△ABC关于直线AD对称,∴∠BAC=∠B′AC′=40°,∠CAD=∠C′AD=10°,∴∠BAB′=40°+10°+10°+40°=100°,∵AB=AB′,∴∠ABB′=12(180°﹣100°)=40°,故选:B.7.(3分)如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的最大周长为( )A.20B.22C.23D.24【解答】解:设第三边为a,根据三角形的三边关系知,2<a<12.由于第三边的长为偶数,则a可以为4或6或8或10.∴这个三角形的最大周长为5+7+10=22.故选:B.8.(3分)下列条件中,能构成钝角△ABC的是( )A.∠A=∠B=∠C B.∠A+∠C=∠BC.∠B=∠C=14∠A D.∠A=12∠B=13∠C【解答】解:A.根据三角形内角和定理,由∠A=∠B=∠C,得∠A=∠B=∠C=60°,故△ABC是锐角三角形,那么A不符合题意.B.根据三角形内角和定理,由∠A+∠B+∠C=180°,得2∠B=180°,故∠B=90°,即△ABC是直角三角形,那么B不符合题意.C.根据三角形内角和定理,由∠A+∠B+∠C=180°,∠B=∠C=14∠A,得∠A+14∠A+14∠A=180°,故∠A=120°,此时△ABC是钝角三角形,那么C符合题意.D.根据三角形内角和定理,由∠A+∠B+∠C=180°,∠A=12∠B=13∠C,得∠A=30°,∠B=60°,∠C=90°,此时△ABC是直角三角形,那么D不符合题意.故选:C.9.(3分)如图,在第1个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A 2A 3E …按此做法继续下去,则第2021个三角形中以A 2021为顶点的内角度数是( )A .(12)2019•75°B .(12)2020•75°C .(12)2021•75°D .(12)2022•75°【解答】解:∵∠B =30°,A 1B =CB ,∴∠BA 1C =∠C ,30°+∠BA 1C +∠C =180°.∴2∠BA 1C =150°.∴∠BA 1C =12×150°=75°.∵A 1A 2=A 1D ,∴∠DA 2A 1=∠A 1DA 2.∴∠BA 1C =∠DA 2A 1+∠A 2DA 1=2∠DA 2A 1.∴∠DA 2A 1=12∠BA 1C =12×12×150°.同理可得:∠EA 3A 2=12∠DA 2A 1=12×12×12×150°.…以此类推,以A n 为顶点的内角度数是∠A n =(12)n ×150°=(12)n ﹣1×75°.∴以A 2021为顶点的内角度数是(12)2020×75°.故选:B .10.(3分)如图,已知在△ABC 中,AB =AC ,∠ACB 和∠BAC 的平分线交于点O ,过点A 作AD ⊥AO 交CO 的延长线于点D ,若∠ACD =α,则∠BDC 度数为( )A.45°﹣αB.90°―α2C.90°﹣2αD.a2【解答】解:∵AB=AC,∠ACD=α,OC平分∠ACB,∴∠ABC=∠ACB=2α,∵∠ACB和∠BAC的平分线交于点O,∴∠OBC=∠OBA=∠OCB=α,∴∠DOB=∠OBC+∠OCB=2α,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣4α,∴∠BOA=90°﹣2α,∵AD⊥AO,∴∠DAB=∠DOB=2α,∴O、A、D、B四点共圆,∴∠BDC=∠DOA=90°﹣2α.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)已知点A(2,a)与点B(b,4)关于y轴对称,则a+b= 2 .【解答】解:由题意得,a=4,b=﹣2,则a+b=4+(﹣2)=2,故答案为:2.12.(3分)一个正多边形的每一个内角都是108°,则它是正 五 边形.【解答】解:180°﹣108°=72°,360°÷72°=5.故答案为:五.13.(3分)已知等腰三角形的两边长分别为10和6,则三角形的周长是 22或26 .【解答】解:当6为底时,其它两边都为6,10、10可以构成三角形,周长为26;当6为腰时,其它两边为6和10,可以构成三角形,周长为22.故答案为:22或26.14.(3分)若三角形的一个内角是另一个内角的3倍,我们称此三角形为特异三角形”,若一个“特异三角形”为直角三角形,则这个“特异三角形”最小内角度数为 22.5°或30° .【解答】解:设这个“特异三角形”最小内角的度数为x,则另外两个内角分别是3x、90°或3x=90°、90°﹣x.当“特异三角形”三个内角的度数分别为x、3x、90°,∴x+3x+90°=180°.∴x=22.5°.当“特异三角形”三个内家的度数分别为x、90°、90°﹣x.∴3x=90°.∴x=30°.∴90°﹣x=60°.此时,三个内角的度数分别为30°、60°、90°.∴这个“特异三角形”最小内角度数为30°.综上:这个“特异三角形”最小内角度数为22.5°或30°.故答案为:22.5°或30°.15.(3分)如图,已知△ABC中,OE、OF分别是AB、AC的垂直平分线,∠OBC,∠OCB的平分线相交于点I,有如下结论:①AO=CI;②∠ABC+∠ACO=90°;③∠BOI=∠COI;④OI⊥BC.其中正确的结论是 ②③④ .(填序号)【解答】解:∵OE,OF分别是AB,AC边的中垂线,∴OA=OB,OA=OC,∴OB=OC=OA,∴∠OAB=∠OBA,∠OBC=∠OCB,∠OAC=∠OCA,∵∠OAB+∠OBA+∠OBC=∠OCB+∠OAC=∠OCA=180°,∴∠OBA +∠OBC +∠OCA =90°,∴∠ABC +∠ACO =90°,故②正确;∵∠OBC ,∠OCB 的平分线相交于点I ,∴∠OBC =2∠IBC ,∠OCB =2∠ICB ,∴∠IBC =∠ICB ,∴BI =CI ,∴点I 在BC 的垂直平分线上,∵OB =OC ,∴点O 在BC 的垂直平分线上,∴OI ⊥BC ,故④正确;∵OI 是BC 的垂直平分线,且点O ,点I 不重合,∴OC ≠IC ,∴AO ≠IC ,故①错误;∵OB =OC ,OI 是BC 的垂直平分线,∴∠BOI =∠COI ,故③正确;故答案为②③④.16.(3分)如图,在△ABC 中,AH 是高,AE ∥BC ,AB =AE ,在AB 边上取点D ,连接DE ,DE =AC ,若S △ABC =5S △ADE ,BH =1,则BC = 52 .【解答】解:过点E 作EP ⊥BA ,交BA 的延长线于P ,∴∠P =∠AHB =90°,∵AE ∥BC ,∴∠EAP =∠CBA ,在△AEP和△BAH中,∠P=∠AHB∠PAE=∠BAE=AB,∴△AEP≌△BAH(AAS),∴PE=AH,在Rt△DEP和Rt△CAH中,DE=ACPE=AH,∴Rt△DEP≌Rt△CAH(HL),∴CH=DP,S△ACH=S△APE,∵S△ABC=S△ABH+S△AHC=2S△ABH+S△ADE=5S△ADE,∴S△ABH:S△ADE=2:1,∴BH:AD=2:1,∵BH=1,∴AD=1 2,∴DP=CH=1+12=32,∴BC=BH+CH=1+32=52,故答案为:5 2.三、解答题(本大题共8个题,共72分)17.(8分)如图,点E,C在线段BF上,∠A=∠D,AB∥DE,BC=EF.求证:AC=DF.【解答】证明:∵AB∥ED,∴∠ABC=∠DEF.在△ABC与△DEF中,∠A=∠D∠B=∠DEFBC=EF,∴△ABC≌△DEF(AAS).∴AC=DF.18.(8分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.【解答】解:设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°,∠ABC=∠ACB=72°.19.(8分)如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,求证:AD=3BD.【解答】证明:∵∠ACB=90°,∠A=30°,∴∠B=60°,AB=2BC,∵CD⊥AB,∴∠DCB=30°,∴BC=2BD,∴AB=4BD,∵AB=AD+BD,∴AD=3BD.20.(8分)如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD 交于点D ,连接CD .求证:①AB =AD ;②CD 平分∠ACE .【解答】证明:①∵AD ∥BE ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∴∠ABD =∠DBC ,∴∠ABD =∠ADB ,∴AB =AD ;②∵AD ∥BE ,∴∠ADC =∠DCE ,由①知,AB =AD ,又∵AB =AC ,∴AC =AD ,∴∠ACD =∠ADC ,∴∠ACD =∠DCE ,∴CD 平分∠ACE .21.(8分)如图,在下列带有坐标系的网格中,△ABC 的顶点都在边长为1的小正方形的顶点上,A (﹣3,3),B (﹣4,﹣2),C (0,﹣1).(1)直接写出△ABC 的面积为 192 ;(2)画出△ABC 关于y 轴的对称的△DEC (点D 与点A 对应,点E 与点B 对应),点E 的坐标为 (4,﹣2) ;(3)用无刻度的直尺,运用所学的知识作图(保留作图痕迹).①作出△ABC 的高线AF ;②在边BC 上确定一点P ,使得∠CAP =45°.【解答】解:(1)S△ABC=4×5―12×1×5―12×1×4―12×3×4=192,故答案为:19 2;(2)如图,△DEC即为所求,E(4,﹣2),故答案为:(4,﹣2);(3)①如图,线段AF即为所求.②如图,点P即为所求.22.(10分)已知,△ABC中,点D,E分别在边AB,BC上,BD=BE,连接CD.(1)如图1,若∠CAD=∠CED=2∠ADC,求证:AD=DE;(2)如图2,点F在AD上,连接EF,若∠CAD=∠AFE,∠CEF=2∠ADC,求证:AD=EF.【解答】证明:(1)∵BD=BE,∴∠BDE=∠BED,∴∠ADE=∠CED,∵∠CAD=∠CED=2∠ADC,∴∠ADC=∠EDC=12∠CED=12∠ADE,在△ADC和△EDC中,∠CAD=∠ED∠ADC=∠EDCCD=CD,∴△ADC≌△EDC(AAS),∴AD=DE;(2)在EC上截取EG=DF,连接DG,如图2所示:∵BD=BE,∴BD+DF=BE+EG,即BF=BG,在△BDG和△BEF中,BD=BE∠B=∠BBG=BF,∴△BDG≌△BEF(SAS),∴DG=EF,∠BGD=∠BFE,∠BDG=∠BEF,∴∠ADG=∠CEF,∠CGD=∠AFE,∵∠CAD=∠AFE,∠CEF=2∠ADC,∴∠ADC=12∠CEF=12∠ADG=∠GDC,∠CAD=∠CGD,在△ADC和△GDC中,∠CAD=∠CGD∠ADC=∠GDCCD=CD,∴△ADC≌△GDC(AAS),∴AD=GD,∴AD=EF.23.(10分)已知,点C为线段AB上的一点,以AC为边作等边△ACD,连接BD.(1)如图1,以BC为边在AB的上方作等边△BCE,接AE,交BD于点G,求∠AGB的度数;(2)如图2,在(1)的条件下连接CG,求证:CG+DG+EG=AE;(3)如图3,点K在线段BD上,∠BKC=60°,点H为线段AD上,AH=BC,AK,CH交于点I,BD=a,AK=b,则IK= b―12a .(用含a,b的式子表示)【解答】解:(1)∵△ACD和△BCE是等边三角形,∴AC=CD,CB=CE,∠ACD=∠BCE=60°,∴∠ACE=∠BCD,在△ACE和△DCB中,AC=CD∠ACE=∠DCBCE=CB,∴△ACE≌△DCB(SAS),∴∠CAE=∠CDB,∴∠EAC+∠CBD=∠CDB+∠CBD=∠ACD=60°,∴∠AGB=180°﹣(∠EAC+∠ABG)=180°﹣60°=120°;(2)作∠GCF=60°,交AE于F,∴∠ACF=∠DCG,由(1)知∠CAE=∠CDB,又∵AC=CD,∴△ACF≌△DCG(ASA),∴DG=AF,CF=CG,∵∠FCG=60°,∴△FCG是等边三角形,∴CG=FG,∴AE=AF+FG+GE=DG+CG+GE;(3)如图,以BC为边作等边△BCE,连接AE,交BD于K',由(1)(2)可知:∠AK'C=∠BK'C=60°,AE=BD,∵∠BKC=60°,∴点K、K'重合,∵∠DAC=∠ECB=60°,∴AD∥CE,∴∠DAI=∠CEI,又∵AH=CB,CB=CE,∴AH=CE,且∠AIE=∠CIE,∴△AHI≌△ECI(AAS),∴AI=IE=12AE=12a,∴IK=AK﹣AI=b―12 a,故答案为:b―12 a.24.(12分)在平面直角坐标系中,点A的坐标为(3,0),点B在y轴上,以B为直角顶点;在AB上方作等腰Rt△ABC.(1)如图1,若点B的坐标为(0,1),则C点的坐标是 (1,4) .(2)如图2,若点B在y轴正半轴上,OD平分∠AOB交AC于D,求证:AD=CD;(3)如图3,若点B为y轴上的一个动点,连接OC,当AC+OC值最小时,求B点坐标.【解答】(1)解:过点C作CH⊥y轴于H,∵△ABC是等腰直角三角形,∴AB=BC,∠ABC=90°,∴∠ABO+∠CBH=90°,∵∠ABO+∠BAO=90°,∴∠BAO=∠HBC,又∵∠AOB=∠BHC,∴△AOB≌△BHC(AAS),∴OA=BH,BO=HC,∵点A的坐标为(3,0),B的坐标为(0,1),∴OA=3,OB=1,∴OH=OB+BH=3+1=4,CH=OB=1,∴点C(1,4),故答案为:(1,4);(2)证明:作CH⊥y轴于H,交OD的延长线于E,由(1)知△ABO≌△BCH,∴OA=BH=3,OB=HC,设OB=HC=m,∵OD平分∠AOB,∴∠AOD=∠HOE,∵HE∥OA,∴∠E=∠AOE,∴∠HOE=∠E,∴HE=OH,∵OB=HC,∴CE=BH=OA,又∵∠CDE=∠ADO,∴△EDC≌△ODA(AAS),∴AD=CD;(3)解:设OB=m,由(1)知C(m,m+3),∴点C在直线y=x+3上运动,设直线y=x+3交x、y轴于F、G点,则OF=OG=3,∴∠GFO=∠FGO=45°,作点O关于直线CF的对称点O',则∠OFO'=90°,O'F=OF=3,∴O'(﹣3,3),∴AC+OC值最小时,点O'、B、A共线,由O'(﹣3,3),A(3,0)知,直线AO'的函数解析式为y=―12x+32,直线AO'与CF的交点为C'(﹣1,2),∴点B(0,﹣1).。
湖北省武汉市2021-2022学年八年级上学期期中数学试题(含答案与解析)

湖北省武汉市2021~2022年度第一学期期中考试卷八年级数学(考试时间 100分钟全卷满分 120分)学校:___________姓名:___________班级:___________考号:___________ 题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.2.(3分)等腰三角形两边的长分别为3cm和5cm,则这个三角形的周长是()A.11cm B.13cm C.11cm或13cm D.不确定3.(3分)如图,在△ABC和△ABD中,已知AC=AD,BC=BD,则能说明△ABC≌△ABD的依据是()A.SAS B.ASA C.SSS D.HL4.(3分)如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个B.2个C.3个D.4个5.(3分)为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等6.(3分)下列说法正确的有()个.①任何数的0次幂都等于1;②等腰三角形底边的中点到两腰的距离相等;③有一个角是60°的等腰三角形是等边三角形;④到三角形三条边距离相等的点是三角形三条中线的交点;⑤到三角形三个顶点距离相等的点是三角形三边垂直平分线的交点.A.1 B.2 C.3 D.47.(3分)如图,把一张长方形纸片ABCD沿EF折叠后,若∠2=40°,则∠1的度数为()A.110°B.115°C.125°D.130°8.(3分)如图,OP平分∠AOB,PC⊥OA,点D是OB上的动点,若PC=5cm,则PD的长可以是()A.2cm B.3cm C.4cm D.6cm9.(3分)点O在△ABC(非等边三角形)内,且OA=OB=OC,则点O为()A.△ABC的三条角平分线的交点B.△ABC的三条高线的交点C.△ABC的三条边的垂直平分线的交点D.△ABC的三条边上的中线的交点10.(3分)下列说法不正确的是()A.面积相等的两个三角形全等B.全等三角形对应边上的中线相等C.全等三角形的对应角的角平分线相等D.全等三角形的对应边上的高相等二.填空题(共6小题,满分18分,每小题3分)11.(3分)点P(2,3)关于y轴的对称点Q的坐标为.12.(3分)一个多边形的每一个外角为30°,那么这个多边形的边数为.13.(3分)如图,在△ABC中,AB=AC,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E,点D在运动过程中,若△ADE是等腰三角形,则∠BDA的度数为.14.(3分)如图所示,已知△ABC的周长是10,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=1,则△ABC的面积是.15.(3分)如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),经过第1次变换后得到A1坐标是(a,﹣b),则经过第2021次变换后所得的点A2021坐标是.16.(3分)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3=.三.解答题(共8小题,满分72分)17.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.18.(8分)在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.19.(8分)如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求写作法).(2)连接CE,如果△ABC的周长为32,DC的长为6,求△BCE的周长.20.(8分)如图,在平面直角坐标系中,A(﹣1,2)、B(﹣4,0)、C(﹣3,﹣2).(1)在图中作出△ABC关于y轴的对称图形△A′B′C',并写出点B′的坐标;(2)请直接写出△ABC的面积;(3)若点M(m﹣1,3)与点N(﹣2,n+1)关于x轴对称,请直接写出m、n的值.21.(8分)如图,D,E分别是BC,AB的中点,AD⊥BC于D,CE⊥AB于E,AD,CE交于点F.(1)证明:AB=BC;(2)连接BF,求证:BF是∠B的平分线.22.(10分)如图,OM是∠AOB的平分线,C是OM上一点,CD⊥OA,CE⊥OB,垂足分别为D,E.F 是OM上的另一点,连接DF,EF.求证∠DFO=∠EFO.23.(10分)在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB 于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上24.(12分)【实验操作】如图①,在△ABC中,AB=AC,现将AB边沿∠ABC的平分线BD翻折,点A 落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,连接DA2.【探究发现】若点B,D,A2三点共线,则∠ADB的大小是,∠BAC的大小是,此时三条线段AD,BD,BC之间的数量关系是【应用拓展】(1)如图②,将图①中满足【实验操作】与【探究发现】的△ABC的边AB延长至E,使得AE=BC,连接CE,直接写出∠BCE的度数.(2)如图③,在△MNP中,∠MNP=60°,∠MPN=70°,Q为NP上一点,且∠NMQ=20°,求证:MN+NQ=MQ+QP.答案与解析一.选择题(共10小题,满分30分,每小题3分)1.D.2.C.3.C.4.C.5.C.6.C.7.B.8.D.9.C.10.A.二.填空题(共6小题,满分18分,每小题3分)11.(﹣2,3).12.12.13.108°或72°.14.5.15.(a,﹣b).16.58°.三.解答题(共8小题,满分72分)17.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.【答案】见解析【解析】证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS).18.(8分)在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.【答案】见解析【解析】∵在△ABC中,AB=3,AC=7,∴第三边BC的取值范围是:4<BC<10,∴符合条件的偶数是6或8,∴当BC=6时,△ABC的周长为:3+6+7=16;当BC=8时,△ABC的周长为:3+7+8=18.∴△ABC的周长为16或18.19.(8分)如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求写作法).(2)连接CE,如果△ABC的周长为32,DC的长为6,求△BCE的周长.【答案】见解析【解析】(1)作图如图所示.(2)∵DE是AC的平分线,∴DA=DC,EA=EC,又∵DC=6,∴AC=2DC=12,又∵△ABC的周长=AB+BC+AC=32,∴AB+BC=32﹣AC=32﹣12=20,∴△BEC的周长=BE+EC+BC,=BE+EA+BC=AB+BC=20.20.(8分)如图,在平面直角坐标系中,A(﹣1,2)、B(﹣4,0)、C(﹣3,﹣2).(1)在图中作出△ABC关于y轴的对称图形△A′B′C',并写出点B′的坐标;(2)请直接写出△ABC的面积;(3)若点M(m﹣1,3)与点N(﹣2,n+1)关于x轴对称,请直接写出m、n的值.【答案】见解析【解析】(1)如图,△A′B′C'即为所求,点B′的坐标为(4,0);(2)△ABC的面积为:3×4﹣2×3﹣2×4﹣1×2=12﹣3﹣4﹣1=4;(3)∵点M(m﹣1,3)与点N(﹣2,n+1)关于x轴对称,∴m﹣1=﹣2,n+1=﹣3,解得m=﹣1,n=﹣4.21.(8分)如图,D,E分别是BC,AB的中点,AD⊥BC于D,CE⊥AB于E,AD,CE交于点F.(1)证明:AB=BC;(2)连接BF,求证:BF是∠B的平分线.【答案】见解析【解析】(1)证明:如图1,连接AC,∵CE⊥AB,E为AB的中点,∴AC=BC,∵AD⊥BC,D为BC的中点,∴AB=BC;(2)证明:如图2,∵D,E分别是BC,AB的中点,AB=BC,∴BE=BD,在Rt△BEF和Rt△BDF中,,∴Rt△BEF≌Rt△BDF(HL),∴EF=FD,∵FE⊥AB,FD⊥BC,∴点F在∠EBD的平分线上,即BF是∠B的平分线.22.(10分)如图,OM是∠AOB的平分线,C是OM上一点,CD⊥OA,CE⊥OB,垂足分别为D,E.F 是OM上的另一点,连接DF,EF.求证∠DFO=∠EFO.【答案】见解析【解析】证明:∵OM是∠AOB的平分线,CD⊥OA,CE⊥OB,垂足分别为D、E,∴∠FOD=∠FOE,CD=CE,∠CDO=∠CEO=90°,又∵OC=OC,在△DFO和△EFO中,,∴△DFO≌△EFO(SAS),∴∠DFO=∠EFO.23.(10分)在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB 于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上【答案】见解析【解析】(1)解:四边形AEDF的形状是菱形;理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠F AD,∵DE∥AC,∴∠EDA=∠F AD,∴∠EAD=∠EDA,∴AE=DE,∴四边形AEDF是菱形;(2)(i)解:连接EF交AD于点Q,如图2所示:∵∠BAC=60°,四边形AEDF是菱形,∴∠EAD=30°,AD、EF相互垂直平分,△AEF是等边三角形,∴∠EAF=∠AEF=∠AFE=60°,∵AD=4,∴AQ=2,在Rt△AQE中,cos∠EAQ=,即cos30°=,∴AE===4,∴AE=AF=EF=4,在△AEG和△EFH中,,∴△AEG≌△EFH(SAS),∴∠AEG=∠EFH,∴∠ENH=∠EFH+∠GEF=∠AEG+∠GEF=60°,∴∠ENH=∠EAG,∵∠AEG=∠NEH,∴△AEG∽△NEH,∴=,∴EN•EG=EH•AE=3×4=12;(ii)证明:如图3,连接FM',∵DE∥AC,∴∠AED=180°﹣∠BAC=120°,由(1)得:△EDF是等边三角形,∴DE=DF,∠EDF=∠FED=∠EFD=60°,由旋转的性质得:∠MDM'=60°,DM=DM',∴∠EDM=∠FDM',在△EDM和△FDM'中,,∴△EDM≌△FDM'(SAS),∴∠MED=∠DFM',由(i)知,∠AEG=∠EFH,∴∠DFM'+∠EFH=∠MED+∠AEG=∠AED=120°,∴∠HFM'=∠DFM'+∠HFE+∠EFD=120°+60°=180°,∴H,F,M′三点在同一条直线上.24.(12分)【实验操作】如图①,在△ABC中,AB=AC,现将AB边沿∠ABC的平分线BD翻折,点A 落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,连接DA2.【探究发现】若点B,D,A2三点共线,则∠ADB的大小是________,∠BAC的大小是________,此时三条线段AD,BD,BC之间的数量关系是________【应用拓展】(1)如图②,将图①中满足【实验操作】与【探究发现】的△ABC的边AB延长至E,使得AE=BC,连接CE,直接写出∠BCE的度数.(2)如图③,在△MNP中,∠MNP=60°,∠MPN=70°,Q为NP上一点,且∠NMQ=20°,求证:MN+NQ=MQ+QP.【答案】见解析【解析】【探究发现】∵将AB边沿∠ABC的平分线BD翻折,点A落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,∴∠ADB=∠A1DB,∠CDA1=∠CDA2,∠ABD=∠DBC,∠DCA1=∠DCA2,AD=A1D=A2D,∵点B,D,A2三点共线,∴∠A2DC=∠ADB,∴∠ADB=∠A1DB=∠CDA1=∠CDA2,∵∠ADB+∠A1DB+∠CDA1=180°,∴∠ADB=60°,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=2∠DBC,∵∠ADB=∠DBC+∠ACB=3∠DBC=60°,∴∠DBC=20°,∴∠ACB=40°,∴∠BAC=180°﹣∠ABC﹣∠ACB=100°,∵∠DCA1=∠DCA2=40°∴∠BCA2=80°,∠BA2C=180°﹣80°﹣20°=80°,∴∠BCA2=∠BA2C,∴BC=A2B=BD+A2D=BD+AD,故答案为:60°,100°,BC=BD+AD;【应用拓展】(1)如图,将AB边沿∠ABC的平分线BD翻折,点A落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,以A2C为边作等边三角形A2CF,连接BF,由【探究发现】可知:∠ABC=∠ACB=∠A2CD=40°,A1C=A2C,A2B=BC,AB=BA1,∠BCA2=∠BA2C=80°,∴∠CBE=140°,∵AE=BC,AB=A1B,∴BE=A1C,∵△A2CF是等边三角形,∴∠A2CF=∠CA2F=60°,A2F=A2C=CF,∴A2F=CF=BE,∠BA2F=140°=∠BCF=∠EBC,且BC=BC,∴△EBC≌△FCB(SAS),∴∠FBC=∠ECB,∵A2F=BE,∠BA2F=140°=∠EBC,BC=A2B∴△EBC≌△F A2B(SAS)∴∠BCE=∠A2BF,∴∠BCE=∠A2BF=∠FBC,且∠A2BC=20°∴∠BCE=10°;(2)如图3,将△MNQ沿MN翻折,得到△MNC,延长MC交直线PN于点E,将△MPQ沿MP翻折,得到△MP A,延长MA,交直线NP于点B,延长MN使NF=NQ,连接EF,∵∠MNP=60°,∠MPN=70°,∴∠NMP=50°,且∠NMQ=20°,∴∠QMP=30°,∴∠MQP=80°,∵将△MNQ沿MN翻折,得到△MNC,将△MPQ沿MP翻折,得到△MP A,∴∠NMQ=∠NMC=20°,∠CNM=∠MNQ=60°,CN=NQ,∠QMP=∠PMA=30°,MQ=AM,QP=AP,∠QPM=∠MP A=70°,∠MQP=∠MAP=80°,∴∠APB=180°﹣∠QPM﹣∠MP A=40°,∠EMB=100°∵∠MAP=∠B+∠APB,∴∠B=40°=∠APB,∴AP=AB,∠MEB=180°﹣∠B﹣∠EMB=40°,∴∠B=∠MEB=40°,∴ME=MB=AM+AB=MQ+PQ,∵∠ENF=∠MNQ=60°=∠MNC,∴∠CNE=∠ENF=60°,且CN=NQ=NF,EN=EN,∴△EFN≌△ECN(SAS)∴∠CEN=∠FEN=40°,∴∠MEF=80°,∴∠MFE=180°﹣∠EMF﹣∠MEF=80°,∴∠MEF=∠MFE=80°,∴MF=EM,∴MN+NF=MQ+PQ,∴MN+NQ=MQ+PQ。
湖北省2021-2022年八年级上学期数学期中考试试卷(I)卷(精编)

湖北省2021-2022年八年级上学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)(2019·常熟模拟) 下列四个图案中,是轴对称图案的是A .B .C .D .2. (1分) (2020八上·宁化月考) 如果点和点关于轴对称,则a+b的值是()A .B .C .D .3. (1分) (2020八下·寿阳期中) 下列变形错误的是()A . 若a>b ,则b<aB . 若-a>-b ,则b>aC . 由-2x>a ,得x>- aD . 由 x>-y ,得x>-2y4. (1分)如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为()A . (2,﹣1)B . (2,3)C . (0,1)D . (4,1)5. (1分) (2020八上·越城期末) 以下列各组数为边长,能组成一个三角形的是()A . 3,4,5B . 2,2,5C . 1,2,3D . 10,20,406. (1分) (2020八上·武汉月考) 下列命题中,是真命题的是()A . 内错角相等B . 对顶角相等C . 若x2=4,则 x=2D . 若 a b,则 a2 b27. (1分)(2019·遂宁) 如图,中,对角线、相交于点O ,交于点E ,连接,若的周长为28,则的周长为()A . 28B . 24C . 21D . 148. (1分)如图,在菱形ABCD中,对角线AC、BC相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A . 3.5B . 4C . 7D . 149. (1分) (2017八上·台州期中) 如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2 ,则图中阴影部分的面积为()A . 2cm2B . 4cm2C . 6cm2D . 8cm210. (1分) (2017九上·孝义期末) 如图,把量角器的0°刻度线与∠MON的顶点O对齐,边OM正好经过70°刻度线处的A点,边ON正好经过130°刻度线处的B点,则∠MON的大小是()A . 20°B . 30°C . 40°D . 60°二、填空题 (共6题;共6分)11. (1分) (2019八下·温岭期末) 如图,在R△ABC中,∠ABC=90°,AB=2 ,BC=1,BD是AC边上的中线,则BD= ________ 。
「专项突破」湖北省武汉市2021-2022学年八年级上册数学期中试题(解析版)

「专项突破」湖北省武汉市2021-2022学年八年级上册数学期中试题(解析版)【专项突破】湖北省武汉市2021-2022学年八年级上册数学期中试题(解析版)一、选一选(每题3分,共30分)1.下面有个汽车标致图案,其中没有是轴对称图形为()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形的定义以及性质进行判断即可.【详解】A.属于轴对称图形,正确;B.属于轴对称图形,正确;C.没有属于轴对称图形,错误;D.属于轴对称图形,正确;故答案为:C.【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的定义以及性质是解题的关键.2.下列长度的三条线段首尾相连能组成三角形的是()A1,2,3B.2,3,4C.3,4,7D.4,5,10【答案】B【解析】【详解】A.∵1+2=3,∴1,2,3没有能组成三角形;B.∵2+3>4,∴2,3,4能组成三角形;C.∵3+4=7,∴3,4,7没有能组成三角形;D.∵4+5<10,∴4,5,10没有能组成三角形;故选B.3.五边形的对角线共有()条A.2B.4C.5D.6【答案】C【解析】【详解】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对称轴,总共有条对角线,故可求五边形的对角线的条数为5条.故选C.点睛:此题主要考查了多边形的对角线的条数,利用多边形的对角线的条数的规律:n边形的一个顶点处有n-3条对称轴,总共有条对角线,代入计算即可.4.如图,△ABC≌△DEF,则∠E的度数为()A.80°B.40°C.62°D.38°【答案】D【解析】【分析】根据全等三角形的性质,全等三角形的对应角相等,可求∠E=∠B=180°-∠A-∠C=38°.【详解】解:∵△ABC≌△DEF,∠A=80°,∠C=62°,∴∠F=∠C=62°,∠D=∠A=80°,∴∠E=180°−∠D−∠F=180°−80°−62°=38°,故选:D.【点睛】此题主要考查了全等三角形的性质,解题关键是熟记全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.5.如图,图中x的值为()A.50°B.60°C.70°D.75°【答案】B【解析】【详解】由外角的性质得,x+70=(x+10)+x解之得x=60°.故选B点睛:本题考查了三角形外角的性质及一元方程的几何应用,根据三角形的一个外角等于和它没有相邻的两个内角的和列方程求解即可.6.如图,CD⊥AB于D,BE⊥AC于E,BE与CD交于O,OB=OC,则图中全等三角形共有()A.2对B.3对C.4对D.5对【答案】C【解析】【分析】认真观察图形,找着已知条件在图形上的位置,判定方法进行找寻,由OB=OC,CD⊥AB于D,BE⊥AC于E,得△BOD≌ΔCOE,进一步得其它三角形全等.【详解】解:CD⊥AB于D,BE⊥AC于E,∠BDO=∠CEO=90,在△BOD和ΔCOE中,△BOD≌△COE(AAS).进一步得△ADO≌△AEO,△ABO≌△ACO,△ABE≌△ACD共4对.故选C.【点睛】主要考查全等三角形的判定,做题时,从已知开始全等的判定方法由易到难逐个找寻,要没有重没有漏.7.在△ABC与△DEF中,下列各组条件,没有能判定这两个三角形全等的是()A.AB=DE,∠B=∠E,∠C=∠FB.AC=DE,∠B=∠E,∠A=∠FC.AC=DF,BC=DE,∠C=∠DD.AB=EF,∠A=∠E,∠B=∠F【答案】B【解析】【分析】【详解】利用全等三角形的判定定理,分析可得:A、AB=DE,∠B=∠E,∠C=∠F可利用AAS证明△ABC与△DEF全等;B、∠A=∠F,∠B=∠E,AC=DE,对应边没有对应,没有能证明△ABC与△DEF全等;C、AC=DF,BC=DE,∠C=∠D可利用ASA证明△ABC与△DEF 全等;D、AB=EF,∠A=∠E∠B=∠F可利用SAS证明△ABC与△DEF全等;故选B点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA没有能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.已知OD平分∠MON,点A、B、C分别在OM、OD、ON上(点A、B、C都没有与点O重合),且AB=BC,则∠OAB与∠BCO的数量关系为()A.∠OAB+∠BCO=180°B.∠OAB=∠BCOC.∠OAB+∠BCO=180°或∠OAB=∠BCOD.无法确定【答案】C【解析】【详解】根据题意画图,可知当C处在C1的位置时,两三角形全等,可知∠OAB=∠BCO;当点C处在C2的位置时,根据等腰三角形的性质和三角形的外角的性质,∠OAB+∠BCO=180°.故选C.9.如图,在△ABE中,∠BAE=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是()A.45°B.60°C.50°D.55°【答案】C【解析】【分析】已知MN是AE的垂直平分线,根据线段垂直平分线的性质可得AC=EC,所以∠CAE=∠E,由三角形外角的性质可得∠ACB=∠CAE+∠E=2∠E,再根据等腰三角形的性质可得∠B=∠ACB=2∠E,在△ABC中,根据三角形的内角和定理求得∠E=25°,即可求得∠B=2∠E=50°.【详解】∵MN是AE的垂直平分线,∴AC=EC,∴∠CAE=∠E,∴∠ACB=∠CAE+∠E=2∠E,∵AB=CE,∴∠B=∠ACB=2∠E,在△ABC中,∠BAE+∠B+∠E=180°,∴105°+2∠E+∠E=180°即∠E=25°.∴∠B=2∠E=50°.故选C.【点睛】本题考查了线段垂直平分线的性质、三角形外角的性质、等腰三角形的性质及三角形的内角和定理,求得∠E=25°是解决本题的关键.10.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=110°,则∠AOB=()A.35°B.40°C.45°D.50°【答案】A【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质求解.【详解】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∠MPN=110°∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM,同理可得:∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M,∴∠P1OP2=180°-110°=70°,∴∠AOB=35°,故选A.【点睛】考查了对称的性质,解题关键是正确作出图形和证明△P1OP2是等腰三角形是.二、填空题:(每题3分,共18分)11.三角形的一边是5,另一边是1,第三边如果是整数,则第三边是________.【答案】5【解析】【详解】根据三角形的三边关系,可知第三边的范围为4<第三边<6,由于第三边为整数,可求得第三边的长为5.故答案为5.点睛:此题主要考查了三角形的三边关系,解题关键是根据三角形的两边之和大于第三边,三角形的两边之差小于第三边,求出第三边的范围即可.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.【答案】8【解析】【详解】解:设边数为n,由题意得,180(n-2)=3603,解得n=8.所以这个多边形的边数是8.故答案:8.13.如图,小明用直尺和圆规作一个角等于已知角,则说明的依据是______.【答案】SSS【解析】【分析】根据作一个角等于已知角的过程可判断,即可得出结论.【详解】作一个角等于已知角的过程中,,则,判定依据为,故有,故答案为:.【点睛】本题考查作一个角等于已知角过程理解及全等三角形的判定,理解作图过程中的相等线段是解题关键.14.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.【答案】80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.15.如图△ABO的边OB在x轴上,∠A=2∠ABO,OC平分∠AOB,若AC=2,OA=3,则点B的坐标为_________【答案】(5,0)【解析】【详解】如图,过O作OA=OD=3,并连接CD,由OC为公共边,OC平分∠AOD,根据SAS判定△AOC≌△DOC,根据全等三角形的性质可得AC=CD=2,∠CDO=∠A=2∠CBO,因此可知∠DCB=∠CBO,再根据等角对等边,可得DC=DB=2,所以OB=2+3=5,即点B的坐标为(5,0).故答案为(5,0).16.已知△ABC中,∠B=30°,AD为高,∠CAD=30°,CD=3,则BC=_________ 【答案】12或6【解析】【详解】根据题意,可得如图所示的图形:当AD在三角形的内部时,根据30°角所对的直角边等于斜边的一半,由∠C1AD=30°,AD为高,可得AC1==2C1D=6,然后在△ABC1中,可得BC1=12;当AD在三角形的外部时,根据30°角所对的直角边等于斜边的一半,由∠C2AD=30°,AD为高,可得AC2==2C2D=6,再根据三角形的外角性质和等腰三角形的判定与性质可知BC2=6.故答案为12或6.点睛:此题主要考查了30°直角三角形的性质,解题时要根据题意分为高在三角形的内部和三角形的外部,两种情况,然后根据直角三角形的性质和等腰三角形的判定与性质求解即可.三、解答题(共8题,共72分)17.已知:△ABC中,∠B=2∠A,∠C=∠A-20°,求∠A的度数.【答案】50°.【解析】【详解】试题分析:根据题意,设∠A的度数为x°,然后分别表示处∠B、∠C,再根据三角形的内角和列方程求解即可.试题解析:设∠A=x度,则∠B=2x度,∠C=x°-20°,在△ABC中,∠A+∠B+∠C=180°,∴x+2x+x-20=180,∴x=50,即∠A=50°.18.如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.【答案】证明见解析【解析】【详解】试题分析:证明三角形△ABC△DEF,可得=.试题解析:证明:∵=,∴BC=EF,∵⊥,⊥,∴∠B=∠E=90°,AC=DF,∴△ABC△DEF,∴AB=DE.19.如图,△ABC中,∠A=60°,P为AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D,PD=DQ,证明:△ABC为等边三角形.【答案】证明见解析.【解析】【详解】试题分析:过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.试题解析:如图,过P作PE∥BQ交AC于E,∴∠EPD=∠Q,在△EPD和△CQD中,∵∴△EPD≌△CQD(ASA),∴PE=CQ,∵PA=CQ,∴PE=PA,∴∠PEA=∠A=60°,∵PE∥BQ,∴∠PEA=∠ACB=60°∴∠A=∠ACB=∠B=60°,∴△ABC为等边三角形.点睛:本题考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.20.如图,在四边形ABCD中,∠ABC=150°,∠BCD=30°,点M 在BC上,AB=BM,CM=CD,点N为AD的中点,求证:BN⊥CN.【答案】证明见解析.【解析】【详解】试题分析:延长BN、CD交于点E,根据同旁内角互补,两直线平行,可证AB∥CD,然后根据平行线的性质得到∠BAD=∠ADE,再根据全等三角形的判定“ASA”证得△ABN≌△EDN,得出BN=EN,AB=DE,进而得到CB=CE,根据等腰三角形的“三线合一”的性质得证.试题解析:如图,延长BN、CD交于点E,∵∠ABC=150°,∠BCD=30°,∴∠ABC+∠BCD=180°,∴AB∥CD,∴∠BAD=∠ADE,在△ABN和△EDN中,∵∴△ABN≌△EDN(ASA),∴BN=EN,AB=DE,又∵AB=BM,∴DE=BM,∵CM=CD,∴CB=CE,∵BN=EN,∴CN⊥BN.21.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(2,1),B (-1,3),C(-3,2)(1)作出△ABC关于x轴对称的△;(2)点的坐标为,点的坐标为;(3)点P(a,a-2)与点Q关y轴对称,若PQ=8,则点P的坐标为;【答案】(1)见解析;(2)(2,-1),(-1,-3);(3)(4,2)或(-4,-6).【解析】【详解】试题分析:(1)根据关于x轴对称的点的坐标特点画出△A1B1C1即可;(2)根据各点在坐标系中的位置写出其坐标即可;(3)先根据对称的性质求出点P的横坐标,进而可得出结论.(1)如图所示:(2)点的坐标为(2,-1),点的坐标为(-1,-3);(3)∵点P(a,a-2)与点Q关y轴对称,PQ=8,∴a=4或a=−4,∴a-2=2或a-2=−6,P的坐标为(4,2)或(-4,-6);点睛:本题考查了平面直角坐标系中点的对称特征,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.22.如图,△ABC中,AC=BC,∠ACB=90°,点D 为BC的中点,点E与点C关于直线AD对称,CE与AD、AB分别交于点F、G,连接BE、BF、GD求证:(1)△BEF为等腰直角三角形;(2)∠ADC=∠BDG.【答案】(1)证明见解析;(2)证明见解析.【解析】【详解】试题分析:(1)连接DE,根据对称轴和线段垂直平分线的性质,求出CF=EF,CD=DE,推出CD=ED=BD,根据直角三角形的判定推出△BEF是直角三角形,求出∠AFC=∠BEC=∠ACD=90°,∠CAF=∠ECB,根据全等三角形的判定定理得出△ACF≌△CBE,根据全等三角形的性质得证;(2)作∠ACB的平分线交AD于M,根据ASA推出△ACM≌△CBG 得出∠ADC=∠M,CD=BM,根据SAS推出△DCM≌△DBG,求出∠M=∠BDG,即可得出答案.试题解析:(1)连接DE,∵点E、C关于AD对称,∴AD为CE的垂直平分线,∴CD=DE,∵D为CB中点,∴CD=DE=DB,∴∠DCE=∠CED,∠DEB=∠DBE,∵∠DCE+∠CED+∠DEB+∠DBE=180°,∴∠CEB=90°,∵∠ECB+∠ACF=90°,∠CAF+∠ACF=90°,∴∠ECB=∠CAF,在△ACF 和△CBE中,∵∴△ACF≌△CBE(AAS),∴CF=BE,右∵CF=EF,∴EF=EB,∴△EFB为等腰直角三角形.(2)作∠ACB的平分线交AD于M,在△ACM和△CBG中,∵∴△ACM≌△CBG(ASA),∴C M=BG,在△DCM和△DBG中,∵∴△DCM≌△DBG(SAS),∴∠ADC=∠GDB.23.如图,△ABC和△ADE中,AB=AD,AC=AE,∠BAC=∠DAE,BC交DE于点O,∠BAD=a.(1)求证:∠BOD=a.(2)若AO平分∠DAC,求证:AC=AD;(3)若∠C=30°,OE交AC于F,且△AOF为等腰三角形,则a=.【答案】(1)证明见解析;(2)证明见解析;(3)40°或20°【解析】【分析】(1)根据全等三角形的判定“SAS”证得△ABC≌△ADE,然后根据全等的性质,可得∠B=∠D,再根据三角形的内角和定理得证结论;(2)过A作AM⊥BC于M,作AN⊥DE于N,由(1)知△ABC≌△ADE,根据全等三角形的面积相等,证得AM=AN,从而AO 为∠DAC的平分线,根据ASA证得△ABO≌△AEO,可得AB=AE,然后得证;(3)由题意可分为OA=OF和OA=AF两种情况讨论,即可求解.【详解】(1)在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS)∴∠B=∠D,∴∠BOD=∠BAD=α,(2)过A作AM⊥BC于M,作AN⊥DE于N,∵△ABC≌△ADE,∴S△ABC=S△ADE,∴,∵BC=DE,∴AM=AN,∴AO平分∠BOE,∵AO平分∠DAC,∴∠DAO=∠,∴∠BAO=∠EAO,在△ABO和△AEO中,∵∴△ABO≌△AEO(ASA),∴AB=AE,∵AB=AD,AC=AE,∴AC=AD,(3)当AO=AF时,a=40°,当OA=OF时,a=20°,故答案为40°或20°.24.如图,在轴负半轴上,点坐标为,点在射线上.(1)求证:点为的中点.(2)在轴正半轴上有一点,使,求点的坐标.(3)如图,点,分别在轴正半轴、轴正半轴上,点为的内角平分线的交点,分别交轴正半轴、轴正半轴于,两点,于点,记的周长为.求证:.【答案】(1)详见解析;(2);(3)详见解析.【解析】【分析】(1)过点作轴于点.根据B、E两点坐标,证得≌,即有,故为的中点.(2)过点作交的延长线于点,过点作轴于点,易证≌,得到D点坐标,设的坐标为,利用建立方程,解方程即可(3)连接,易证≌,得到和,由角平分线性质,求得,再过点作于点,在上截取,可证≌与≌,得到,得到周长【详解】(1)过点作轴于点.∵,∴,∴≌,∴,∴为的中点.(2)过点作交的延长线于点,过点作轴于点,∵,∴,∴可证≌,∴的坐标为,设的坐标为,∵,∴,∴,∴.(3)连接,∵点为内角平分线的交点,∴平分,平分.∴≌.∴.同理可得.∵平分,平分,∴.∴.∴.过点作于点,在上截取,可证≌.∴,∴,可证≌.∴.∴.即.【点睛】本题主要考查全等三角形的证明与性质,涉及等角等边代换,难度较大,本题的关键在于能够正确做出辅助线,找到全等三角形.。
2021-2022学年八年级上学期期中数学试题(含解析)

∴它的一个底角为(180°−80°)÷2=50°.
故填50.
【点睛】此题主要考查了等腰三角形的性质及三角形内角和定理.通过三角形内角和,列出方程求解是正确解答本题的关键.
10.如图,在△ABC中,AB=5cm,AC=3 cm,BC的垂直平分线交BC于D,交AB于E,连接EC.则△AEC的周长为________cm.
故选C.
【点睛】本题考查等腰三角形的性质、三角形的三边关系,掌握等腰三角形的性质、三角形的三边关系.
6.如图,在∠AOB中,OM平分∠AOB,MA⊥OA,垂足为A,MB⊥OB,垂足为B.若∠MAB=20°,则∠AOB的度数为()
A.20°B.25°C.30°D.40°
【答案】D
【解析】
【分析】根据角的平分线的性质得到MA=MB,从而得到∠AMB=140°,利用四边形内角和定理计算即可.
1.下列四个图形中,不是轴对称图形的为()
A. B. C. D.
2.如图, , , ,则 度数是()
A.35°B.40°C.50°D.60°
3.在△ABC中,∠A=60°,∠B=50°,AB=8,下列条件能得到△ABC≌△DEF的是( )
A.∠D=60°,∠E=50°,DF=8B.∠D=60°,∠F=50°,DE=8
C.∠E=50°,∠F=70°,DE=8D.∠D=60°,∠F=70°,EF=8
【答案】C
【解析】
【分析】显然题中使用ASA证明三角形全等, ,需要保证 ,可以根据三角形内角和定理确定∠F.
【详解】解:∵△ABC≌△DEF,
∴∠B=∠E=50°,∠A=∠D=60°,AB=DE=8,
∴∠F=180°﹣∠E﹣∠D=70°,
2021-2022学年八年级第一学期期中考试数学试卷附答案解析

2021-2022学年八年级上学期期中考试数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑1.下列代表武汉的字母图形中不是轴对称图形的是()A.W B.U C.H D.N2.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.12cm,12cm,20cm3.在△ABC内一点P满足P A=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点4.如图,给出下列四组条件,其中,不能使△ABC≌△DEF的条件是()A.AB=DE,BC=EF,AC=DF B.AB=DE,∠B=∠E,BC=EFC.∠B=∠E,BC=EF,∠C=∠F D.AB=DE,AC=DF,∠B=∠E5.如图,要在三条交错的公路区域附近修建一个物流公司仓库,使仓库到三条公路的距离相等,则可以选择的地址有()处.A.1B.2C.3D.46.如图,在△ABC中,AB=AC,AD=AE,则∠1与∠2的关系是()A.∠1=2∠2B.∠1+∠2=90°C.∠1+2∠2=180°D.2∠1+∠2=180°7.等腰三角形的两边长为6cm和8cm,则它的周长为()A.20cm B.22cmC.20cm或22cm D.18cm、20cm或22cm8.如图,平面直角坐标系中,已知定点A(3,0)和B(0,4),若动点C在y轴上运动,则使△ABC为等腰三角形的点C有()个.A.3B.4C.5D.69.如图,将一块长方形纸片ABCD沿BD翻折后,点C与E重合,若∠ADB=30°,EH =2cm,则BC的长度为()cm.A.8B.7C.6D.510.如图,点C、D在线段AB的同侧,CA=4,AB=12,BD=9,M是AB的中点,∠CMD =120°,则CD长的最大值是()A.16B.19C.20D.21二、填空题(共6小题,每小题3分,满分18分)11.在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点P1的坐标是.12.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数是.13.等腰三角形一腰上的高与另一腰的夹角是40°,则该等腰三角形顶角为°.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF 交AC于点F,若D为BC边上的动点,M为线段EF上一动点,则BM+DM最小值为.15.如图Rt△ACB中,∠ACB=90°,AC=6,BC=8,AI平分∠CAB,BI平分∠ABC,过点I作IG⊥AB于G,若BG=6,则△ABI的面积为.16.如图,已知:四边形ABCD中,对角线BD平分∠ABC,∠ACB=74°,∠ABC=46°,且∠BAD+∠CAD=180°,那么∠BDC的度数为.三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程17.(8分)如图,AC∥BD,AC=BD,点E、F在AB上,且AE=BF,求证:DE=CF.18.(8分)如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.19.(8分)如图,在四边形ABCD中,已知∠BAD=∠BCD=90°,AB=AD,点E在CD 的延长线上,∠BAC=∠DAE,探究AC与AE的数量关系与位置关系,并说明理由.20.(8分)如图所示,在平面直角坐标系中,A(﹣1,4),B(﹣3,3),C(﹣2,1)(1)已知△A′B′C′与△ABC关于x轴对称,画出△A′B′C′,并写出以下各点坐标:A′;B′;C′.(2)在y轴上作出点P(在图中显示作图过程),使得P A+PC的值最小,并写出点P的坐标.21.(8分)如图1,△ABC中,CD为△ABC的中线,点E在CD上,且∠AED=∠BCD.(1)求证:AE=BC.(2)如图2,连接BE,若AB=AC=2DE,∠CBE=14°,则∠ACD的度数为(直接写出结果),22.(10分)如图1,已知CF是△ABC的外角∠ACE的角平分线,D为CF上一点,且DA =DB.(1)求证:∠ACB=∠ADB;(2)求证:AC+BC<2BD;(3)如图2,若∠ECF=60°,证明:AC=BC+CD.23.(10分)已知四边形ABCD是正方形,△DEF是等腰直角三角形,DE=DF,M是EF 的中点.(1)如图1,当点E在AB上时,求证:点F在直线BC上.(2)如图2,在(1)的条件下,当CM=CF时,求证:∠CFM=22.5°(3)如图3,当点E在BC上时,若CM=2,则BE的长为(直接写出结果)(注:等腰直角三角形三边之比为1:1:√2)24.(12分)如图1,在平面直角坐标系中,点D(m,m+8)在第二象限,点B(0,n)在y轴正半轴上,作DA⊥x轴,垂足为A,已知OA比OB的值大2,四边形AOBD的面积为12.(1)求m和n的值.(2)如图2,C为AO的中点,DC与AB相交于点E,AF⊥BD,垂足为F,求证:AF =DE.(3)如图3,点G在射线AD上,且GA=GB,H为GB延长线上一点,作∠HAN交y 轴于点N,且∠HAN=∠HBO,求NB﹣HB的值.2021-2022学年八年级上学期期中考试数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑1.下列代表武汉的字母图形中不是轴对称图形的是()A.W B.U C.H D.N【解答】解:A、W是轴对称图形,故本选项不合题意;B、U是轴对称图形,故本选项不合题意;C、H是轴对称图形,故本选项不合题意;D、N不是轴对称图形,故本选项符合题意.故选:D.2.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.12cm,12cm,20cm【解答】解:3+4<8,A不能摆成三角形;8+7=15,B不能摆成三角形;5+5<11,C不能摆成三角形;12+12>20,20﹣12<12,D能摆成三角形;故选:D.3.在△ABC内一点P满足P A=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点【解答】解:∵在△ABC内一点P满足P A=PB=PC,∴点P一定是△ABC三边垂直平分线的交点.故选:B.4.如图,给出下列四组条件,其中,不能使△ABC≌△DEF的条件是()A.AB=DE,BC=EF,AC=DF B.AB=DE,∠B=∠E,BC=EFC.∠B=∠E,BC=EF,∠C=∠F D.AB=DE,AC=DF,∠B=∠E【解答】解:A、∵AB=DE,BC=EF,AC=DF,∴可根据SSS判定△ABC≌△DEF;B、AB=DE,∠B=∠E,BC=EF,∴可根据SAS判定△ABC≌△DEF;C、∵∠B=∠E,BC=EF,∠C=∠F,∴可根据ASA判定△ABC≌△DEF;D、∵AB=DE,AC=DF,∠B=∠E,不能用SSA判定三角形的全等.故选:D.5.如图,要在三条交错的公路区域附近修建一个物流公司仓库,使仓库到三条公路的距离相等,则可以选择的地址有()处.A.1B.2C.3D.4【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故选:D.6.如图,在△ABC中,AB=AC,AD=AE,则∠1与∠2的关系是()A.∠1=2∠2B.∠1+∠2=90°C.∠1+2∠2=180°D.2∠1+∠2=180°【解答】解:∵AB=AC,AD=AE,∴∠B=∠C,∠AED=∠ADE,∵∠AED=∠C+∠2,∠ADE+∠2=∠1+∠B,∴∠C+2∠2=∠1+∠B,∴∠1=2∠2.故选:A.7.等腰三角形的两边长为6cm和8cm,则它的周长为()A.20cm B.22cmC.20cm或22cm D.18cm、20cm或22cm【解答】解:当三边是8cm,8cm,6cm时,符合三角形的三边关系,此时周长是22cm;当三边是8cm,6cm,6cm时,符合三角形的三边关系,此时周长是20cm.因此等腰三角形的周长为22cm或20cm.故选:C.8.如图,平面直角坐标系中,已知定点A(3,0)和B(0,4),若动点C在y轴上运动,则使△ABC为等腰三角形的点C有()个.A.3B.4C.5D.6【解答】解:如图所示:当BC=BA时,使△ABC为等腰三角形的点C有2个;当AB=AC时,使△ABC为等腰三角形的点C有1个;当CA=CB时,使△ABC为等腰三角形的点C有1个;综上所述,若动点C在y轴上运动,使△ABC为等腰三角形的点C有4个;故选:B.9.如图,将一块长方形纸片ABCD沿BD翻折后,点C与E重合,若∠ADB=30°,EH =2cm,则BC的长度为()cm.A.8B.7C.6D.5【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∠C=90°,∴∠ADB=∠DBC=30°,∵将一块长方形纸片ABCD沿BD翻折后,∴∠E=∠C=90°,∠EBD=∠DBC=30°,BC=BE,∴∠ADB=DBE=30°,∴BH=HD,∠EHD=∠ADB+∠DBE=60°,∴∠EDH=30°,且∠E=90°,∴DH=2HE=4cm,∴BH=4cm,∴BE=6cm,∴BC=6cm,故选:C.10.如图,点C、D在线段AB的同侧,CA=4,AB=12,BD=9,M是AB的中点,∠CMD =120°,则CD长的最大值是()A.16B.19C.20D.21【解答】解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=4+6+9=19,∴CD的最大值为19,故选:B.二、填空题(共6小题,每小题3分,满分18分)11.在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点P1的坐标是P1(﹣2,﹣3).【解答】解:∵P(﹣2,3)与P1关于x轴对称,∴横坐标相同,纵坐标互为相反数,∴P1的坐标为(﹣2,﹣3).故答案为(﹣2,﹣3).12.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数是7.【解答】解:设这个多边形的边数为n,根据题意,得(n﹣2)×180°=3×360°﹣180°,解得n=7.故答案为:7.13.等腰三角形一腰上的高与另一腰的夹角是40°,则该等腰三角形顶角为50或130°.【解答】解:①当为锐角三角形时可以画图,高与右边腰成40°夹角,由三角形内角和为180°可得,顶角为50°;②当为钝角三角形时可画图为,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为50°,所以三角形的顶角为130°;故填50°或130°.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF 交AC于点F,若D为BC边上的动点,M为线段EF上一动点,则BM+DM最小值为6cm.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴BM+DM最小值为6cm,故答案为:6cm.15.如图Rt△ACB中,∠ACB=90°,AC=6,BC=8,AI平分∠CAB,BI平分∠ABC,过点I作IG⊥AB于G,若BG=6,则△ABI的面积为10.【解答】解:在Rt△ABC中,AB=√62+82=10,∵AI平分∠CAB,BI平分∠ABC,∴I点到三角形三边的距离相等,设此距离为x,∵S△AIB+S△BIC+S△AIC=S△ABC,∴12×x ×10+12×x ×8+12×x ×6=12×6×8,解得x =2, 即IG =2,∴S △ABI =12×2×10=10. 故答案为10.16.如图,已知:四边形ABCD 中,对角线BD 平分∠ABC ,∠ACB =74°,∠ABC =46°,且∠BAD +∠CAD =180°,那么∠BDC 的度数为 30° .【解答】解:延长BA 和BC ,过D 点作DE ⊥BA 于E 点,过D 点作DF ⊥BC 于F 点, ∵BD 是∠ABC 的平分线在△BDE 与△BDF 中,{∠ABD =∠CBDBD =BD ∠AED =∠DFC,∴△BDE ≌△BDF (ASA ),∴DE =DF ,又∵∠BAD +∠CAD =180°∠BAD +∠EAD =180°∴∠CAD =∠EAD ,∴AD 为∠EAC 的平分线,过D 点作DG ⊥AC 于G 点,在Rt △ADE 与Rt △ADG 中,{AD =AD DE =DG, ∴△ADE ≌△ADG (HL ),∴DE =DG ,∴DG =DF .在Rt △CDG 与Rt △CDF 中,{CD =CD DG =DF, ∴Rt △CDG ≌Rt △CDF (HL ),∴CD 为∠ACF 的平分线,∠ACB =74°,∴∠DCA =53°,∴∠BDC =180°﹣∠CBD ﹣∠DCA ﹣∠ACB =180°﹣23°﹣53°﹣74°=30°. 故答案为:30°三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程17.(8分)如图,AC ∥BD ,AC =BD ,点E 、F 在AB 上,且AE =BF ,求证:DE =CF .【解答】证明:∵AC ∥BD ,∴∠A =∠B ,∵AE =BF ,∴AF =BE ,在△ACF 和△BDE 中{AC =BD ∠A =∠B AF =BE∴△ACF ≌△BDE (SAS ),∴DE =CF .18.(8分)如图,在△ABC 中,∠C =∠ABC =2∠A ,BD 是AC 边上的高,求∠DBC 的度数.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.19.(8分)如图,在四边形ABCD中,已知∠BAD=∠BCD=90°,AB=AD,点E在CD 的延长线上,∠BAC=∠DAE,探究AC与AE的数量关系与位置关系,并说明理由.【解答】解:AC=AE,AC⊥AE;理由:如图,∵∠BAD=∠BCD=90°,∴∠ABC+∠ADC=180°,∵∠ADE+∠ADC=180°,∴∠ABC=∠ADE,在△ABC与△ADE中,{∠BAC=∠DAE AB=AD∠ABC=∠ADE,∴△ABC≌△ADE(ASA)∴AC=AE,∠BAC=∠DAE,∵∠BAC+∠CAD=∠DAE+∠CAD=90°,∴∠CAE=90°,∴AC⊥AE.20.(8分)如图所示,在平面直角坐标系中,A(﹣1,4),B(﹣3,3),C(﹣2,1)(1)已知△A′B′C′与△ABC关于x轴对称,画出△A′B′C′,并写出以下各点坐标:A′(﹣1,﹣4);B′(﹣3,﹣3);C′(﹣2,﹣1).(2)在y轴上作出点P(在图中显示作图过程),使得P A+PC的值最小,并写出点P的坐标(0,3).【解答】解:(1)如图所示,△A′B′C′即为所求.由图知A′(﹣1,﹣4)、B′(﹣3,﹣3),C′(﹣2,﹣1),故答案为:(﹣1,﹣4)、(﹣3,﹣3)、(﹣2,﹣1);(2)如图所示,点P即为所求,其坐标为(0,3),故答案为:(0,3).21.(8分)如图1,△ABC中,CD为△ABC的中线,点E在CD上,且∠AED=∠BCD.(1)求证:AE=BC.(2)如图2,连接BE,若AB=AC=2DE,∠CBE=14°,则∠ACD的度数为28°(直接写出结果),【解答】证明:(1)如图1,延长CD到F,使DF=CD,连接AF,∵CD为△ABC的中线,∴AD=BD,且∠ADF=∠BDC,且CD=DF,∴△ADF≌△BDC(SAS),∴AF=BC,∠F=∠BCD,∵∠AED=∠BCD,∴∠AED=∠F,∴AE=AF,∴AE=BC;(2)∵DE=12AB,CD为△ABC的中线,∴DE=AD=DB,∴∠DEB=∠DBE,∴∠ABC=∠DBE+∠CBE=∠DEB+14°,∵∠DEB=∠DCB+∠CBE,∴∠DCB=∠DEB﹣14°,∵AC=AB,∴∠ACB=∠ABC=∠DEB+14°∴ACD=∠ACB﹣∠DCB=28°,故答案为:28°.22.(10分)如图1,已知CF是△ABC的外角∠ACE的角平分线,D为CF上一点,且DA =DB.(1)求证:∠ACB=∠ADB;(2)求证:AC+BC<2BD;(3)如图2,若∠ECF=60°,证明:AC=BC+CD.【解答】(1)证明:过点D分别作AC,CE的垂线,垂足分别为M,N,∵CF是△ABC的外角∠ACE的角平分线,∴DM=DN,在Rt△DAM和Rt△DBN中,{DA=DBDM=DN,∴Rt△DAM≌Rt△DBN(HL),∴∠DAM=∠DBN,∴∠ACB=∠ADB;(2)证明:由(1)知DM=DN,在Rt△DMC和Rt△DNC中,{DC =DC DM =DN, ∴Rt △DMC ≌Rt △DNC (HL ),∴CM =CN ,∴AC +BC =AM +CM +BC =AM +CN +BC =AM +BN ,又∵AM =BN ,∴AC +BC =2BN ,∵BN <BD ,∴AC +BC <2BD .(3)由(1)知∠CAD =∠CBD ,在AC 上取一点P ,使CP =CD ,连接DP ,∵∠ECF =60°,∠ACF =60°,∴△CDP 为等边三角形,∴DP =DC ,∠DPC =60°,∴∠APD =120°,∵∠ECF =60°,∴∠BCD =120°,在△ADP 和△BDC 中,{∠APD =∠BCD ∠PAD =∠CBD DA =DB,∴△ADP ≌△BDC (AAS ),∴AP =BC ,∵AC =AP +CP ,∴AC =BC +CP ,∴AC =BC +CD .23.(10分)已知四边形ABCD 是正方形,△DEF 是等腰直角三角形,DE =DF ,M 是EF的中点.(1)如图1,当点E 在AB 上时,求证:点F 在直线BC 上.(2)如图2,在(1)的条件下,当CM =CF 时,求证:∠CFM =22.5°(3)如图3,当点E 在BC 上时,若CM =2,则BE 的长为 2√2 (直接写出结果)(注:等腰直角三角形三边之比为1:1:√2)【解答】(1)证明:∵四边形ABCD 是正方形,∴AD =CD =AB =BC ,∠A =∠BCD =∠ADC =90°,∵△DEF 是等腰直角三角形,∴∠EDF =90°,∴∠ADC =∠EDF ,∴∠ADE =∠CDF ,在△ADE 和△CDF 中,{AD =CD∠ADE =∠CDF DE =DF,∴△ADE ≌△CDF (SAS ),∴∠A =∠DCF =90°,∴点F 在直线BC 上;(2)证明:作EN ∥CM 交BC 于N ,如图2所示:∵M 是EF 的中点,EN ∥CM ,∴CM 是△EFN 的中位线,∠BCM =∠BNE ,∴CN =CF ,由(1)得:△ADE ≌△CDF ,∴AE =CF ,∴AE =CN ,∴BE =BN ,∴△BEN 是等腰直角三角形,∴∠BCM=45°,∵CM=CF,∴∠CMF=∠CFM=12∠BCM=22.5°;(3)解:过点F作FG⊥BC于G,FQ⊥AD于Q,则四边形CGQD为矩形,过点E作EH⊥AD于H,则EH=AB=CD,作FN∥CM交CG于N,如图3所示:∵∠EDF=90°,∴∠HDE+∠QDF=90°,∵∠HDE+∠HED=90°,∴∠QDF=∠HED,在△QDF和△HED中,{∠QDF=∠HED∠FQD=∠DHE=90°DF=DE,∴△QDF≌△HED(AAS),∴EH=DQ,∴DQ=CD,∴矩形CGQD是正方形,∴CG=BC,∵M是EF的中点,FN∥CM,∴CM是△ENF的中位线,∴∠GCM=∠GNF,NF=2CM=4,CE=CN,∴BE=NG,连接DM、GM,则DM是Rt△EDF的中线、GM是Rt△EGF的中线,∴DM=12EF,GM=12EF,∴DM=GM,在△CMD和△CMG中,{CD=CG CM=CM DM=GM,∴△CMD≌△CMG(SSS),∴∠DCM=∠GCM=12∠DCG=45°,∴△NGF 是等腰直角三角形,∴NG =√22NF =2√2,故答案为:2√2.24.(12分)如图1,在平面直角坐标系中,点D (m ,m +8)在第二象限,点B (0,n )在y 轴正半轴上,作DA ⊥x 轴,垂足为A ,已知OA 比OB 的值大2,四边形AOBD 的面积为12.(1)求m 和n 的值.(2)如图2,C 为AO 的中点,DC 与AB 相交于点E ,AF ⊥BD ,垂足为F ,求证:AF =DE .(3)如图3,点G 在射线AD 上,且GA =GB ,H 为GB 延长线上一点,作∠HAN 交y 轴于点N ,且∠HAN =∠HBO ,求NB ﹣HB 的值.【解答】解:(1)由题意{−m −n =212(n +m +8)⋅(−m)=12, 解得{m =−4n =2.(2)如图2中,由(1)可知,A(﹣4,0),B(0,2),D(﹣4,4),∴AD=OA=4,OB=2,AB=BD=2√5,∵AC=OC=2,∴AC=OB,∵∠DAC=∠AOB=90°,AD=OA,∴△DAC≌△AOB(SAS),∴∠ADC=∠BAO,∵∠ADC+∠ACD=90°,∴∠EAC+∠ACE=90°,∴∠AEC=90°,∵AF⊥BD,DE⊥AB,∴S△ADB=12•AB•AE=12•BD•AF,∵AB=BD,∴DE=AF.(3)解:如图,取OC=OB,连接AC,根据对称性可得∠ABC=∠ACB,AB=AC,∵AG=BG,∴∠GAB=∠GBA,∵G为射线AD上的一点,∴AG∥y轴,∴∠GAB =∠ABC ,∴∠ACB =∠EBA ,∴180°﹣∠GBA =180°﹣∠ACB ,即∠ABG =∠ACN ,∵∠GAN =∠GBO ,∴∠AGB =∠ANC ,在△ABG 与△ACN 中,{∠ABH =∠ACN ∠AHB =∠ANC AB =AC,∴△ABH ≌△ACN (AAS ),∴BF =CN ,∴NB ﹣HB =NB ﹣CN =BC =2OB ,∵OB =2∴NB ﹣FB =2×2=4(是定值),即当点H 在GB 的延长线上运动时,NB ﹣HB 的值不会发生变化.。
2021-2022学年八年级第一学期期中考试数学试卷附答案

2021-2022学年八年级上学期期中考试数学试卷一.选择题(共12小题,满分48分,每小题4分)1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列判定两个三角形全等的说法中,不正确的是( )A .三角对应相等的两个三角形全等B .三边对应相等的两个三角形全等C .有一边及其对角和另一角对应相等的两个三角形全等D .有一组直角边和一组斜边对应相等的两个直角三角形全等3.等腰三角形的两边长分别为3cm 和7cm ,则周长为( )A .13cmB .17cmC .13cm 或17cmD .11cm 或17cm4.已知∠AOB ,求作射线OC ,使OC 平分∠AOB 作法的合理顺序是( )①作射线OC ;②在OA 和OB 上分别截取OD ,OE ,使OD =OE ;③分别以D ,E 为圆心,大于12DE 的长为半径作弧,在∠AOB 内,两弧交于C . A .①②③ B .②①③ C .②③① D .③②①5.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确6.如图,将△ABC沿过边上两点D,E的直线折叠后,使得点B与点A重合.若已知BE =4cm,DE=3cm,则△ABC的周长与△ADC的周长的差为()A.4cm B.5cm C.8cm D.10cm7.已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE,分别交AB,AC于点D,E.若AD=3,BC=5,则△BEC的周长为()A.8B.10C.11D.138.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,若CD=3,则BD的长是()A.7B.6C.5D.49.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC的角平分线,则三角形ADC的面积为()A.3B.10C.12D.15 10.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD 11.如图,已知AE∥DF,BE∥CF,AC=BD,则下列说法错误的是()A.△AEB≌△DFC B.△EBD≌△FCA C.ED=AF D.EA=EC 12.等边三角形的三条高把这个三角形分成()个直角三角形.A.8B.10C.11D.12二.填空题(共6小题,满分24分,每小题4分)13.平面直角坐标系中的点P(2−m,12m)关于x轴的对称点在第四象限,则m的取值范围为.14.如图,已知∠1=58°,∠B=60°,则∠2=°.15.如图,已知BC与DE交于点M,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.16.如果一斜坡的坡度为i=1:√3,某物体沿斜面向上推进了10米,那么物体升高了米.17.在平面直角坐标系中,点A、B、C的坐标分别为A(8,0),B(2,6),C(4,0),点P,Q是△ABO边上的两个动点(点P不与点C重合),以P,O,Q为顶点的三角形与△COQ全等,则满足条件的点P的坐标为.18.如图,在第1个△A1BC中,∠B=20°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第5个等腰三角形的底角度数是.三.解答题(共7小题)19.如图,五边形ABCDE的内角都相等,EF平分∠AED,求证:EF⊥BC.20.画图并填空:如图,请画出自A地经过B地去河边l的最短路线.(1)确定由A地到B地最短路线的依据是.(2)确定由B地到河边l的最短路线的依据是.21.已知如图,AC交BD于点O,AB=DC,∠A=∠D.(1)请写出符合上述条件的五个结论(并且不再添加辅助线,对顶角除外);(2)从你写出的5个结论中,任选一个加以证明.22.如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.23.如图,在△ABC中,∠B=36°,∠C=76°,AD是△ABC的角平分线,BE是△ABD 中AD边上的高,求∠ABE的度数.24.如图1,在△CAB和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=α,连接AD、BE.(1)求证:△ACD≌△BCE;(2)如图2,当α=90°时,取AD、BE的中点P、Q,连接CP、CQ、PQ,判断△CPQ 的形状,并加以证明.25.问题发现:如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是;②线段AC,CD,CE之间的数量关系是.拓展探究:(2)如图2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由;解决问题:(3)如图3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若点A满足AB=AC,∠BAC=90°,请直接写出线段AD的长度.2021-2022学年八年级上学期期中考试数学试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.下列图形中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.下列判定两个三角形全等的说法中,不正确的是()A.三角对应相等的两个三角形全等B.三边对应相等的两个三角形全等C.有一边及其对角和另一角对应相等的两个三角形全等D.有一组直角边和一组斜边对应相等的两个直角三角形全等解:A、三角对应相等的两个三角形不一定全等,故A选项符合题意;B、三边对应相等的两个三角形全等,故B选项不符合题意;C、有一边及其对角和另一角对应相等的两个三角形全等,故C选项不符合题意;D、有一组直角边和一组斜边对应相等的两个直角三角形全等,故D选项不符合题意;故选:A.3.等腰三角形的两边长分别为3cm和7cm,则周长为()A.13cm B.17cm C.13cm或17cm D.11cm或17cm 解:当7为腰时,周长=7+7+3=17cm;当3为腰时,因为3+3<7,所以不能构成三角形;故三角形的周长是17cm.故选:B .4.已知∠AOB ,求作射线OC ,使OC 平分∠AOB 作法的合理顺序是( )①作射线OC ;②在OA 和OB 上分别截取OD ,OE ,使OD =OE ;③分别以D ,E 为圆心,大于12DE 的长为半径作弧,在∠AOB 内,两弧交于C . A .①②③ B .②①③ C .②③① D .③②①解:角平分线的作法是:在OA 和OB 上分别截取OD ,OE ,使OD =OE ;分别以D ,E 为圆心,大于12DE 的长为半径作弧,在∠AOB 内,两弧交于C ; 作射线OC .故其顺序为②③①.故选:C .5.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A .角的内部到角的两边的距离相等的点在角的平分线上B .角平分线上的点到这个角两边的距离相等C .三角形三条角平分线的交点到三条边的距离相等D .以上均不正确解:(1)如图所示:过两把直尺的交点P 作PE ⊥AO ,PF ⊥BO ,∵两把完全相同的长方形直尺,∴PE =PF ,∴OP 平分∠AOB (角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A .6.如图,将△ABC沿过边上两点D,E的直线折叠后,使得点B与点A重合.若已知BE =4cm,DE=3cm,则△ABC的周长与△ADC的周长的差为()A.4cm B.5cm C.8cm D.10cm解:∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,BE=AE=4,∴AB=BE+AE=4+4=8,∴△ABC的周长﹣△ADC的周长=AB+BC+AC﹣AC﹣CD﹣AD=AB+BD﹣AD=AB=8(cm),故选:C.7.已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE,分别交AB,AC于点D,E.若AD=3,BC=5,则△BEC的周长为()A.8B.10C.11D.13解:∵AB的垂直平分线DE分别交AB、AC于点D、E,∴AE=BE,∵AD=3,∴AB=6,∴AE+EC=AC=AB=6,∵BC=5,∴△EBC的周长=BC+BE+CE=BC+AE+CE=BC+AC=6+5=11;故选:C.8.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,若CD=3,则BD的长是()A.7B.6C.5D.4解:如图,作DE⊥AB于点E,∵AD为∠CAB的平分线,∴DE=CD=3,∵∠B=30°,则BD=2DE=6,故选:B.9.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC的角平分线,则三角形ADC的面积为()A .3B .10C .12D .15解:作DH ⊥AC 于H ,如图,在Rt △ABC 中,∠B =90°,AB =6,BC =8,∴AC =√62+82=10,∵AD 为∠BAC 的角平分线,∴DB =DH ,∵12×AB ×CD =12DH ×AC , ∴6(8﹣DH )=10DH ,解得DH =3,∴S △ADC =12×10×3=15.故选:D .10.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A .∠B =∠C B .AD ⊥BC C .AD 平分∠BAC D .AB =2BD解:∵△ABC 中,AB =AC ,D 是BC 中点∴∠B =∠C ,(故A 正确)AD ⊥BC ,(故B 正确)∠BAD =∠CAD (故C 正确)无法得到AB =2BD ,(故D 不正确).故选:D .11.如图,已知AE ∥DF ,BE ∥CF ,AC =BD ,则下列说法错误的是( )A .△AEB ≌△DFC B .△EBD ≌△FCA C .ED =AFD .EA =EC 证明:∵AE ∥DF ,∴∠EAB =∠FDC ,∵BE ∥CF ,∴∠EBC =∠BCF ,∴∠ABE =∠FCD ,∵AC =BD ,∴AB =CD ,在△AEB 和△DFC 中,{∠EAB =∠FDC AB =CD ∠ABE =∠FCD,△AEB ≌△DFC (ASA ),∴BE =CF ,在△EBD 和△FCA 中,{BE =CF ∠EBD =∠ACF AC =BD,∴△EBD ≌△FCA (SAS ),∴ED =AF .故A ,B ,C 选项正确,AE =CE 说法不正确,故选:D .12.等边三角形的三条高把这个三角形分成( )个直角三角形.A .8B .10C .11D .12 解:如图:直角三角形有△ABE 、△ACE 、△ABF 、△BCF 、△ACD 、△BCD 、△ADO 、△AFO 、△CFO 、△CEO ,△BEO 、△BDO ,共12个.故选:D .二.填空题(共6小题,满分24分,每小题4分)13.平面直角坐标系中的点P (2−m ,12m)关于x 轴的对称点在第四象限,则m 的取值范围为 0<m <2 .解:点P (2﹣m ,12m )关于x 轴对称的点的坐标为P 1(2﹣m ,−12m ), ∵P 1(2﹣m ,−12m )在第四象限,∴{2−m >0−12m <0,解得0<m <2, ∴m 的取值范围为 0<m <2.故答案为0<m <2.14.如图,已知∠1=58°,∠B =60°,则∠2= 118 °.解:∵∠2=∠B +∠1,∴∠2=58°+60°=118°,故答案为118.15.如图,已知BC 与DE 交于点M ,则∠A +∠B +∠C +∠D +∠E +∠F 的度数为 360° .解:连接BE.∵△CDM和△BEM中,∠DMC=∠BME,∴∠C+∠D=∠MBE+∠BEM,∴∠A+∠B+∠C+∠D+∠E+∠F=∠A+∠B+∠MBE+∠BEM+∠E+∠F=∠A+∠F+∠ABE+∠BEF=360°.故答案为:360°.16.如果一斜坡的坡度为i=1:√3,某物体沿斜面向上推进了10米,那么物体升高了5米.解:∵斜坡的坡度为i=1:√3,又∵i=tan∠ABC=AC BC∴ACBC =√3=√33,∴∠ABC=30°,∵某物体沿斜面向上推进了10米,即AB=10,∴AC=5.故答案为:5.17.在平面直角坐标系中,点A、B、C的坐标分别为A(8,0),B(2,6),C(4,0),点P ,Q 是△ABO 边上的两个动点(点P 不与点C 重合),以P ,O ,Q 为顶点的三角形与△COQ 全等,则满足条件的点P 的坐标为 (2√105,6√105)或(1,3)或P (5,3)或(8﹣2√2,2√2) .解:以P ,O ,Q 为顶点的三角形与△COQ 全等,①如图1所示,当△POQ ≌△COQ 时,即OP =OC =4,过P 作PE ⊥OA 于E ,过B 作BF ⊥OA 于F ,则PE ∥BF ,∵B (2,6),∴OF =2,BF =6,∴OB =√22+62=2√10,∵PE ∥BF ,∴△POE ∽△BOF ,∴OP OB =PE BF =OE OF , ∴2√10=PE 6=OE2, ∴PE =6√105,OE =2√105, ∴点P 的坐标为(2√105,6√105);②如图2,当△POQ ≌△CQO 时,即QP =OC =4,OP =CQ ,∴四边形PQCO 是平行四边形,∴PQ ∥OA ,过P 作PE ⊥OA 于E ,过B 作BF ⊥OA 于F , 则PE ∥BF ,∵B(2,6),∴OF=2,BF=6,∴OB=√22+62=2√10,∵PQ∥OA,∴PBOB =PQ OA,∴PB=√10,∴PE=√10,∴点P是OB的中点,∵PE∥BF,∴PE=12BF=3,OE=12EF=1,∴点P的坐标为(1,3),如图3,如图3,当△OQC≌△QOP时,过P作PE⊥OA于E,过B作BF⊥OA于F,则PE∥BF,∵B(2,6),∴OF=2,BF=6,∴AF=6,∴△ABF和△APE是等腰直角三角形,∴PE=AE,∵直线AB的解析式为y=﹣x+8,∴设点P的坐标为(x,﹣x+8),连接PC∵△OQC≌△QOP,∴∠POQ=∠CQO,PQ=OC,CQ=OP,∴△PQC≌△COP,∴∠OPC=∠QCP,∴∠OQC=∠QCP,∴PC∥OQ,∴PC=12OB=√10,∵PC2=CE2+PE2,∴10=(x ﹣4)2+(﹣x +8)2,解得:x =5,x =7(不合题意舍去),∴P (5,3);如图4,当△OQC ≌△QOP 时,过P 作PE ⊥OA 于E ,连接PC ,同理PE =AE ,PC ∥OQ ,∵AC =OC ,∴AP =PQ ,∵△OQC ≌△QOP ,∴PQ =OC =4,∴AP =PQ =4,∴PE =AE =2√2,∴OE =8﹣2√2,∴P (8﹣2√2,2√2),综上所述,点P 的坐标为(2√105,6√105)或(1,3)或P (5,3)或(8﹣2√2,2√2). 故答案为(2√105,6√105)或(1,3)或P (5,3)或(8﹣2√2,2√2).18.如图,在第1个△A 1BC 中,∠B =20°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第5个等腰三角形的底角度数是 5° .解:∵在△CBA 1中,∠B =20°,A 1B =CB ,∴∠BA 1C =180°−∠B 2=80°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=12∠BA 1C =12×80°; 同理可得,∠EA 3A 2=(12)2×80°,∠F A 4A 3=(12)3×80°, ∴第n 个等腰三角形的底角度数是(12)n ﹣1×80°. ∴第5个等腰三角形的底角度数为:(12)4×80°=5°,故答案为:5°.三.解答题(共7小题)19.如图,五边形ABCDE的内角都相等,EF平分∠AED,求证:EF⊥BC.证明:五边形内角和为:(5﹣2)×180°=540°.∵5个内角都相等,∴∠A=∠B=∠AED=540°5=108°.∵EF平分∠AED,∴∠1=∠2=54°.∵四边形的内角和为360°,在四边形ABFE中,∠3=360°﹣(108°+108°+54°)=90°.∴EF⊥BC.20.画图并填空:如图,请画出自A地经过B地去河边l的最短路线.(1)确定由A地到B地最短路线的依据是两点之间线段最短.(2)确定由B地到河边l的最短路线的依据是垂线段最短.解:自A地经过B地去河边l的最短路线,如图所示.(1)确定由A地到B地最短路线的依据是两点之间线段最短.(2)确定由B地到河边l的最短路线的依据是垂线段最短.21.已知如图,AC交BD于点O,AB=DC,∠A=∠D.(1)请写出符合上述条件的五个结论(并且不再添加辅助线,对顶角除外);(2)从你写出的5个结论中,任选一个加以证明.解:(1)符合上述条件的五个结论为:△AOB ≌△DOC ,OA =OD ,OB =OC ,∠ABO =∠DCO ,∠OBC =∠OCB .(2)证明如下:∵AB =DC ,∠A =∠D ,又有∠AOB =∠DOC∴△AOB ≌△DOC∴OA =OD ,OB =OC ,∠ABO =∠DCO∵OB =OC∴∠OBC =∠OCB .22.如图,△ABC 中,A 点坐标为(2,4),B 点坐标为(﹣3,﹣2),C 点坐标为(3,1).(1)在图中画出△ABC 关于y 轴对称的△A ′B ′C ′(不写画法),并写出点A ′,B ′,C ′的坐标.(2)求△ABC 的面积.解:(1)如图,A ′(﹣2,4),B ′(3,﹣2),C ′(﹣3,1);(2)S △ABC =6×6−12×5×6−12×6×3−12×1×3,=36﹣15﹣9﹣112, =1012.23.如图,在△ABC中,∠B=36°,∠C=76°,AD是△ABC的角平分线,BE是△ABD 中AD边上的高,求∠ABE的度数.解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣36°﹣76°=68°,∵AD是∠BAC的平分线,∴∠BAD=12×68°=34°,∵AE⊥BE,∴∠AEB=90°,∴∠ABE=180°﹣∠AEB﹣∠BAE=180°﹣90°﹣34°=56°.24.如图1,在△CAB和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=α,连接AD、BE.(1)求证:△ACD≌△BCE;(2)如图2,当α=90°时,取AD、BE的中点P、Q,连接CP、CQ、PQ,判断△CPQ的形状,并加以证明.解:(1)如图1,∵∠ACB =∠DCE =α,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,{CA =CB ∠ACD =∠BCE CD =CE,∴△ACD ≌△BCE (SAS ),∴BE =AD ;(2)△CPQ 为等腰直角三角形.证明:如图2,由(1)可得,BE =AD ,∵AD ,BE 的中点分别为点P 、Q ,∴AP =BQ ,∵△ACD ≌△BCE ,∴∠CAP =∠CBQ ,在△ACP 和△BCQ 中,{CA =CB∠CAP =∠CBQ AP =BQ,∴△ACP ≌△BCQ (SAS ),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.25.问题发现:如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是60°;②线段AC,CD,CE之间的数量关系是AC=DC+EC.拓展探究:(2)如图2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由;解决问题:(3)如图3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若点A满足AB=AC,∠BAC=90°,请直接写出线段AD的长度.解:(1)∵在△ABC中,AB=AC,∠BAC=60°,∴∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,{AB=AC∠BAD=∠CAE AD=AE,∴△BAD≌△CAE(SAS),∴∴∠ACE=∠B=60°,BD=CE,∴BC=BD+CD=EC+CD,∴AC=BC=EC+CD;故答案为:60°,AC=DC+EC;(2)BD2+CD2=2AD2,理由如下:由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)如图3,作AE⊥CD于E,连接AD,∵在Rt△DBC中,DB=3,DC=5,∠BDC=90°,∴BC=√9+25=√34,∵∠BAC=90°,AB=AC,∴AB=AC=√17,∠ABC=∠ACB=45°,∵∠BDC=∠BAC=90°,∴点B,C,A,D四点共圆,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴AE=DE,∴CE=5﹣DE,∵AE2+CE2=AC2,∴AE2+(5﹣AE)2=17,∴AE=1,AE=4,∴AD=√2或AD=4√2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省武汉市东西湖区2021-2022学年八年级上学期期中数
学试题
注意事项:
1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考
生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、
姓名是否一致.
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5 毫米黑色墨水签字
笔在答题卡上相应位置书写作答,在试题卷上答题无效.
3.作图可先使用2B 铅笔画出,确定后必须用0.5 毫米黑色墨水签字笔描黑.
一、选择题
1.以下列长度的各组线段为边,能组成三角形的是()
A.3cm,7cm,4cm B.2cm,3cm,6cm C.5cm,6cm,7cm D.1cm,2cm,3cm 2.下列四个图形中,线段BE是△ABC的高的是()
A.B.
C.
D.
3.三角形具有稳定性,所以要使如图所示的五边形木架不变形,至少要使钉上()根木条
A.1 B.2 C.3 D.4
4.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1 等于()
试卷第2页,共6页
A .60°
B .54°
C .56°
D .66°
5.已知一个多边形的内角和为1080°,则这个多边形是( )
A .九边形
B .八边形
C .七边形
D .六边形 6.如图,在△ABC 中,∠C =90°,AC =4,AD =3CD ,BD 平分∠ABC ,则点D 到AB 的距离为( )
A .1
B .2
C .3
D .4
7.如图,在3×3的正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形称为格点三角形,图中△ABC 是一个格点三角形,在图中最多能画出( )个格点三角形与△ABC 成轴对称.
A .4
B .5
C .6
D .7
8.将一副三角尺按如图所示的方式摆放,则∠α的大小为( )
A .105°
B .75°
C .65°
D .55°
9.如图,在ABC 中,己知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且216cm ABC S △,
则S 阴影等于( )
A .28cm
B .24cm
C .22cm
D .21cm 10.如图,等腰Rt ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于
E 、
F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:①DF =DN ;②DMN 为等腰三角形;③DM 平分∠BMN ;④AE =23
EC ;⑤AE =NC ,其中正确结论有( )
A .2个
B .3个
C .4个
D .5个
二、填空题 11.等腰三角形的一个角是70°,则它的底角是_____.
12.点()1,2M -关于x 轴对称的点的坐标为________.
13.如图,在△ABC 中,∠C =∠ABC =2∠A ,BD 是边AC 上的高,则∠DBC 的大小等于_____度.
14.如图的三角形纸片中,AB =8,BC =6,AC =5,沿过点B 的直线折叠这个三角形,使得点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长=____.
15.如图,Rt △ABC 中,∠ABC =90°,AB =6,BC =8,BD 为△ABC 的角平分线,则
点D到边AB的距离为____.
16.△ABC中,∠ACB=60°,AC=4,BC=13,以AB为边作等边△ABD,过D作DE⊥BC 于E,则BE的长为____.
三、解答题
17.如图,CD=CA,∠1 =∠2,EC=BC.
求证:DE=AB.
18.在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C =70°,求∠DAE和∠AOB的度数.
19.用一条长为20cm的细绳围成一个等腰三角形,能围成一边长是6cm的等腰三角形吗?为什么?
20.如图,AD与BC相交于点O,OA=OC,∠A=∠C,BE=DE.
求证:OE垂直平分BD.
21.如图,在下列带有坐标系的网格中,△ABC的顶点都在边长为1的小正方形的顶点上,A(﹣3,3),B(﹣4,﹣2),C(0,﹣1).
(1)直接写出△ABC的面积为.
(2)画出△ABC关于y轴的对称的△DEC(点D与点A对应),点E的坐标为.
试卷第4页,共6页
(3)用无刻度的直尺,运用所学的知识作出△ABC的高线BF(保留作图痕迹).
22.如图,四边形ABCD中,CA平分∠BAD,CB=CD,CF⊥AD于F.
(1)求证:∠ABC+∠ADC=180°;
(2)若AF:CF=3:4,CF=8,求四边形ABCD的面积.
23.如图1,B,C,E三点在一条直线上,△ABC和△DCE均为等边三角形,BD与
AC交于点M,AE与CD交于点N.
(1)求证:AE=BD;
(2)如图2,连接MN,求证:MN//BE;
(3)如图3所示,在等边△ABC中,AD⊥BD,∠BAD=58°,∠ACD=28°,CD=1,求BD的长.
24.在平面直角坐标系中,点A在x轴负半轴上,点B在y轴负半轴上,∠ ABC= 90°,BC=AB.
试卷第6页,共6页
(1)如图 1, A (﹣5,0), B (0,﹣2),点C 在第一象限,请直接写出 C 的坐标;
(2)如图 1, B (0,﹣2), BF ⊥y 轴,D 在y 轴上, BD =
12AO ,连接CD 并
延长交BF 于点 E ,请求出 BE 的长度;
(3)如图2,A (﹣n , 0),H 在AC 延长线上,过H (m ,n )作HG ⊥ x 轴于G ,探究线段BH 、AG 、BO 之间的数量关系,并证明你的结论.
参考答案
1.C
2.D
3.B
4.D
5.B
6.A
7.C
8.B
9.B
10.C
11.55°或70°.
12.(-1,-2)
13.18
14.7
15.24
##
7
16.2.5或8.5
17.略
18.∠DAE的度数为5°;∠AOB的度数为125°
19.能
20.略
21.(1)19
;(2)(4,-2);(3)见解析
2
22.(1)略;(2)48
23.(1)略;(2)略;(3)2
24.(1)点C的坐标(2,3);(2)BE= 2;(3)AG=BH+BO.
答案第1页,共1页。