湖北省武汉市2021-2022学年八年级上学期期中数学试题(含答案与解析)

合集下载

2021-2022学年湖北省武汉市武昌区武珞路中学八年级(上)期中数学试卷(含答案)

2021-2022学年湖北省武汉市武昌区武珞路中学八年级(上)期中数学试卷(含答案)

2021-2022学年湖北省武汉市武昌区武珞路中学八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列大学的校徽图案是轴对称图形的是( )A.清华大学B.北京大学C.中国人民大学D.浙江大学2.(3分)下列图形中,具有稳定性的是( )A.平行四边形B.梯形C.正方形D.直角三角形3.(3分)下列四个图形中,线段BE是△ABC的高的是( )A.B.C.D.4.(3分)已知图中的两个三角形全等,则∠α的度数是( )A.72°B.60°C.58°D.50°5.(3分)如图,数学课上,老师让学生尺规作图画∠MON的角平分线OB.小明的作法如图所示,连接BA、BC,你认为这种作法中判断△ABO≌△CBO的依据是( )A .SSSB .SASC .ASAD .AAS6.(3分)如图,在△ABC 中,AB =AC ,∠C =70°,△AB 'C '与△ABC 关于直线AD 对称,∠CAD =10°,连接BB ',则∠ABB '的度数是( )A .45°B .40°C .35°D .30°7.(3分)如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的最大周长为( )A .20B .22C .23D .248.(3分)下列条件中,能构成钝角△ABC 的是( )A .∠A =∠B =∠CB .∠A +∠C =∠B C .∠B =∠C =14∠AD .∠A =12∠B =13∠C 9.(3分)如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ,在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E …按此做法继续下去,则第2021个三角形中以A 2021为顶点的内角度数是( )A .(12)2019•75°B .(12)2020•75°C .(12)2021•75°D .(12)2022•75°10.(3分)如图,已知在△ABC 中,AB =AC ,∠ACB 和∠BAC 的平分线交于点O ,过点A 作AD ⊥AO 交CO 的延长线于点D ,若∠ACD =α,则∠BDC 度数为( )A.45°﹣αB.90°―α2C.90°﹣2αD.a2二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)已知点A(2,a)与点B(b,4)关于y轴对称,则a+b= .12.(3分)一个正多边形的每一个内角都是108°,则它是正 边形.13.(3分)已知等腰三角形的两边长分别为10和6,则三角形的周长是 .14.(3分)若三角形的一个内角是另一个内角的3倍,我们称此三角形为特异三角形”,若一个“特异三角形”为直角三角形,则这个“特异三角形”最小内角度数为 .15.(3分)如图,已知△ABC中,OE、OF分别是AB、AC的垂直平分线,∠OBC,∠OCB的平分线相交于点I,有如下结论:①AO=CI;②∠ABC+∠ACO=90°;③∠BOI=∠COI;④OI⊥BC.其中正确的结论是 .(填序号)16.(3分)如图,在△ABC中,AH是高,AE∥BC,AB=AE,在AB边上取点D,连接DE,DE=AC,若S△ABC=5S△ADE,BH=1,则BC= .三、解答题(本大题共8个题,共72分)17.(8分)如图,点E,C在线段BF上,∠A=∠D,AB∥DE,BC=EF.求证:AC=DF.18.(8分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.19.(8分)如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,求证:AD=3BD.20.(8分)如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.求证:①AB=AD;②CD平分∠ACE.21.(8分)如图,在下列带有坐标系的网格中,△ABC的顶点都在边长为1的小正方形的顶点上,A(﹣3,3),B(﹣4,﹣2),C(0,﹣1).(1)直接写出△ABC的面积为 ;(2)画出△ABC关于y轴的对称的△DEC(点D与点A对应,点E与点B对应),点E的坐标为 ;(3)用无刻度的直尺,运用所学的知识作图(保留作图痕迹).①作出△ABC的高线AF;②在边BC上确定一点P,使得∠CAP=45°.22.(10分)已知,△ABC中,点D,E分别在边AB,BC上,BD=BE,连接CD.(1)如图1,若∠CAD=∠CED=2∠ADC,求证:AD=DE;(2)如图2,点F在AD上,连接EF,若∠CAD=∠AFE,∠CEF=2∠ADC,求证:AD=EF.23.(10分)已知,点C为线段AB上的一点,以AC为边作等边△ACD,连接BD.(1)如图1,以BC为边在AB的上方作等边△BCE,接AE,交BD于点G,求∠AGB的度数;(2)如图2,在(1)的条件下连接CG,求证:CG+DG+EG=AE;(3)如图3,点K在线段BD上,∠BKC=60°,点H为线段AD上,AH=BC,AK,CH交于点I,BD =a,AK=b,则IK= .(用含a,b的式子表示)24.(12分)在平面直角坐标系中,点A的坐标为(3,0),点B在y轴上,以B为直角顶点;在AB上方作等腰Rt△ABC.(1)如图1,若点B的坐标为(0,1),则C点的坐标是 .(2)如图2,若点B在y轴正半轴上,OD平分∠AOB交AC于D,求证:AD=CD;(3)如图3,若点B为y轴上的一个动点,连接OC,当AC+OC值最小时,求B点坐标.2021-2022学年湖北省武汉市武昌区武珞路中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列大学的校徽图案是轴对称图形的是( )A.清华大学B.北京大学C.中国人民大学D.浙江大学【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:B.2.(3分)下列图形中,具有稳定性的是( )A.平行四边形B.梯形C.正方形D.直角三角形【解答】解:根据三角形具有稳定性,可知四个选项中只有直角三角形具有稳定性的.故选:D.3.(3分)下列四个图形中,线段BE是△ABC的高的是( )A.B.C.D.【解答】解:线段BE是△ABC的高的图是选项D.故选:D.4.(3分)已知图中的两个三角形全等,则∠α的度数是( )A.72°B.60°C.58°D.50°【解答】解:∵两个三角形全等,∴∠α的度数是72°.故选:A.5.(3分)如图,数学课上,老师让学生尺规作图画∠MON的角平分线OB.小明的作法如图所示,连接BA、BC,你认为这种作法中判断△ABO≌△CBO的依据是( )A.SSS B.SAS C.ASA D.AAS【解答】解:由作图可知,OA=OC,AB=CB,在△AOB和△COB中,OA=OCAB=CB,OB=OB∴△AOB≌△COB(SSS),∴∠BOA=∠BOC,故选:A.6.(3分)如图,在△ABC中,AB=AC,∠C=70°,△AB'C'与△ABC关于直线AD对称,∠CAD=10°,连接BB',则∠ABB'的度数是( )A.45°B.40°C.35°D.30°【解答】解:∵AB=AC,∴∠ABC=∠C=70°,∴∠BAC=180°﹣70°﹣70°=40°,∵△AB'C'与△ABC关于直线AD对称,∴∠BAC=∠B′AC′=40°,∠CAD=∠C′AD=10°,∴∠BAB′=40°+10°+10°+40°=100°,∵AB=AB′,∴∠ABB′=12(180°﹣100°)=40°,故选:B.7.(3分)如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的最大周长为( )A.20B.22C.23D.24【解答】解:设第三边为a,根据三角形的三边关系知,2<a<12.由于第三边的长为偶数,则a可以为4或6或8或10.∴这个三角形的最大周长为5+7+10=22.故选:B.8.(3分)下列条件中,能构成钝角△ABC的是( )A.∠A=∠B=∠C B.∠A+∠C=∠BC.∠B=∠C=14∠A D.∠A=12∠B=13∠C【解答】解:A.根据三角形内角和定理,由∠A=∠B=∠C,得∠A=∠B=∠C=60°,故△ABC是锐角三角形,那么A不符合题意.B.根据三角形内角和定理,由∠A+∠B+∠C=180°,得2∠B=180°,故∠B=90°,即△ABC是直角三角形,那么B不符合题意.C.根据三角形内角和定理,由∠A+∠B+∠C=180°,∠B=∠C=14∠A,得∠A+14∠A+14∠A=180°,故∠A=120°,此时△ABC是钝角三角形,那么C符合题意.D.根据三角形内角和定理,由∠A+∠B+∠C=180°,∠A=12∠B=13∠C,得∠A=30°,∠B=60°,∠C=90°,此时△ABC是直角三角形,那么D不符合题意.故选:C.9.(3分)如图,在第1个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A 2A 3E …按此做法继续下去,则第2021个三角形中以A 2021为顶点的内角度数是( )A .(12)2019•75°B .(12)2020•75°C .(12)2021•75°D .(12)2022•75°【解答】解:∵∠B =30°,A 1B =CB ,∴∠BA 1C =∠C ,30°+∠BA 1C +∠C =180°.∴2∠BA 1C =150°.∴∠BA 1C =12×150°=75°.∵A 1A 2=A 1D ,∴∠DA 2A 1=∠A 1DA 2.∴∠BA 1C =∠DA 2A 1+∠A 2DA 1=2∠DA 2A 1.∴∠DA 2A 1=12∠BA 1C =12×12×150°.同理可得:∠EA 3A 2=12∠DA 2A 1=12×12×12×150°.…以此类推,以A n 为顶点的内角度数是∠A n =(12)n ×150°=(12)n ﹣1×75°.∴以A 2021为顶点的内角度数是(12)2020×75°.故选:B .10.(3分)如图,已知在△ABC 中,AB =AC ,∠ACB 和∠BAC 的平分线交于点O ,过点A 作AD ⊥AO 交CO 的延长线于点D ,若∠ACD =α,则∠BDC 度数为( )A.45°﹣αB.90°―α2C.90°﹣2αD.a2【解答】解:∵AB=AC,∠ACD=α,OC平分∠ACB,∴∠ABC=∠ACB=2α,∵∠ACB和∠BAC的平分线交于点O,∴∠OBC=∠OBA=∠OCB=α,∴∠DOB=∠OBC+∠OCB=2α,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣4α,∴∠BOA=90°﹣2α,∵AD⊥AO,∴∠DAB=∠DOB=2α,∴O、A、D、B四点共圆,∴∠BDC=∠DOA=90°﹣2α.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)已知点A(2,a)与点B(b,4)关于y轴对称,则a+b= 2 .【解答】解:由题意得,a=4,b=﹣2,则a+b=4+(﹣2)=2,故答案为:2.12.(3分)一个正多边形的每一个内角都是108°,则它是正 五 边形.【解答】解:180°﹣108°=72°,360°÷72°=5.故答案为:五.13.(3分)已知等腰三角形的两边长分别为10和6,则三角形的周长是 22或26 .【解答】解:当6为底时,其它两边都为6,10、10可以构成三角形,周长为26;当6为腰时,其它两边为6和10,可以构成三角形,周长为22.故答案为:22或26.14.(3分)若三角形的一个内角是另一个内角的3倍,我们称此三角形为特异三角形”,若一个“特异三角形”为直角三角形,则这个“特异三角形”最小内角度数为 22.5°或30° .【解答】解:设这个“特异三角形”最小内角的度数为x,则另外两个内角分别是3x、90°或3x=90°、90°﹣x.当“特异三角形”三个内角的度数分别为x、3x、90°,∴x+3x+90°=180°.∴x=22.5°.当“特异三角形”三个内家的度数分别为x、90°、90°﹣x.∴3x=90°.∴x=30°.∴90°﹣x=60°.此时,三个内角的度数分别为30°、60°、90°.∴这个“特异三角形”最小内角度数为30°.综上:这个“特异三角形”最小内角度数为22.5°或30°.故答案为:22.5°或30°.15.(3分)如图,已知△ABC中,OE、OF分别是AB、AC的垂直平分线,∠OBC,∠OCB的平分线相交于点I,有如下结论:①AO=CI;②∠ABC+∠ACO=90°;③∠BOI=∠COI;④OI⊥BC.其中正确的结论是 ②③④ .(填序号)【解答】解:∵OE,OF分别是AB,AC边的中垂线,∴OA=OB,OA=OC,∴OB=OC=OA,∴∠OAB=∠OBA,∠OBC=∠OCB,∠OAC=∠OCA,∵∠OAB+∠OBA+∠OBC=∠OCB+∠OAC=∠OCA=180°,∴∠OBA +∠OBC +∠OCA =90°,∴∠ABC +∠ACO =90°,故②正确;∵∠OBC ,∠OCB 的平分线相交于点I ,∴∠OBC =2∠IBC ,∠OCB =2∠ICB ,∴∠IBC =∠ICB ,∴BI =CI ,∴点I 在BC 的垂直平分线上,∵OB =OC ,∴点O 在BC 的垂直平分线上,∴OI ⊥BC ,故④正确;∵OI 是BC 的垂直平分线,且点O ,点I 不重合,∴OC ≠IC ,∴AO ≠IC ,故①错误;∵OB =OC ,OI 是BC 的垂直平分线,∴∠BOI =∠COI ,故③正确;故答案为②③④.16.(3分)如图,在△ABC 中,AH 是高,AE ∥BC ,AB =AE ,在AB 边上取点D ,连接DE ,DE =AC ,若S △ABC =5S △ADE ,BH =1,则BC = 52 .【解答】解:过点E 作EP ⊥BA ,交BA 的延长线于P ,∴∠P =∠AHB =90°,∵AE ∥BC ,∴∠EAP =∠CBA ,在△AEP和△BAH中,∠P=∠AHB∠PAE=∠BAE=AB,∴△AEP≌△BAH(AAS),∴PE=AH,在Rt△DEP和Rt△CAH中,DE=ACPE=AH,∴Rt△DEP≌Rt△CAH(HL),∴CH=DP,S△ACH=S△APE,∵S△ABC=S△ABH+S△AHC=2S△ABH+S△ADE=5S△ADE,∴S△ABH:S△ADE=2:1,∴BH:AD=2:1,∵BH=1,∴AD=1 2,∴DP=CH=1+12=32,∴BC=BH+CH=1+32=52,故答案为:5 2.三、解答题(本大题共8个题,共72分)17.(8分)如图,点E,C在线段BF上,∠A=∠D,AB∥DE,BC=EF.求证:AC=DF.【解答】证明:∵AB∥ED,∴∠ABC=∠DEF.在△ABC与△DEF中,∠A=∠D∠B=∠DEFBC=EF,∴△ABC≌△DEF(AAS).∴AC=DF.18.(8分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.【解答】解:设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°,∠ABC=∠ACB=72°.19.(8分)如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,求证:AD=3BD.【解答】证明:∵∠ACB=90°,∠A=30°,∴∠B=60°,AB=2BC,∵CD⊥AB,∴∠DCB=30°,∴BC=2BD,∴AB=4BD,∵AB=AD+BD,∴AD=3BD.20.(8分)如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD 交于点D ,连接CD .求证:①AB =AD ;②CD 平分∠ACE .【解答】证明:①∵AD ∥BE ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∴∠ABD =∠DBC ,∴∠ABD =∠ADB ,∴AB =AD ;②∵AD ∥BE ,∴∠ADC =∠DCE ,由①知,AB =AD ,又∵AB =AC ,∴AC =AD ,∴∠ACD =∠ADC ,∴∠ACD =∠DCE ,∴CD 平分∠ACE .21.(8分)如图,在下列带有坐标系的网格中,△ABC 的顶点都在边长为1的小正方形的顶点上,A (﹣3,3),B (﹣4,﹣2),C (0,﹣1).(1)直接写出△ABC 的面积为 192 ;(2)画出△ABC 关于y 轴的对称的△DEC (点D 与点A 对应,点E 与点B 对应),点E 的坐标为 (4,﹣2) ;(3)用无刻度的直尺,运用所学的知识作图(保留作图痕迹).①作出△ABC 的高线AF ;②在边BC 上确定一点P ,使得∠CAP =45°.【解答】解:(1)S△ABC=4×5―12×1×5―12×1×4―12×3×4=192,故答案为:19 2;(2)如图,△DEC即为所求,E(4,﹣2),故答案为:(4,﹣2);(3)①如图,线段AF即为所求.②如图,点P即为所求.22.(10分)已知,△ABC中,点D,E分别在边AB,BC上,BD=BE,连接CD.(1)如图1,若∠CAD=∠CED=2∠ADC,求证:AD=DE;(2)如图2,点F在AD上,连接EF,若∠CAD=∠AFE,∠CEF=2∠ADC,求证:AD=EF.【解答】证明:(1)∵BD=BE,∴∠BDE=∠BED,∴∠ADE=∠CED,∵∠CAD=∠CED=2∠ADC,∴∠ADC=∠EDC=12∠CED=12∠ADE,在△ADC和△EDC中,∠CAD=∠ED∠ADC=∠EDCCD=CD,∴△ADC≌△EDC(AAS),∴AD=DE;(2)在EC上截取EG=DF,连接DG,如图2所示:∵BD=BE,∴BD+DF=BE+EG,即BF=BG,在△BDG和△BEF中,BD=BE∠B=∠BBG=BF,∴△BDG≌△BEF(SAS),∴DG=EF,∠BGD=∠BFE,∠BDG=∠BEF,∴∠ADG=∠CEF,∠CGD=∠AFE,∵∠CAD=∠AFE,∠CEF=2∠ADC,∴∠ADC=12∠CEF=12∠ADG=∠GDC,∠CAD=∠CGD,在△ADC和△GDC中,∠CAD=∠CGD∠ADC=∠GDCCD=CD,∴△ADC≌△GDC(AAS),∴AD=GD,∴AD=EF.23.(10分)已知,点C为线段AB上的一点,以AC为边作等边△ACD,连接BD.(1)如图1,以BC为边在AB的上方作等边△BCE,接AE,交BD于点G,求∠AGB的度数;(2)如图2,在(1)的条件下连接CG,求证:CG+DG+EG=AE;(3)如图3,点K在线段BD上,∠BKC=60°,点H为线段AD上,AH=BC,AK,CH交于点I,BD=a,AK=b,则IK= b―12a .(用含a,b的式子表示)【解答】解:(1)∵△ACD和△BCE是等边三角形,∴AC=CD,CB=CE,∠ACD=∠BCE=60°,∴∠ACE=∠BCD,在△ACE和△DCB中,AC=CD∠ACE=∠DCBCE=CB,∴△ACE≌△DCB(SAS),∴∠CAE=∠CDB,∴∠EAC+∠CBD=∠CDB+∠CBD=∠ACD=60°,∴∠AGB=180°﹣(∠EAC+∠ABG)=180°﹣60°=120°;(2)作∠GCF=60°,交AE于F,∴∠ACF=∠DCG,由(1)知∠CAE=∠CDB,又∵AC=CD,∴△ACF≌△DCG(ASA),∴DG=AF,CF=CG,∵∠FCG=60°,∴△FCG是等边三角形,∴CG=FG,∴AE=AF+FG+GE=DG+CG+GE;(3)如图,以BC为边作等边△BCE,连接AE,交BD于K',由(1)(2)可知:∠AK'C=∠BK'C=60°,AE=BD,∵∠BKC=60°,∴点K、K'重合,∵∠DAC=∠ECB=60°,∴AD∥CE,∴∠DAI=∠CEI,又∵AH=CB,CB=CE,∴AH=CE,且∠AIE=∠CIE,∴△AHI≌△ECI(AAS),∴AI=IE=12AE=12a,∴IK=AK﹣AI=b―12 a,故答案为:b―12 a.24.(12分)在平面直角坐标系中,点A的坐标为(3,0),点B在y轴上,以B为直角顶点;在AB上方作等腰Rt△ABC.(1)如图1,若点B的坐标为(0,1),则C点的坐标是 (1,4) .(2)如图2,若点B在y轴正半轴上,OD平分∠AOB交AC于D,求证:AD=CD;(3)如图3,若点B为y轴上的一个动点,连接OC,当AC+OC值最小时,求B点坐标.【解答】(1)解:过点C作CH⊥y轴于H,∵△ABC是等腰直角三角形,∴AB=BC,∠ABC=90°,∴∠ABO+∠CBH=90°,∵∠ABO+∠BAO=90°,∴∠BAO=∠HBC,又∵∠AOB=∠BHC,∴△AOB≌△BHC(AAS),∴OA=BH,BO=HC,∵点A的坐标为(3,0),B的坐标为(0,1),∴OA=3,OB=1,∴OH=OB+BH=3+1=4,CH=OB=1,∴点C(1,4),故答案为:(1,4);(2)证明:作CH⊥y轴于H,交OD的延长线于E,由(1)知△ABO≌△BCH,∴OA=BH=3,OB=HC,设OB=HC=m,∵OD平分∠AOB,∴∠AOD=∠HOE,∵HE∥OA,∴∠E=∠AOE,∴∠HOE=∠E,∴HE=OH,∵OB=HC,∴CE=BH=OA,又∵∠CDE=∠ADO,∴△EDC≌△ODA(AAS),∴AD=CD;(3)解:设OB=m,由(1)知C(m,m+3),∴点C在直线y=x+3上运动,设直线y=x+3交x、y轴于F、G点,则OF=OG=3,∴∠GFO=∠FGO=45°,作点O关于直线CF的对称点O',则∠OFO'=90°,O'F=OF=3,∴O'(﹣3,3),∴AC+OC值最小时,点O'、B、A共线,由O'(﹣3,3),A(3,0)知,直线AO'的函数解析式为y=―12x+32,直线AO'与CF的交点为C'(﹣1,2),∴点B(0,﹣1).。

湖北省武汉市江汉区2021-2022学年八年级上学期期中数学试题(含答案解析)

湖北省武汉市江汉区2021-2022学年八年级上学期期中数学试题(含答案解析)

湖北省武汉市江汉区2021-2022学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列三个图形中,具有稳定性的图形个数是( )A .0个B .1个C .2个D .3个2.下列计算正确的是( ) A .(3a )3=9a 3B .a 3+a 2=a 6C .a ·a 2=a 2D .(a 3)2=a 63.下面作三角形最长边上的高正确的是( ) A .B .C .D .4.已知图中的两个三角形全等,则∠α的度数是( )A .72°B .60°C .58°D .50°5.下列添括号正确的是( ) A .a +b -c =a -(b -c ) B .a +b -c =a +(b -c ) C .a -b -c =a -(b -c )D .a -b +c =a +(b -c )6.下列条件不能判定两个直角三角形全等的是( ) A .两条直角边对应相等 B .斜边和一锐角对应相等 C .斜边和一直角边对应相等D .两个直角三角形的面积相等7.若128m a =,8n a =,则m n a -值是( ) 18.如图,在ABC中,D,E分别是边AC,BC上的点,若ADB EDB EDC≌≌,则C∠的度数为()A.15︒B.20︒C.25︒D.309.如图,在ABC和BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()∠AFB D.2∠ABF A.∠EDB B.∠BED C.1210.如图,在△ABC中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED的周长是()A.5cm B.6cm C.7cm D.8cm二、填空题11.计算(-2)2×(-2)3=__________.12.如图,AC和BD相交于O点,若OA=OD,用“AAS”证明△AOB≌△DOC还需增加条件_________.≌.若AD=8,BC=3,则AB的长是________.13.如图,ACE BDF14.如图,在ABC和DEC中,AB=DE,AC=DC,CE=CB.点E在AB上,若∠ACE =2∠ECB=50°,则∠D=________.15.一个正方形的边长增加2cm,它的面积就增加24cm,这个正方形的边长是______cm.16.已知(x-p)2=x2+mx+36,则m=_________.17.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别是D,E.AD,CE交于点H,已知AE=CE=5,CH=2,则BE=__________.18.如图是今年某月的日历表(隐去日期),表中a,b,c,d表示该方框中日期的数值,则bc-ad=________.19.一个n边形,若其中(n-1)个内角的和为800°,则n=________.20.如图,正方形的边长为m+5,面积记为S1,长方形的两边长分别为m+3,m+9,面积记为S2(其中m为正整数).若某个图形的面积S介于S1,S2之间(不包括S1,S2),S的整数值有且只有15个,则m=_______.三、解答题21.计算:(1)7m(4m2p)2÷7m2;(2)(15x2y-10xy2)÷5xy.22.如图,AB=AC,点D、E分别在AB、AC上,AD=AE,求证:CD=BE.23.计算:(1)x2(x-1)-(x+1)(x2+x);(2)(2x+1)2-(x+3)(x-3)-(x-1)224.如图,已知△ABC三个顶点的坐标分别为A(2,3),B(4,0),C(1,0).(1)画△ABC,直接写出△ABC的面积;(2)画格点D,连接AD,使直线AD平分△ABC的面积;(3)若∠CAE=45°,直接写出满足条件的格点E的个数.25.如图,在ABC 中,AD 是角平分线,DE AB ⊥于点E ,F 在边AC 上,BD DF =. (1)如图1,若90C ∠=︒,求证:FCD BED ≌△△; (2)如图2,求证:2AB AF EB -=;(3)若8AC =,10AB =,6BC =,直接写出DF 的长.26.(1)已知2x 2+6x =3,求代数式x (x +1)(x +2)(x +3)的值; (2)如果多项式4x 2+kx -7被4x +3除后余2,求k 的值.27.如图,四边形ABCD 中,AB ∥CD ,∠C =110°.E 为BC 的中点,直线FG 经过点E ,DG ⊥FG 于点G ,BF ⊥FG 于点F .(1)如图1,当∠BEF =70°时,求证:DG =BF ;(2)如图2,当∠BEF ≠70°时,若BC =DC ,DG =BF ,请直接写出∠BEF 的度数; (3)当DG -BF 的值最大时,直接写出∠BEF 的度数.28.在平面直角坐标系中,已知点A(0,a),B(b,0),其中a,b满足:(x+b)(x +2)=x2+ax+6(a,b为常数).(1)求点A,B的坐标;(2)如图1,D为x轴负半轴上一点,C为第三象限内一点,且∠ABC=∠ADC=90°,AO=DO,DB平分∠ADC.过点C作CE⊥DB于点E,求证:DE=OB;(3)如图2,P为y轴正半轴上一动点,连接BP,过点B在x轴下方作BQ⊥BP,且BQ=BP,连接PC,PQ,QC.在(2)的条件下,设P(0,p),求△PCQ的面积(用含p的式子表示).参考答案1.C【分析】根据三角形的稳定性,分析只有第一个图和第三个图是由三角形组成的,具有稳定性.【详解】解:根据三角形具有稳定性可得,第一个和第三个图形都是由三角形组成的,∴具有稳定性.故选:C.【点睛】本题考查了三角形的稳定性,图形只由三角形构成,也具有稳定性.2.D【分析】根据积的乘方法则、同类项的定义以及同底数幂的乘法法则和幂的乘方法则逐个判断即可.【详解】解:A、(3a)3=27a3,故A选项错误,不符合题意;B、a3与a2不是同类项,不能合并,故B选项错误,不符合题意;C、a·a2=a3,故C选项错误,不符合题意;D、(a3)2=a6,故D选项正确,符合题意,故选:D.【点睛】本题考查了积的乘方法则、同类项的定义以及同底数幂的乘法法则和幂的乘方法则,熟练掌握相关运算法则及定义是解决本题的关键.3.C【分析】先找出图形中的最长边和它所对的顶点,过这个顶点向最长边作垂线段,即得答案.【详解】解:∵三角形为钝角三角形,∴最长边上的高是过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.故选C.【点睛】本题考查三角形高的定义和垂线的定义,无论三角形是什么形状的三角形,其最长边上的高一定在三角形内部,即过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.4.A【分析】根据∠α是b、c边的夹角,然后写出即可.【详解】解:∵两个三角形全等,∴∠α的度数是72°.故选:A.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解答本题的关键.全等三角形的对应角相等,对应边相等.对应边的对角是对应角,对应角的对边是对应边.5.B【分析】根据添括号法则逐个判断即可.【详解】解:A、a+b﹣c=a-(-b+c),故A选项错误;B、a+b﹣c=a+(b﹣c),故B选项正确;C、a﹣b﹣c=a﹣(b+c),故C选项错误;D、a﹣b+c=a+(﹣b+c),故D选项错误;故选:B.【点睛】本题考查添括号的方法:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.6.D【分析】根据两个三角形全等的判定方法及HL 方法逐项判断即可. 【详解】A 、两条直角边对应相等,且这两条直角边的夹角为直角,由边角边判定定理可知,这两个三角形全等;B 、斜边和一锐角对应相等,还有两个直角对应相等,则由角角边判定定理知,这两个直角三角形全等;C 、根据HL 判定定理可知,这两个直角三角形全等;D 、两个三角形的面积相等不能判定两个直角三角形全等. 故选:D 【点睛】本题考查了两个直角三角形全等的判定,它除了用一般三角形全等的判定方法外,还有它特有的判定方法,即HL 判定定理. 7.C 【分析】直接利用同底数幂的乘除运算法则计算得出答案. 【详解】解:∵如果128m a =,8n a =, ∴128168m m nn a aa -===. 故选:C . 【点睛】此题主要考查了同底数幂除法运算,正确掌握运算法则是解题关键. 8.D 【分析】根据EDB EDC ≌,推出90,DEB DEC DBE DCE ∠=∠=︒∠=∠,再由ADB EDB ≌,得到90,DAB DEB DBA DBE ∠=∠=︒∠=∠,利用直角三角形中两个锐角互余即可得出. 【详解】∵EDB EDC ≌,∠DEB +∠DEC =180°, ∴90,DEB DEC DBE DCE ∠=∠=︒∠=∠, 又∵ADB EDB ≌,∴90,DAB DEB DBA DBE ∠=∠=︒∠=∠ ∴90DBA DBE DCE ∠+∠+∠=︒, 即30DBA DBE DCE ∠=∠=∠=︒ 故选:D . 【点睛】本题考查了全等三角形的性质,直角三角形两个锐角和等于90°,掌握全等的性质是解题的关键. 9.C 【分析】根据全等三角形的判定与性质可得ACB ∠=DBE ∠,再根据三角形外角的性质即可求得答案. 【详解】解:在ABC 和DEB 中, AC BD AB ED BC BE =⎧⎪=⎨⎪=⎩, ()ABC DEB SSS ∴△≌△,ACB DBE ∴∠=∠,AFB ∠是BFC △的外角,2AFB ACB DBE ACB ∴∠=∠+∠=∠,∴12ACB AFB ∠=∠,故选:C . 【点睛】本题考查了全等三角形的判定与性质以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解决本题的关键. 10.C 【分析】由折叠的性质可得DE =DC ,BE =BC ,从而易得周长的值. 【详解】由折叠的性质可得DE =DC ,BE =BC =6cm ∴AE =AB -BE =8-6=2(cm)∴△AED 的周长=AD +DE +AE =AD +DC +AE =AC +AE =5+2=7(cm)故选:C .【点睛】本题考查了折叠的性质,三角形的周长等知识,关键是掌握折叠的性质.11.-32【分析】直接利用有理数的乘方运算法则以及乘法法则计算得出答案即可.【详解】解:原式=4×(-8)=-32,故答案为:-32.【点睛】此题主要考查了有理数的混合运算,熟练掌握有理数的乘方运算法则以及乘法法则是解题关键.12.∠B =∠C【分析】结合已知和图形分析,已经有一边和一角对应相等,而且角是边的邻角,所以只需再添加这边的对角即可.【详解】∵OA =OD ,∠AOB =∠DOC ,∴当∠B =∠C 时,符合AAS 定理,故答案为:∠B =∠C .【点睛】本题考查全等三角形“AAS ”判定定理,能结合图形分析是解题关键.13.2.5【分析】根据全等三角形对应边相等可得AC BD =,再求出AB CD =,然后代入数据进行计算即可得解.【详解】解:ACE BDF △≌△,AC BD ∴=,AC BC BD BC ∴-=-,即AB CD =,8AD =,3BC =,11()(83) 2.522AB CD AD BC ∴==-=⨯-=. 故答案为:2.5.【点睛】本题考查了全等三角形的性质,根据全等三角形对应顶点的字母写在对应位置上确定出对应边,然后求出AB CD =是解题的关键.14.27.5°【分析】先根据已知条件可得∠ECB =25°,再根据等边对等角可得∠B =∠CEB =77.5°,再利用三角形的内角和定理可得∠A =27.5°,最后根据全等三角形的判定与性质即可求得答案.【详解】解:∵2∠ECB =50°,∴∠ECB =25°,∵CE =CB ,∴∠B =∠CEB =1802ECB︒-∠=77.5°,又∵∠ACE =50°,∠ECB =25°,∴∠ACB =∠ACE +∠ECB =75°,∴∠A =180°-∠ACB -∠B =27.5°,∵在ABC 和DEC 中,AB DE AC DC CB CE =⎧⎪=⎨⎪=⎩,∴()ABC DEC SSS △≌△,∴A D ∠=∠,∵∠A =27.5°,∴∠D =27.5°,故答案为:27.5°.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质以及三角形的内角和定理,熟练掌握全等三角形的判定与性质是解决本题的关键.15.a=5【分析】本题是平方差公式的应用,设这个正方形的边长为a ,根据正方形面积公式有(a+2)2-a 2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a ,依题意有(a+2)2-a 2=24,(a+2)2-a 2=(a+2+a )(a+2-a )=4a+4=24,解得a=5.【点睛】本题考查了平方差公式,掌握正方形面积公式并熟记公式结构是解题的关键.16.12±【分析】根据完全平方公式“()2222a b a ab b ±=±+”进行解答即可得.【详解】解:由题意得:22222()236(6)x p x px p x mx x -=-+=++=±,则6p =±,12m =±,故答案为:12±.【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式.17.3【分析】由AD 垂直于BC ,CE 垂直于AB ,利用垂直的定义得到一对角为直角,再由一对对顶角相等,利用三角形的内角和定理得到一对角相等,再由一对直角相等,以及一对边相等,利用AAS 得到△AEH 与△EBC 全等,由全等三角形的对应边相等和线段的和差即可得出结论.解:∵AD ⊥BC ,CE ⊥AB ,∴∠ADB =∠AEH =90°,∵∠AHE =∠CHD ,∴∠BAD =∠BCE ,∵在△HEA 和△BEC 中,BAD BCE AEH BEC AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△HEA ≌△BEC (AAS ),∴BE =EH ,∵AE =CE =5,CH =2,∴BE =EH =CE -CH =3,故答案为:3.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.18.48【分析】分别用a 表示b 、c 、d 三个数,代入原式计算即可.【详解】∵b =a+6,c =a+8,d =a +14∴()()()22681414481448bc ad a a a a a a a a -=++-+=++--=故答案为48.【点睛】本题考查了多项式乘多项式、合并同类项等整式乘法混合运算的知识点,用一个未知数表示其他未知数(消元)简化式子是解决本题的关键.19.7【分析】根据多边形的内角和公式(n ﹣2)•180°可知多边形的内角和是180°的倍数,然后用800°÷180°所得商的整数部分加1就是(n ﹣2)的值,由此可求得答案.解:800°÷180°=4……80°,∵除去了一个内角,∴n ﹣2=4+1=5,∴n =5+2=7,故答案为:7.【点睛】本题考查了多边形的内角和公式,根据公式利用多边形的内角和是180°的倍数是解题的关键.20.7【分析】先根据正方形和长方形的面积公式计算出S 1和S 2,由此可得S 2﹣S 1=2m +2,再根据S 介于S 1,S 2之间(不包括S 1,S 2),S 的整数值有且只有15个可得2m +2=16,由此即可求得答案.【详解】解:∵S 1=(m +5)2=m 2+10m +25,S 2=(m +9)(m +3)=m 2+12m +27,∴S 2﹣S 1=(m 2+12m +27)﹣(m 2+10m +25)=2m +2,∵m 为正整数,∴S 2与S 1都是正整数,∵某个图形的面积S 介于S 1,S 2之间(不包括S 1,S 2),S 的整数值有且只有15个, ∴2m +2=16,解得:m =7,故答案为:7.【点睛】本题考查完全平方公式、多项式乘多项式法则以及整式加减等相关知识,能够根据题意得到2m +2=16是解决本题的关键.21.(1)3216m p ;(2)32x y【分析】(1)先计算积的乘方,再计算单项式乘法,最后算除法;(2)按照多项式除以单项式的法则计算即可.解:(1)242252222237147716712716mm p m m m p m m p m m p =⨯÷=÷=÷(); (2)22221510515510532x y xy xy x y xy xy xy x y ÷=÷-÷=-(-). 【点睛】本题考查了整式的运算,涉及积的乘方,单项式与单项式的乘除以及多项式除以单项式,掌握运算法则是关键.22.见解析【分析】根据SAS 证明△ABE ≌△ACD 即可得出结论.【详解】证明:在△ABE 和△ACD 中AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS )∴CD=BE .【点睛】本题考查了全等三角形的判定和性质,熟记全等三角形的判定方法是解决此题的关键. 23.(1)23x x --;(2)226x x ++9.【分析】(1)先去括号,再进而合并求解即可.(2)利用完全平方公式和平方差公式计算即可.【详解】解:(1)原式=32322()x x x x x x --+++=32322x x x x x x -----=23x x --;(2)原式=222441921x x x x x ++-+-+-=226x x ++9.【点睛】本题考查了整式的混合运算,正确利用乘法公式是解题的关键.24.(1)图见解析,面积为4.5;(2)图见解析;(3)6个.【分析】(1)先描出相应点,借助网格根据三角形的面积计算公式即可得出△ABC的面积;(2)AD为BC边上的中点,借助网格特点找出BC的中点即可;(3)借助等腰直角三角形可得出45°角,再根据与网格的交点即可得出点E的个数.【详解】解:(1)△ABC如下图所示,面积为133 4.52⨯⨯=;(2)如下图点D,AD平分△ABC的面积;(3)如下图,满足条件的格点E有6个.【点睛】本题考查坐标与图形.能借助网格的特点找出线段的中点和作出等腰直角三角形是解题关键.25.(1)证明见解析;(2)证明见解析;(3)103DF =【分析】(1)根据角平分线的性质定理,可得CD DE =,又根据DB DF =,利用HL 证明两个直角三角形全等即可;(2)在AB 上截取AG AF =,连接DG ,利用AD 平分BAC ∠,得到DAF DAG ∠=∠,从而证明(SAS)DAF DAG ≌△△,所以DF DG =,易得BD DG =,再利用三线合一推出BE GE =,最后结论得证;(3)首先根据勾股定理逆定理判定出ABC 是直角三角形,根据题干条件,同样可以得到(1)和(2)的结论,设BD DF x ==,将AB ,AF ,EB ,用含有x 的式子表示,最后代入到2AB AF EB -=,建立关于x 的方程,即可求得答案.【详解】证明:(1)∵AD 平分BAC ∠,DE AB ⊥,90C ∠=︒,∴CD DE =,且DB DF =,90DEB C ∠=∠=︒,在Rt DCF 和Rt DEB △中, DF DB CD ED =⎧⎨=⎩∴Rt Rt (HL)DCF DEB ≌△△,即FCD BED ≌△△; (2)在AB 上截取AG AF =,连接DG ,∵AD 平分BAC ∠,∴DAF DAG ∠=∠,在DAF △和DAG △中,AF AG DAF DAG AD AD =⎧⎪∠=∠⎨⎪=⎩∴(SAS)DAF DAG ≌△△,∴DF DG =,∵BD DF =,∴BD DG =,又∵DE AB ⊥于点E ,∴BE GE =,∴2AB AF EB -=;解:(3)已知8AC =,10AB =,6BC =,∴222AB AC BC =+,∴ABC 是直角三角形,90C ∠=︒,由(1)易证明得到FCD BED ≌△△, ∴FC BE =,根据(2)易证明得到2AB AF EB -=,设BD DF x ==,则6CD x =-,FC ,∴88AF FC =-=,EB ,由2AB AF EB -=可得,10(8-=∴解得103x =, ∴103DF =.【点睛】本题考查角平分线的性质定理,勾股定理以及勾股定理的逆定理,考查了在直角三角形和一般三角形中得到结论的关系,其中利用勾股定理建立方程是解题的关键.26.(1)214;(2)-9 【分析】(1)由已知可得:332x x +=,然后把多项式分别按(3),(1)(3)x x x x +++展开即可求得代数式的值;(2)由题意可凑得商为3x -,则计算(43)(3)2x x +-+即可求得k 的值.【详解】(1)由2x 2+6x =3,得2332x x += ∴x (x +1)(x +2)(x +3)=223321(3)(32)2224x x x x ⎛⎫+++=⨯+= ⎪⎝⎭; (2)∵多项式4x 2+kx -7是二次多项式,除式4x+3是一次多项式∴多项式4x 2+kx -7被4x +3除,则商应为一次多项式∵多项式4x 2+kx -7的二次项系数为4∴商的一次项系数为1∵多项式4x 2+kx -7的常数项为-7,余数为2∴商的常数项为-3∴商为3x-∴4x2+kx-7=2x x x x+-+=--(43)(3)2497∴k=-9【点睛】本题考查了整体法求代数式的值,多项式乘以多项式,(1)的计算需要一定的技巧,能够根据已知条件对相乘的多项式适当的组合以便运用条件;(2)则要凑,要求对多项式的乘法及除法熟练.27.(1)证明见解析;(2)∠BEF =35°;(3)∠BEF=20°.【分析】(1)过C点作CH⊥FG于点F,证明△BFE≌△CHE,可得CH=BF,再证明四边形CHGD 为矩形,即可得GD=CH=BF;(2)过C点作CH⊥FG于点F,证明△CHM≌△DGM,CM=DM,再结合BC=DC,可得EC=MC,结合等腰三角形的性质即可得出相应角度;(3)结合(1)(2)中的结论,根据运动轨迹分析可知当DG≥CD时,∴DG-BF=DG-GM=MD≤CD,且当G在DC的延长线上时等号成立,由此可得结论.【详解】解:(1)过C点作CH⊥FG于点F,∵CH⊥FG,DG⊥FG,BF⊥FG,∴∠DGH=∠CHE=∠CHM=∠BFE=90°,∵E为BC的中点,∴BE=EC,又∵∠BEF=∠CEH∴△BFE≌△CHE(AAS)∴CH=BF,∵∠BEF=70°∴∠CEH=70°,∵∠C=110°,∴FG//DC,∴∠CHE=∠HCD=∠DGH=∠GDC=90°,∴四边形CHGD为矩形,∴GD=CH=BF;(2)如下图所示,过C点作CH⊥FG于点F,与(1)同理可证CH=BF,∠DGH=∠CHM=90°,BE=EC,∵DG=BF,∴CH=DG,又∵∠CME=∠DMG,∴△CHM≌△DGM∴CM=DM,∵BC=DC,∴EC=MC,∵∠C=110°,∴∠CEM=∠CME=35°,∴∠BEF=∠CEM=35°;(3)当DG <CD 时,DG -BF <CD ,当DG ≥CD 时,如下图,过C 点作CH ⊥FG 于点F ,过点C 作CM ⊥DG 于M ,∵DG ⊥FG ,CH ⊥FG ,CM ⊥DG∴∠DGH =∠CHG =∠CMG =90°,∴CH =GM ,由(1)得CH =BF ,∴DG -BF =DG -GM =MD ≤CD ,且当G 在DC 的延长线上时等号成立,此时如下图,∠BEF =∠CEG =∠BCD -∠G =110°-90°=20°.【点睛】本题考查全等三角形综合,矩形的性质和判定,等腰三角形的性质,三角形外角的性质等.能正确作出辅助线,构造全等三角形是解决(1)(2)的关键;(3)中能正确分析运动轨迹是解题关键.28.(1)A (0,5),B (3,0);(2)证明见解析;(3)()1532QCP S p p ∆=-+(p >0且p ≠5). 【分析】(1)根据(x+b)(x+2)=x2+ax+6(a,b为常数),将等式左边展开,根据两个多项式相等对应项的系数也相等可得a和b的值,从而得出点A,B的坐标;(2)过B作AD和DC的垂线,分别交AD和DC的延长线于F、G两点,证明△AFB≌△CGB 可得AB=BC,再证明△AOB≌△BEC,可得OB=EC,证明△DEC为等腰直角三角形可得DE=CE,从而可得结论;(3)证明△P AB≌△QCB可得AP=QC,再证明QC//x轴,根据三角形面积公式可求得△PCQ 的面积.【详解】解:(1)∵a,b满足:(x+b)(x+2)=x2+ax+6(a,b为常数).∴22(2)26x b x b x ax+++=++,即226b ab+=⎧⎨=⎩,解得53ab=⎧⎨=⎩,故A(0,5),B(3,0);(2)过B作AD和DC的垂线,分别交AD和DC的延长线于F、G两点,∴∠AFB=∠BFD=∠BGD=90°,∵∠ADC=90°,∴∠FBG=90°,即∠FBC+∠CBG=90°,∵∠ABC=90°,∴∠FBC+∠ABF=90°,∴∠ABF=∠CBG,∵DB平分∠ADC,∴FB=BG,∠BDC=45°,∴△DEC为等腰直角三角形,DE=CE,在△AFB和△CGB中∵90AFB CGBFB BGABF CBG∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴△AFB≌△CGB(ASA),∴AB=BC,∵CE⊥DB,∴∠AOB=∠CEB=90°,∴∠OAB+∠ABO=∠ABO+∠CBD=90°,∴∠OAB=∠CBD,∴△AOB≌△BEC(AAS),∴DE=CE=OB;(3)∵P(0,p),A(0,5),∴AP=p-5,∵BQ⊥BP,∴∠PBQ=90°,又∵∠ABC=90°,∴∠ABP=∠CBQ,∵BQ=BP,AB=BC,∴△P AB≌△QCB(SAS),∴QC=AP=p-5,∠BQC=∠BPO,∵∠BOP=∠PBQ=90°,∴∠BPO+∠PBO=∠PBO +∠OBQ=90°,∴∠BPO=∠OBQ,∴∠BQC=∠OBQ,∴QC //x 轴,由(2)可知,OE =OD -DE =5-3=2,CE =3,∴C (-2,-3), ∴()()115322QCP p c S QC y y p p ∆=⋅-=-+(p >0且p ≠5). 【点睛】本题考查坐标与图形,全等三角形的性质和判定,角平分线的性质定理,多项式乘多项式.掌握全等三角形的判定定理,并能结合点的坐标证明全等是解题关键.。

2021-2022学年人教版八年级上学期期中考试数学试卷含答案解析

2021-2022学年人教版八年级上学期期中考试数学试卷含答案解析
二、填空题(每小题3分,共24分)
11.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数为 ,则电子表的实际时刻是.
12.等腰三角形的一个内角为30°,那么其它两个角的度数为.
13.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=度.
14.如图,在四边形ABCD中,AB∥CD,连接BD,∠ABD=3ቤተ መጻሕፍቲ ባይዱ°,AB=BD,则∠ADC等于.
A.15°B.22.5°C.30°D.45°
6.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有( )
A.1个B.2个C.3个D.4个
7.在平面直角坐标系中,已知点A(m,3),与点B(4,n)关于y轴对称,那么(m+n)2019的值为( )
A.△DBI和△EIC是等腰三角形
B.I为DE中点
C.△ADE的周长是8
D.∠BIC=115°
10.如图,等腰△ABC的底边BC长为6,面积是36,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )
A.6B.10C.15D.16
六、解答题(12分)
27.(12分)如图,△ABC是等边三角形,CF⊥AC交AB的延长线于点F,G为BC的中点,射线AG交CF于D,E在CF上,CE=AD,连接BD,BE.
求证:△BDE是等边三角形
七、解答题(12分)
28.(12分)如图,△ABC和△ADE均为等边三角形,CE,BD相交于点P,连接PA.
3.如图,AB∥CD,AD∥BC,AC与BD相交于点O,则图中全等三角形共有( )

2021-2022学年人教版八年级第一学期期中考试数学试卷及答案解析

2021-2022学年人教版八年级第一学期期中考试数学试卷及答案解析

2021-2022学年八年级上学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是( )A .B .C .D .2.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( ) A .3cm ,4cm ,8cm B .8cm ,7cm ,15cmC .13cm ,12cm ,20cmD .5cm ,5cm ,11cm3.如图,AC =AD ,BC =BD ,则有( )A .AB 与CD 互相垂直平分 B .CD 垂直平分ABC .AB 垂直平分CDD .CD 平分∠ACB4.如图,AB =DB ,∠1=∠2,请问添加下面哪个条件不能判断△ABC ≌△DBE 的是( )A .BC =BEB .AC =DEC .∠A =∠DD .∠ACB =∠DEB5.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .若S △ABC =28,DE =4,AB =8,则AC 长是( )A .8B .7C .6D .56.如图,在△ABC 中,AB =AC ,分别以点A 、点B 为圆心,以大于12AB 长为半径画弧,两弧交点的连线交AC 于点D ,交AB 于点E ,连接BD ,若∠A =40°,则∠DBC =( )A .40°B .30°C .20°D .10°7.若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于( ) A .15或17B .16C .14D .14或168.如图,在平面直角坐标系中,AB =2OB ,在坐标轴上取一点P ,使得△ABP 为等腰三角形,则符合条件的点P 共有( )A .4个B .5个C .6个D .7个9.如图,将长方形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,AB =10,AD =5,下列结论中正确的有( )个. ①△AFC 是等腰三角形 ②△ADF 的面积是758③点B 与点E 关于AC 对称④若直线AD 与直线CE 交于点G ,那么直线FG 垂直平分ACA .1 个B .2 个C .3 个D .4 个10.如图,等腰Rt△ABC中,BC=8√5,以边AC为斜边向右做等腰Rt△ACD,点E是线段CD的中点,连接AE,作线段CE关于直线AC的对称线段CF,连接BF,并延长BF 交线段AE于点G,则线段BG长为()A.16√5B.16√2C.12√5D.12√2二.填空题(共6小题,满分18分,每小题3分)11.在平面直角坐标系xOy中,点P(1,2)关于y轴的对称点Q的坐标是.12.一个多边形的每一个外角为30°,那么这个多边形的边数为.13.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC=.14.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD 最小时,∠PCD=°.15.如图,△ABC中,∠ABC与∠ACB的平分线相交于点O,EF经过点O,分别交AB,AC于点E,F,BE=OE,OF=3cm,点O到BC的距离为4cm,则△OFC的面积为cm2.16.下列说法中正确的是(只填番号)①一个多边形的内角和小于其外角和,则这个多边形是四边形;②方程2x+y=7在正整数范围内的解有3组;③关于x的不等式abx>1的解集为x<1ab,则a、b中至少有一个是负数;④直角三角形两锐角平分线相交,所成的钝角的度数是135°三.解答题(共8小题,满分72分)17.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).18.(8分)已知等腰三角形的一边长为18,腰长是底边长的34,试求此三角形的周长.19.(8分)如图,AC ⊥BC ,DC ⊥EC ,AC =BC ,DC =EC ,AE 与BD 交于点F . (1)求证:AE =BD ; (2)求∠AFD 的度数.20.(8分)在平面直角坐标系xOy中,△ABC的位置如图所示,直线l经过点(0,1),并且与x轴平行,△A1B1C1与△ABC关于直线l对称.(1)画出三角形A1B1C1;(2)若点P(m,n)在AC边上,则点P关于直线l的对称点P1的坐标为;(3)在直线l上画出点Q,使得QA+QC的值最小.21.(8分)如图,四边形ABCD中,AD∥BC,DE=EC,连接AE并延长交BC的延长线于点F,连接BE.(1)求证:AE=EF;(2)若BE⊥AF,求证:BC=AB﹣AD.22.(10分)如图1,在平面直角坐标系xOy中,点A在y轴上,点B是第一象限的点,且AB⊥y轴,且AB=OA,点C是线段OA上任意一点,连接BC,作BD⊥BC,交x轴于点D.(1)依题意补全图1;(2)用等式表示线段OA,AC与OD之间的数量关系,并证明;(3)连接CD,作∠CBD的平分线,交CD边于点H,连接AH,求∠BAH的度数.23.(10分)如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM 的延长线交于点P,交AN于Q,直接写出AQ、AP的长.24.(12分)如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG =2AE时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).2021-2022学年八年级上学期期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意.故选:C.2.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm【解答】解:A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.3.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB【解答】解:∵AC=AD,BC=BD,∴AB是线段CD的垂直平分线,故选:C.4.如图,AB =DB ,∠1=∠2,请问添加下面哪个条件不能判断△ABC ≌△DBE 的是( )A .BC =BEB .AC =DE C .∠A =∠D D .∠ACB =∠DEB【解答】解:A 、添加BC =BE ,可根据SAS 判定△ABC ≌△DBE ,故正确;B 、添加AC =DE ,SSA 不能判定△ABC ≌△DBE ,故错误;C 、添加∠A =∠D ,可根据ASA 判定△ABC ≌△DBE ,故正确;D 、添加∠ACB =∠DEB ,可根据ASA 判定△ABC ≌△DBE ,故正确.故选:B .5.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .若S △ABC =28,DE =4,AB =8,则AC 长是( )A .8B .7C .6D .5【解答】解:∵AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF =DE =4.又∵S △ABC =S △ABD +S △ACD ,AB =8,∴28=12×8×4+12×AC ×4, ∴AC =6.故选:C .6.如图,在△ABC 中,AB =AC ,分别以点A 、点B 为圆心,以大于12AB 长为半径画弧,两弧交点的连线交AC 于点D ,交AB 于点E ,连接BD ,若∠A =40°,则∠DBC =( )A.40°B.30°C.20°D.10°【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=12(180°﹣40°)=70°,∵AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=30°,故选:B.7.若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15或17B.16C.14D.14或16【解答】解:当4为底边时,腰长为6,则这个等腰三角形的周长=4+6+6=16;当6为底边时,腰长为4,则这个等腰三角形的周长=4+4+6=14;故选:D.8.如图,在平面直角坐标系中,AB=2OB,在坐标轴上取一点P,使得△ABP为等腰三角形,则符合条件的点P共有()A.4个B.5个C.6个D.7个【解答】解:如图,在Rt△AOB中,∵AB=2OB,∴∠BAO=30°,当P 在x 轴上时,AB =AP 时,P 点有两个,BP =AP 时,P 点有一个,AB =BP 时,P 点有一个当P 在y 轴上时,AB =BP 时,P 点有两个,BP =AP 时或AB =AP 时,和前面重合, 综上所述:符合条件的P 点有6个,故选:C .9.如图,将长方形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,AB =10,AD =5,下列结论中正确的有( )个.①△AFC 是等腰三角形②△ADF 的面积是758③点B 与点E 关于AC 对称④若直线AD 与直线CE 交于点G ,那么直线FG 垂直平分ACA .1 个B .2 个C .3 个D .4 个【解答】解:如图所示:①∵四边形ABCD 为矩形∴DC ∥AB ,∴∠FCA =∠CAB ,由折叠可知:∠F AC =∠CAB ,∴∠FCA =∠F AC ,∴F A =FC ,∴△AFC 是等腰三角形.∴①正确;②设DF =x ,则FC =F A =10﹣x ,AD =5,∴在Rt △ADF 中,x 2+52=(10﹣x )2,解得x =154, ∴S △ADF =12DF •AD =12×154×5=758.∴△ADF 的面积为758.∴②正确;③∵AB =AE ,CB =CE ,∴AC 是BE 的垂直平分线,∴点B 与点E 关于AC 对称.∴③正确;④如图:延长AD 和CE 交于点G ,连接GF ,∵FD=FE,FG=FG,∴Rt△GDF≌Rt△GEF(HL),∴GD=GE,又AD=CE,∴GA=GC,FD=FE,∴FG是AC的垂直平分线,∴④正确.故选:D.10.如图,等腰Rt△ABC中,BC=8√5,以边AC为斜边向右做等腰Rt△ACD,点E是线段CD的中点,连接AE,作线段CE关于直线AC的对称线段CF,连接BF,并延长BF 交线段AE于点G,则线段BG长为()A.16√5B.16√2C.12√5D.12√2【解答】解:如图,设AC交BG于O.∵∠BCA=∠FCE=90°,∴∠BCF=∠ACE,∵CB=CA,CF=CE,∴△BCF≌△ACE(SAS),∴∠CBF=∠CAE,∵∠BOC=∠AOG,∴∠AGO=∠BCO=90°,∵△ABC,△ACD都是等腰直角三角形,∴∠BAC=∠CAD=45°,∴∠BAD=90°,∴∠ABG+∠BAG=90°,∠BAG+∠EAD=90°,∴∠ABG=∠EAD,∴tan∠ABG=tan∠EAD=DEAD=12,∴AGBG =12,设AG=x,BG=2x,∵AC=BC=8√5,∠ACB=90°,∴AB=√2BC=8√10在Rt△ABG中,则有x2+(2x)2=(8√10)2,∴x=8√2,∴BG=16√2,故选:B.二.填空题(共6小题,满分18分,每小题3分)11.在平面直角坐标系xOy中,点P(1,2)关于y轴的对称点Q的坐标是(﹣1,2).【解答】解:点P(1,2)关于y轴的对称点Q的坐标是:(﹣1,2).故答案为:(﹣1,2).12.一个多边形的每一个外角为30°,那么这个多边形的边数为12.【解答】解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.13.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC=100°.【解答】解:延长BD交AC于E.∵DA=DB=DC,∴∠ABE=∠DAB=20°,∠ECD=∠DAC=30°.又∵∠BAE=∠BAD+∠DAC=50°,∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,∴∠BDC=∠ABE+∠BAE+∠ECD=20°+50°+30°=100°.故答案为:100°.14.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD 最小时,∠PCD=45°.【解答】解:∵当PC+PD最小时,作出D点关于MN的对称点,正好是A点,连接AC,AC为正方形对角线,根据正方形的性质得出∠PCD=45°,∴∠PCD=45°.故答案为:45°.15.如图,△ABC中,∠ABC与∠ACB的平分线相交于点O,EF经过点O,分别交AB,AC于点E,F,BE=OE,OF=3cm,点O到BC的距离为4cm,则△OFC的面积为6 cm2.【解答】解:∵BE =OE ,∴∠EBO =∠EOB ,∵BO 平分∠ABC ,∴∠EBO =∠CBO ,∴∠EOB =∠CBO ,∴EF ∥BC ,∵点O 到BC 的距离为4cm ,∴△COF 中OF 边上的高为4cm ,又∵OF =3cm ,∴△OFC 的面积为12×3×4=6cm 2. 故答案为:6.16.下列说法中正确的是 ②④ (只填番号)①一个多边形的内角和小于其外角和,则这个多边形是四边形;②方程2x +y =7在正整数范围内的解有3组;③关于x 的不等式abx >1的解集为x <1ab,则a 、b 中至少有一个是负数; ④直角三角形两锐角平分线相交,所成的钝角的度数是135°【解答】解:①一个多边形的内角和小于其外角和,则这个多边形是三角形,故这个说法错误;②方程2x +y =7,解得:y =﹣2x +7,当x =1时,y =5;当x =2时,y =3;当x =3时,y =1,则方程的正整数解有3组,故这个说法正确;③关于x 的不等式abx >1的解集为x <1ab ,则a 、b 中只能有一个是负数,故这个说法错误;④如图:∵AE 、BD 是直角三角形中两锐角平分线,∴∠OAB +∠OBA =90°÷2=45°,两角平分线组成的角有两个:∠BOE 与∠EOD 这两个交互补,根据三角形外角和定理,∠BOE =∠OAB +∠OBA =45°,∴∠EOD =180°﹣45°=135°,直角三角形两锐角平分线相交,所成的钝角的度数是135°是正确的.故答案为:②④.三.解答题(共8小题,满分72分)17.(8分)如图,△ABC 和△EBD 中,∠ABC =∠DBE =90°,AB =CB ,BE =BD ,连接AE ,CD ,AE 与CD 交于点M ,AE 与BC 交于点N .(1)求证:AE =CD ;(2)求证:AE ⊥CD ;(3)连接BM ,有以下两个结论:①BM 平分∠CBE ;②MB 平分∠AMD .其中正确的有 ② (请写序号,少选、错选均不得分).【解答】(1)证明:∵∠ABC =∠DBE ,∴∠ABC +∠CBE =∠DBE +∠CBE ,即∠ABE =∠CBD ,在△ABE 和△CBD 中,{AB =CB ∠ABE =∠CBD BE =BD,∴△ABE ≌△CBD ,∴AE =CD .(2)∵△ABE ≌△CBD ,∴∠BAE =∠BCD ,∵∠NMC =180°﹣∠BCD ﹣∠CNM ,∠ABC =180°﹣∠BAE ﹣∠ANB ,又∠CNM =∠ANB ,∵∠ABC =90°,∴∠NMC =90°,∴AE ⊥CD .(3)结论:②理由:作BK ⊥AE 于K ,BJ ⊥CD 于J .∵△ABE ≌△CBD ,∴AE =CD ,S △ABE =S △CDB ,∴12•AE •BK =12•CD •BJ , ∴BK =BJ ,∵作BK ⊥AE 于K ,BJ ⊥CD 于J ,∴BM 平分∠AMD .不妨设①成立,则△ABM ≌△DBM ,则AB =BD ,显然不可能,故①错误.故答案为②.18.(8分)已知等腰三角形的一边长为18,腰长是底边长的34,试求此三角形的周长. 【解答】解:∵等腰三角形一边长为18cm ,且腰长是底边长的34, ①如果腰长为18cm ,则底边为24cm ,等腰三角形的三边为18、18、24,能构成三角形,∴C △=18+18+24=60cm ;②如果底长为18cm ,则腰长为13.5cm ,等腰三角形的三边为18、13.5、13.5,能构成三角形,∴C △=13.5+13.5+18=45cm .19.(8分)如图,AC ⊥BC ,DC ⊥EC ,AC =BC ,DC =EC ,AE 与BD 交于点F .(1)求证:AE =BD ;(2)求∠AFD 的度数.【解答】解:(1)∵AC ⊥BC ,DC ⊥EC ,∴∠ACB =∠DCE =90°,∴∠ACE =∠BCD ,在△ACE 和△BCD 中,{AC =BC ∠ACE =∠BCD CE =CD,∴△ACE ≌△BCD (SAS ),∴AE =BD ;(2)设BC 与AE 交于点N ,∵∠ACB =90°,∴∠A +∠ANC =90°,∵△ACE ≌△BCD ,∴∠A =∠B ,∵∠ANC =∠BNF ,∴∠B +∠BNF =∠A +∠ANC =90°,∴∠AFD =∠B +∠BNF =90°.20.(8分)在平面直角坐标系xOy中,△ABC的位置如图所示,直线l经过点(0,1),并且与x轴平行,△A1B1C1与△ABC关于直线l对称.(1)画出三角形A1B1C1;(2)若点P(m,n)在AC边上,则点P关于直线l的对称点P1的坐标为(m,2﹣n);(3)在直线l上画出点Q,使得QA+QC的值最小.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)若点P(m,n)在AC边上,则点P关于直线l的对称点P1的坐标为(m,2﹣n),故答案为:(m,2﹣n);(3)如图所示,点Q即为所求.21.(8分)如图,四边形ABCD中,AD∥BC,DE=EC,连接AE并延长交BC的延长线于点F,连接BE.(1)求证:AE=EF;(2)若BE⊥AF,求证:BC=AB﹣AD.【解答】证明:(1)∵AD∥BC,∴∠DAE=∠F,∠ADE=∠FCE,又∵DE=CE,∴△ADE≌△FCE(AAS),∴AE=EF;(2)∵AE=EF,BE⊥AF,∴AB=BF,∵△ADE≌△FCE,∴AD=CF,∴AB=BC+CF=BC+AD,∴BC=AB﹣AD.22.(10分)如图1,在平面直角坐标系xOy中,点A在y轴上,点B是第一象限的点,且AB⊥y轴,且AB=OA,点C是线段OA上任意一点,连接BC,作BD⊥BC,交x轴于点D.(1)依题意补全图1;(2)用等式表示线段OA,AC与OD之间的数量关系,并证明;(3)连接CD,作∠CBD的平分线,交CD边于点H,连接AH,求∠BAH的度数.【解答】解:(1)如图1所示,(2)OA +AC =OD ,如图1,过B 作BE ⊥x 轴于E ,则四边形AOEB 是矩形,∴BE =AO ,∠ABE =90°,∵AB =AO ,∴AB =BE ,∵BD ⊥BC ,∴∠CBD =90°,∴∠ABC =∠DBE ,在△ABC 与△BDE 中,{∠BAC =∠BED AB =BE ∠ABC =∠DBE,∴△ABC ≌△EBD (ASA ),∴AC =DE ,∵OE =AB =OA ,∴AO +AC =OD ;(3)如图2,由(1)知:△ABC ≌△EBD ,∴BC=BD,∵BD⊥BC,∴△BCD是等腰直角三角形,∴∠BCD=45°,∵BH平分∠CBD,∴∠BHC=90°,∵∠BAO=90°,过H作HN⊥OA,HM⊥AB,∴四边形ANMH是矩形,∴∠NHM=90°,∴∠NHC=∠MHB,∴△CNH≌△BHM(AAS),∴HN=HM,∴AH平分∠CAB,∴∠BAH=45°.23.(10分)如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM 的延长线交于点P,交AN于Q,直接写出AQ、AP的长.【解答】解:(1)BM+DN=MN,理由如下:如图1,在MB的延长线上,截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=∠D=90°,∴∠ABE=90°=∠D,在△ABE和△ADN中,{AB=AD∠ABE=∠D BE=DN,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD,∴∠EAN=∠BAD=90°,∵∠MAN=45°,∴∠EAM=45°=∠NAM,在△AEM和△ANM中,{AE=AN∠EAM=∠NAM AM=AM,∴△AEM≌△ANM(SAS),∴ME=MN,又∵ME=BE+BM=BM+DN,∴BM+DN=MN;故答案为:BM+DN=MN;(2)(1)中的结论不成立,DN﹣BM=MN.理由如下:如图2,在DC上截取DF=BM,连接AF,则∠ABM=90°=∠D,在△ABM和△ADF中,{AB=AD∠ABM=∠D BM=DF,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∴∠BAM+∠BAF=∠BAF+∠DAF=∠BAD=90°,即∠MAF=∠BAD=90°,∵∠MAN=45°,∴∠MAN=∠F AN=45°,在△MAN和△F AN中,{AM=AF∠MAN=∠FAN AN=AN,∴△MAN≌△F AN(SAS),∴MN=NF,∴MN=DN﹣DF=DN﹣BM,∴DN﹣BM=MN.(3)∵四边形ABCD是正方形,∴AB=BC=AD=CD=6,AD∥BC,AB∥CD,∠ABC=∠ADC=∠BCD=90°,∴∠ABM=∠MCN=90°,∵CN=CD=6,∴DN=12,∴AN=√AD2+DN2=√62+122=6√5,∵AB∥CD,∴△ABQ∽△NDQ,∴BQDQ =AQNQ=ABDN=612=12,∴AQAN =13,∴AQ=13AN=2√5;由(2)得:DN﹣BM=MN.设BM=x,则MN=12﹣x,CM=6+x,在Rt△CMN中,由勾股定理得:62+(6+x)2=(12﹣x)2,解得:x=2,∴BM=2,∴AM=√AB2+BM2=√62+22=2√10,∵BC ∥AD ,∴△PBM ∽△PDA ,∴PM PA =BM DA =26=13, ∴PM =12AM =√10,∴AP =AM +PM =3√10.24.(12分)如图①所示,已知正方形ABCD 和正方形AEFG ,连接DG ,BE .(1)发现:当正方形AEFG 绕点A 旋转,如图②所示.①线段DG 与BE 之间的数量关系是 DG =BE ;②直线DG 与直线BE 之间的位置关系是 DG ⊥BE ;(2)探究:如图③所示,若四边形ABCD 与四边形AEFG 都为矩形,且AD =2AB ,AG =2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG 、DE ,若AE =1,AB =2,求BG 2+DE 2的值(直接写出结果).【解答】解:(1)①如图②中,∵四边形ABCD 和四边形AEFG 是正方形,∴AE =AG ,AB =AD ,∠BAD =∠EAG =90°,∴∠BAE =∠DAG ,在△ABE 和△DAG 中,{AB =AD ∠BAE =∠DAG AE =AG,∴△ABE ≌△ADG (SAS ),∴BE =DG ;②如图2,延长BE 交AD 于T ,交DG 于H .由①知,△ABE ≌△DAG ,∴∠ABE =∠ADG ,∵∠ATB +∠ABE =90°,∴∠ATB +∠ADG =90°,∵∠ATB =∠DTH ,∴∠DTH +∠ADG =90°,∴∠DHB =90°,∴BE ⊥DG ,故答案为:BE =DG ,BE ⊥DG ;(2)数量关系不成立,DG =2BE ,位置关系成立.如图③中,延长BE 交AD 于T ,交DG 于H .∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴ABAD =AEAG=12,∴△ABE∽△ADG,∴∠ABE=∠ADG,BEDG =1 2,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,第 31 页 共 31 页∴GH ET =AH AT =AG AE =2,∴GH =2x ,AH =2y ,∴4x 2+4y 2=4,∴x 2+y 2=1,∴BG 2+DE 2=(2x )2+(2y +2)2+x 2+(4﹣y )2=5x 2+5y 2+20=25.。

2021-2022学年湖北省武汉市洪山区八年级(上)期中数学试卷(含答案)

2021-2022学年湖北省武汉市洪山区八年级(上)期中数学试卷(含答案)

2021-2022学年湖北省武汉市洪山区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)下列平面图形中,不是轴对称图形的为( )A.B.C.D.2.(3分)下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm3.(3分)如图,∠DAC=∠BAC,下列条件中,不能判定△ABC≌△ADC的是( )A.DC=BC B.AB=AD C.∠D=∠B D.∠DCA=∠BCA4.(3分)在△ABC中,到三边距离相等的点是△ABC的( )A.三边垂直平分线的交点B.三条角平分线的交点C.三条高的交点D.三边中线的交点5.(3分)已知正多边形的一个内角为144°,则该正多边形的边数为( )A.12B.10C.8D.66.(3分)如图,∠A+∠B+∠C+∠D+∠E+∠F的值是( )A.360°B.480°C.540°D.720°7.(3分)等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF =12,则△FBC的面积为( )A.40B.46C.48D.508.(3分)如图,设△ABC和△CDE都是正三角形,且∠EBD=58°,则∠AEB的度数是( )A.124°B.122°C.120°D.118°9.(3分)如图,等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP,其中正确的有( )A.②③B.①②④C.③④D.①②③④10.(3分)如图,锐角∠AOB=x,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠QNO=β,当MP+PQ+QN最小时,则关于α,β,x的数量关系正确的是( )A.α﹣β=2x B.2β+α=90°+2xC.β+α=90°+x D.β+2α=180°﹣2x二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上。

2021-2022学年八年级上学期期中考试数学试卷含答案

2021-2022学年八年级上学期期中考试数学试卷含答案

2021-2022学年八年级上学期期中考试数学试卷
一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.如图,其中是轴对称图形的是()
A.B.C.D.
2.点M(1,2)关于x轴对称的点的坐标为()
A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)3.下列运算正确的是()
A.a•a2=a2B.(ab)3=ab3C.(a2)3=a6D.a10÷a2=a5 4.等腰三角形的两边长分别为2和7,则它的周长是()
A.9B.11C.16D.11或16
5.下列多项式中能用平方差公式分解因式的是()
A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+9
6.若x2+8x+m是完全平方式,则m的值为()
A.4B.﹣4C.16D.﹣16
7.如图,△ABC中,AB=AC=15,AB的垂直平分线DE交AC于D,连结BD,若△DBC 的周长为23,则BC的长为()
A.6B.7C.8D.9
8.计算[(﹣a)3]4÷(﹣a4)3的结果是()
A.﹣1B.1C.0D.﹣a
9.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A =∠ABE,AC=5,BC=3,则BD的长为()
第1 页共23 页。

2021-2022学年湖北省武汉市武昌区武珞路中学八年级(上)期中数学试卷(附答案详解)

2021-2022学年湖北省武汉市武昌区武珞路中学八年级(上)期中数学试卷(附答案详解)

2021-2022学年湖北省武汉市武昌区武珞路中学八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列大学的校徽图案是轴对称图形的是()A. 清华大学B. 北京大学C. 中国人民大学D. 浙江大学2.下列图形中,具有稳定性的是()A. 平行四边形B. 梯形C. 正方形D. 直角三角形3.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.4.已知图中的两个三角形全等,则∠α的度数是()A. 72°B. 60°C. 58°D. 50°5.如图,数学课上,老师让学生尺规作图画∠MON的角平分线OB.小明的作法如图所示,连接BA、BC,你认为这种作法中判断△ABO≌△CBO的依据是()A. SSSB. SASC. ASAD. AAS6. 如图,在△ABC 中,AB =AC ,∠C =70°,△AB′C′与△ABC 关于直线AD 对称,∠CAD =10°,连接BB′,则∠ABB′的度数是( )A. 45°B. 40°C. 35°D. 30°7. 如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的最大周长为( )A. 20B. 22C. 23D. 248. 下列条件中,能构成钝角△ABC 的是( )A. ∠A =∠B =∠CB. ∠A +∠C =∠BC. ∠B =∠C =14∠AD. ∠A =12∠B =13∠C 9. 如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ,在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E …按此做法继续下去,则第2021个三角形中以A 2021为顶点的内角度数是( )A. (12)2019⋅75°B. (12)2020⋅75°C. (12)2021⋅75°D. (12)2022⋅75° 10. 如图,已知在△ABC 中,AB =AC ,∠ACB 和∠BAC 的平分线交于点O ,过点A 作AD ⊥AO 交CO 的延长线于点D ,若∠ACD =α,则∠BDC 度数为( )A. 45°−αB. 90°−α2C. 90°−2αD. a2二、填空题(本大题共6小题,共18.0分)11.已知点A(2,a)与点B(b,4)关于y轴对称,则a+b=______.12.一个正多边形的每一个内角都是108°,则它是正______边形.13.已知等腰三角形的两边长分别为10和6,则三角形的周长是______ .14.若三角形的一个内角是另一个内角的3倍,我们称此三角形为特异三角形”,若一个“特异三角形”为直角三角形,则这个“特异三角形”最小内角度数为______.15.如图,已知△ABC中,OE、OF分别是AB、AC的垂直平分线,∠OBC,∠OCB的平分线相交于点I,有如下结论:①AO=CI;②∠ABC+∠ACO=90°;③∠BOI=∠COI;④OI⊥BC.其中正确的结论是______.(填序号)16.如图,在△ABC中,AH是高,AE//BC,AB=AE,在AB边上取点D,连接DE,DE=AC,若S△ABC=5S△ADE,BH=1,则BC=______.三、解答题(本大题共8小题,共72.0分)17.如图,点E,C在线段BF上,∠A=∠D,AB//DE,BC=EF.求证:AC=DF.18.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.19.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,求证:AD=3BD.20.如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD//BE,∠GBE的平分线与AD交于点D,连接CD.求证:①AB=AD;②CD平分∠ACE.21.如图,在下列带有坐标系的网格中,△ABC的顶点都在边长为1的小正方形的顶点上,A(−3,3),B(−4,−2),C(0,−1).(1)直接写出△ABC的面积为______;(2)画出△ABC关于y轴的对称的△DEC(点D与点A对应,点E与点B对应),点E的坐标为______;(3)用无刻度的直尺,运用所学的知识作图(保留作图痕迹).①作出△ABC的高线AF;②在边BC上确定一点P,使得∠CAP=45°.22.已知,△ABC中,点D,E分别在边AB,BC上,BD=BE,连接CD.(1)如图1,若∠CAD=∠CED=2∠ADC,求证:AD=DE;(2)如图2,点F在AD上,连接EF,若∠CAD=∠AFE,∠CEF=2∠ADC,求证:AD=EF.23.已知,点C为线段AB上的一点,以AC为边作等边△ACD,连接BD.(1)如图1,以BC为边在AB的上方作等边△BCE,接AE,交BD于点G,求∠AGB的度数;(2)如图2,在(1)的条件下连接CG,求证:CG+DG+EG=AE;(3)如图3,点K在线段BD上,∠BKC=60°,点H为线段AD上,AH=BC,AK,CH交于点I,BD=a,AK=b,则IK=______.(用含a,b的式子表示)24.在平面直角坐标系中,点A的坐标为(3,0),点B在y轴上,以B为直角顶点;在AB上方作等腰Rt△ABC.(1)如图1,若点B的坐标为(0,1),则C点的坐标是______.(2)如图2,若点B在y轴正半轴上,OD平分∠AOB交AC于D,求证:AD=CD;(3)如图3,若点B为y轴上的一个动点,连接OC,当AC+OC值最小时,求B点坐标.答案和解析1.【答案】B【解析】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:B.根据轴对称图形的定义直接判断得出即可.此题主要考查了轴对称图形的性质,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.2.【答案】D【解析】解:根据三角形具有稳定性,可知四个选项中只有直角三角形具有稳定性的.故选:D.三角形不容易产生变化,因此三角形是最稳定的.此题考查的是对三角形稳定性的知识的理解,属于基础题.3.【答案】D【解析】解:线段BE是△ABC的高的图是选项D.故选:D.根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.4.【答案】A【解析】【分析】本题考查了全等三角形对应角相等,根据对应边的夹角准确确定出对应角是解题的关键.根据全等三角形对应角相等可知∠α是b、c边的夹角,然后写出即可.【解答】解:∵两个三角形全等,∴∠α的度数是72°.故选A.5.【答案】A【解析】解:由作图可知,OA=OC,AB=CB,在△AOB和△COB中,{OA=OC AB=CB OB=OB,∴△AOB≌△COB(SSS),∴∠BOA=∠BOC,故选:A.根据SSS证明三角形全等可得结论.本题考查作图−复杂作图,全等三角形的判定和性质等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.6.【答案】B【解析】解:∵AB=AC,∴∠ABC=∠C=70°,∴∠BAC=180°−70°−70°=40°,∵△AB′C′与△ABC关于直线AD对称,∴∠BAC=∠B′AC′=40°,∠CAD=∠C′AD=10°,∴∠BAB′=40°+10°+10°+40°=100°,∵AB=AB′,∴∠ABB′=12(180°−100°)=40°,故选:B.利用三角形内角和定理轴对称的性质求出∠BAB′即可解决问题.本题考查轴对称的性质,等腰三角形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】B【解析】解:设第三边为a,根据三角形的三边关系知,2<a<12.由于第三边的长为偶数,则a可以为4或6或8或10.∴这个三角形的最大周长为5+7+10=22.故选:B.利用三角形三边关系定理,先确定第三边的范围,进而就可以求出第三边的长,从而求得三角形的周长.本题考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.8.【答案】C【解析】解:A.根据三角形内角和定理,由∠A=∠B=∠C,得∠A=∠B=∠C=60°,故△ABC是锐角三角形,那么A不符合题意.B.根据三角形内角和定理,由∠A+∠B+∠C=180°,得2∠B=180°,故∠B=90°,即△ABC是直角三角形,那么B不符合题意.C.根据三角形内角和定理,由∠A+∠B+∠C=180°,∠B=∠C=14∠A,得∠A+14∠A+14∠A=180°,故∠A=120°,此时△ABC是钝角三角形,那么C符合题意.D.根据三角形内角和定理,由∠A+∠B+∠C=180°,∠A=12∠B=13∠C,得∠A=30°,∠B=60°,∠C=90°,此时△ABC是直角三角形,那么D不符合题意.故选:C.根据三角形内角和定理解决此题.本题主要考查三角形内角和定理,熟练掌握三角形内角和定理是解决本题的关键.9.【答案】B【解析】解:∵∠B =30°,A 1B =CB ,∴∠BA 1C =∠C ,30°+∠BA 1C +∠C =180°.∴2∠BA 1C =150°.∴∠BA 1C =12×150°=75°.∵A 1A 2=A 1D ,∴∠DA 2A 1=∠A 1DA 2.∴∠BA 1C =∠DA 2A 1+∠A 2DA 1=2∠DA 2A 1.∴∠DA 2A 1=12∠BA 1C =12×12×150°. 同理可得:∠EA 3A 2=12∠DA 2A 1=12×12×12×150°.…以此类推,以A n 为顶点的内角度数是∠A n =(12)n ×150°=(12)n−1×75°.∴以A 2021为顶点的内角度数是(12)2020×75°.故选:B .根据等腰三角形的性质,由∠B =30°,A 1B =CB ,得∠BA 1C =∠C ,30°+∠BA 1C +∠C =180°,那么∠BA 1C =12×150°=75°.由A 1A 2=A 1D ,得∠DA 2A 1=∠A 1DA 2.根据三角形外角的性质,由∠BA 1C =∠DA 2A 1+∠A 2DA 1=2∠DA 2A 1,得∠DA 2A 1=12∠BA 1C =12×12×150°.以此类推,运用特殊到一般的思想解决此题. 本题主要考查等腰三角形的性质、三角形内角和定理、三角形外角的性质,熟练掌握三角形外角的性质以及特殊到一般的猜想归纳思想是解决本题的关键.10.【答案】C【解析】解:∵AB =AC ,∠ACD =α,OC 平分∠ACB ,∴∠ABC =∠ACB =2α,∵∠ACB 和∠BAC 的平分线交于点O ,∴∠OBC =∠OBA =∠OCB =α,∴∠DOB =∠OBC +∠OCB =2α,∴∠BAC=180°−∠ABC−∠ACB=180°−4α,∴∠BOA=90°−2α,∵AD⊥AO,∴∠DAB=∠DOB=2α,∴O、A、D、B四点共圆,∴∠BDC=∠DOA=90°−2α.故选:C.根据等腰三角形的性质得∠ABC=∠ACB=2α,由三角形外角的性质得∠DOB=2α,根据三角形的内角和定理得∠BAC=180°−4α,则∠BOA=90°−2α,根据AD⊥AO可得∠DAB=2α,可得O、A、D、B四点共圆,即可得出∠BDC=∠DOA=90°−2α.本题考查了直角三角形的性质,等腰三角形的判定与性质,三角形的内心,难度较大,做题时要分清角的关系.11.【答案】2【解析】解:由题意得,a=4,b=−2,则a+b=4+(−2)=2,故答案为:2.根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答即可.本题考查的是关于x、y轴对称点的坐标特点,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.12.【答案】五【解析】解:180°−108°=72°,360°÷72°=5.故答案为:五.由多边形的每一个内角都是108°先求得它的每一个外角是72°,然后根据正多边形的外角和是360°求解即可.本题主要考查的是多边形的内角与外角,明确正多边形的每个内角的度数×边数=360°是解题的关键.13.【答案】22或26【解析】解:当6为底时,其它两边都为6,10、10可以构成三角形,周长为26;当6为腰时,其它两边为6和10,可以构成三角形,周长为22.故答案为:22或26.因为等腰三角形的两边分别为6和10,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.本题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.14.【答案】22.5°或30°【解析】解:设这个“特异三角形”最小内角的度数为x,则另外两个内角分别是3x、90°或3x=90°、90°−x.当“特异三角形”三个内角的度数分别为x、3x、90°,∴x+3x+90°=180°.∴x=22.5°.当“特异三角形”三个内家的度数分别为x、90°、90°−x.∴3x=90°.∴x=30°.∴90°−x=60°.此时,三个内角的度数分别为30°、60°、90°.∴这个“特异三角形”最小内角度数为30°.综上:这个“特异三角形”最小内角度数为22.5°或30°.故答案为:22.5°或30°.设这个“特异三角形”最小内角的度数为x,则另外两个内角分别是3x、90°或3x=90°、90°−x,那么可能存在两种情况:“特异三角形”三个内角的度数分别为x、3x、90°或“特异三角形”三个内家的度数分别为x、90°、90°−x,从而根据进行分类讨论.本题主要三角形内角和定理,熟练掌握分类讨论的思想和三角形内角和定义是解决本题的关键.15.【答案】②③④【解析】解:∵OE,OF分别是AB,AC边的中垂线,∴OA=OB,OA=OC,∴OB=OC=OA,∴∠OAB=∠OBA,∠OBC=∠OCB,∠OAC=∠OCA,∵∠OAB+∠OBA+∠OBC=∠OCB+∠OAC=∠OCA=180°,∴∠OBA+∠OBC+∠OCA=90°,∴∠ABC+∠ACO=90°,故②正确;∵∠OBC,∠OCB的平分线相交于点I,∴∠OBC=2∠IBC,∠OCB=2∠ICB,∴∠IBC=∠ICB,∴BI=CI,∴点I在BC的垂直平分线上,∵OB=OC,∴点O在BC的垂直平分线上,∴OI⊥BC,故④正确;∵OI是BC的垂直平分线,且点O,点I不重合,∴OC≠IC,∴AO≠IC,故①错误;∵OB=OC,OI是BC的垂直平分线,∴∠BOI=∠COI,故③正确;故答案为②③④.由线段垂直平分线的性质可证OB=OC=OA,由等腰三角形的性质可得∠OAB=∠OBA,∠OBC=∠OCB,∠OAC=∠OCA,由三角形内角和定理可求∠ABC+∠ACO=90°,故②正确;由角平分线的性质可得∠IBC=∠ICB,可得BI=CI,则可证点O在BC的垂直平分线上,可得OI⊥BC,故④正确;由点O与点I不重合,可得AO≠IC,故①错误;由等腰三角形的性质可得∠BOI=∠COI,故③正确;即可求解.本题是三角形综合题,考查了角平分线的性质,线段垂直平分线的性质,等腰三角形的性质等知识,证明OI是BC的垂直平分线是解题的关键.16.【答案】52【解析】解:过点E作EP⊥BA,交BA的延长线于P,∴∠P=∠AHB=90°,∵AE//BC,∴∠EAP=∠CBA,在△AEP和△BAH中,{∠P=∠AHB ∠PAE=∠B AE=AB,∴△AEP≌△BAH(AAS),∴PE=AH,在Rt△DEP和Rt△CAH中,{DE=ACPE=AH,∴Rt△DEP≌Rt△CAH(HL),∴CH=DP,S△ACH=S△APE,∵S△ABC=S△ABH+S△AHC=2S△ABH+S△ADE=5S△ADE,∴S△ABH:S△ADE=2:1,∴BH:AD=2:1,∵BH=1,∴AD=12,∴DP=CH=1+12=32,∴BC=BH+CH=1+32=52,故答案为:52.过点E作EP⊥BA,交BA的延长线于P,首先证明△AEP≌△BAH(AAS),再利用HL证明Rt△DEP≌Rt△CAH,得CH=DP,S△ACH=S△APE,再根据高相等的两个三角形面积比等于底之比解决问题.本题主要考查了全等三角形的判定与性质,三角形面积等知识,作辅助线构造全等三角形是解题的关键,有一定的难度.17.【答案】证明:∵AB//ED,∴∠ABC=∠DEF.在△ABC与△DEF中,{∠A=∠D∠B=∠DEF BC=EF,∴△ABC≌△DEF(AAS).∴AC=DF.【解析】根据平行线的性质得到∠ABC=∠DEF.根据全等三角形的判定和性质定理即可得到结论.本题重点考查了三角形全等的判定定理,熟练掌握全等三角形的判定和性质定理是解题的关键.18.【答案】解:设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°,∠ABC=∠ACB=72°.【解析】设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.本题考查等腰三角形的性质;利用了三角形的内角和定理得到相等关系,通过列方程求解是正确解答本题的关键.19.【答案】证明:∵∠ACB=90°,∠A=30°,∴∠B=60°,AB=2BC,∵CD⊥AB,∴∠DCB=30°,∴BC=2BD,∴AB=4BD,∵AB=AD+BD,∴AD=3BD.【解析】根据直角三角形中30度所对的边是斜边的一半可得到BC=2BD,AB=2BC,从而可推出AB=4BD,从而不难证得BD与AD的数量关系.此题主要考查含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.20.【答案】证明:①∵AD//BE,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD;②∵AD//BE,∴∠ADC=∠DCE,由①知,AB=AD,又∵AB=AC,∴AC=AD,∴∠ACD=∠ADC,∴∠ACD=∠DCE,∴CD平分∠ACE.【解析】①由平行线的性质得∠ADB=∠DBC,再由角平分线的定义得∠ABD=∠DBC,则∠ABD=∠ADB,然后由等腰三角形的判定即可得到AB=AD;②由平行线的性质得∠ADC=∠DCE,再由①知AB=AD,则AC=AD,然后由等腰三角形的性质得∠ACD=∠ADC,则∠ACD=∠DCE,即可得到结论.本题考查了等腰三角形的判定和性质,角平分线的定义,平行线的性质等知识,熟练掌握等腰三角形的判定和性质是解题的关键.21.【答案】192(4,−2)【解析】解:(1)S△ABC=4×5−12×1×5−12×1×4−12×3×4=192,故答案为:192;(2)如图,△DEC即为所求,E(4,−2),故答案为:(4,−2);(3)①如图,线段AF即为所求.②如图,点P即为所求.(1)把三角形的面积看成矩形面积减去周围三个三角形面积即可.(2)利用轴对称的性质分别作出A,B的对应点D,E即可.(3)①取格点R,连接AR,延长AR交BC于点F,线段AF即为所求.②取格点T,构造等腰直角三角形ACT即可,AT交BC于点P,点P即为所求.本题考查作图−轴对称变换,三角形的面积,等腰直角三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.22.【答案】证明:(1)∵BD=BE,∴∠BDE=∠BED,∴∠ADE=∠CED,∵∠CAD=∠CED=2∠ADC,∴∠ADC=∠EDC=12∠CED=12∠ADE,在△ADC和△EDC中,{∠CAD=∠ED∠ADC=∠EDC CD=CD,∴△ADC≌△EDC(AAS),∴AD=DE;(2)在EC上截取EG=DF,连接DG,如图2所示:∵BD=BE,∴BD+DF=BE+EG,即BF=BG,在△BDG和△BEF中,{BD=BE ∠B=∠B BG=BF,∴△BDG≌△BEF(SAS),∴DG=EF,∠BGD=∠BFE,∠BDG=∠BEF,∴∠ADG=∠CEF,∠CGD=∠AFE,∵∠CAD=∠AFE,∠CEF=2∠ADC,∴∠ADC=12∠CEF=12∠ADG=∠GDC,∠CAD=∠CGD,在△ADC和△GDC中,{∠CAD=∠CGD ∠ADC=∠GDC CD=CD,∴△ADC≌△GDC(AAS),∴AD=GD,∴AD=EF.【解析】(1)由等腰三角形的性质得∠BDE=∠BED,则∠ADE=∠CED,再证∠ADC=∠EDC,然后证△ADC≌△EDC(AAS),即可得出结论;(2)在EC上截取EG=DF,连接DG,证△BDG≌△BEF(SAS),得DG=EF,∠BGD=∠BFE,∠BDG=∠BEF,再证△ADC≌△GDC(AAS),得AD=GD,即可得出结论.本题考查了全等三角形的判定与性质、等腰三角形的性质等知识,熟练掌握等腰三角形的性质,证明△ADC≌△EDC和△BDG≌△BEF是解题的关键.23.【答案】b−12a【解析】解:(1)∵△ACD和△BCE是等边三角形,∴AC=CD,CB=CE,∠ACD=∠BCE=60°,∴∠ACE=∠BCD,在△ACE和△DCB中,{AC=CD∠ACE=∠DCB CE=CB,∴△ACE≌△DCB(SAS),∴∠CAE=∠CDB,∴∠EAC+∠CBD=∠CDB+∠CBD=∠ACD=60°,∴∠AGB=180°−(∠EAC+∠ABG)=180°−60°=120°;(2)作∠GCF=60°,交AE于F,∴∠ACF=∠DCG,由(1)知∠CAE=∠CDB,又∵AC=CD,∴△ACF≌△DCG(ASA),∴DG=AF,CF=CG,∵∠FCG=60°,∴△FCG是等边三角形,∴CG=FG,∴AE=AF+FG+GE=DG+CG+GE;(3)如图,以BC为边作等边△BCE,连接AE,交BD于K′,由(1)(2)可知:∠AK′C=∠BK′C=60°,AE=BD,∵∠BKC=60°,∴点K、K′重合,∵∠DAC=∠ECB=60°,∴AD//CE,∴∠DAI=∠CEI,又∵AH=CB,CB=CE,∴AH=CE,且∠AIE=∠CIE,∴△AHI≌△ECI(AAS),∴AI=IE=12AE=12a,∴IK=AK−AI=b−12a,故答案为:b−12a.(1)利用SAS证明△ACE≌△DCB得∠CAE=∠CDB,再利用三角形内角和定理即可得出答案;(2)作∠GCF=60°,交AE于F,证明△ACF≌△DCG(ASA),得DG=AF,CF=CG,再证△CFG是等边三角形即可;(3)以BC为边作等边△BCE,连接AE,交BD于K′,证明点K与K′重合,再证明△AHI≌△ECI(AAS),得AI=IE=12AE=12a,从而解决问题.本题是三角形综合题,主要考查了等边三角形的判定与性质,全等三角形的判定与性质等知识,利用前面探索的结论解决新的问题是解题的关键,对学生的思维能力要求较高,属于中考压轴题.24.【答案】(1,4)【解析】(1)解:过点C作CH⊥y轴于H,∵△ABC是等腰直角三角形,∴AB=BC,∠ABC=90°,∴∠ABO+∠CBH=90°,∵∠ABO+∠BAO=90°,∴∠BAO=∠HBC,又∵∠AOB=∠BHC,∴△AOB≌△BHC(AAS),∴OA=BH,BO=HC,∵点A的坐标为(3,0),B的坐标为(0,1),∴OA=3,OB=1,∴OH=OB+BH=3+1=4,CH=OB=1,∴点C(1,4),故答案为:(1,4);(2)证明:作CH⊥y轴于H,交OD的延长线于E,由(1)知△ABO≌△BCH,∴OA=BH=3,OB=HC,设OB=HC=m,∵OD平分∠AOB,∴∠AOD=∠HOE,∵HE//OA,∴∠E=∠AOE,∴∠HOE=∠E,∴HE=OH,∵OB=HC,∴CE=BH=OA,又∵∠CDE=∠ADO,∴△EDC≌△ODA(AAS),∴AD=CD;(3)解:设OB=m,由(1)知C(m,m+3),∴点C在直线y=x+3上运动,设直线y=x+3交x、y轴于F、G点,则OF=OG=3,∴∠GFO=∠FGO=45°,作点O关于直线CF的对称点O′,则∠OFO′=90°,O′F=OF=3,∴O′(−3,3),∴AC+OC值最小时,点O′、B、A共线,由O′(−3,3),A(3,0)知,直线AO′的函数解析式为y=−12x+32,当x=0时,y=32,∴点B(0,32).(1)过点C作CH⊥y轴于H,通过AAS证明△AOB≌△BHC,得OA=BH,BO=HC,即可得出点C的坐标;(2)作CH⊥y轴,交OD的延长线于E,由角平分线的性质和平行线的性质可知HE=OH,从而CE=OA,可证△EDC≌△ODA(AAS),得出结论;(3)设OB=m,由(1)知C(m,m+3),得点C在直线y=x+3上运动,再作点O关于直线y=x+3的对称点,即可解决问题.本题主要考查了等腰直角三角形的性质,三角形全等的判定与性质,待定系数法求函数解析式,轴对称−最短路线问题,利用全等三角形的性质得出点C的坐标是解题的关键.。

2021-2022学年湖北省武汉市江岸区八年级(上)期末数学试题及答案解析

2021-2022学年湖北省武汉市江岸区八年级(上)期末数学试题及答案解析

2021-2022学年湖北省武汉市江岸区八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列四幅图形中,是轴对称图形的是( )A. B. C. D.2.点P(1,−2)关于x轴对称的点的坐标是( )A. (−1,2)B. (−2,1)C. (−1,−2)D. (1,2)3.2021年5月7日IBM公司宣布推出全球首个2nm芯片,其中1nm=0.000000001m,将2nm用科学记数法可表示为( )A. 2×10−10mB. 2×10−9mC. 2×1010mD. 2×109m4.若分式x−1x−2有意义,则x的取值范围是( )A. x≠1B. x=2C. x≠2D. x>25.分式13x2y2,14xy2的最简公分母是( )A. 12x2y2B. 12x3y4C. xyD. xy26.下列因式分解最后结果正确的是( )A. x2−2x−3=(x−1)(x+3)B. x(x−y)+y(y−x)=(x−y)2C. x3−x=x(x2−1)D. 6x−9−x2=(x−3)27.下列等式中,从左向右的变形正确的是( )A. a−ba+b =b−ab+aB. 22a+b=1a+bC. abab−b2=aa−bD. a−a+b=−aa+b8.某同学借了一本书,共140页,要在一周内读完.当他读了这本书的一半时,发现平均每天要多读21页才能刚好在借期内读完,他读这本书的前一半时,平均每天读多少页?设他读这本书的前一半时,平均每天读x页,则下列方程中正确的是( )A. 70x +70x−21=7 B. 70x+70x+21=7C. 140x +140x−21=7 D. 140x+140x+21=79.如图,△ABC中,∠ABC=90°,点I为△ABC各内角平分线的交点,过I点作AC的垂线,垂足为点H,若BC=6,AB=8,AC=10,那么IH的值为( )A. 2B. 3C. 4D. 510.如图,AD是等边三角形ABC的边BC上的高,点E是AD上的一个动点(点E不与点A重合),连接CE.将线段CE绕点E顺时针旋转60°得到EF,连接DF、CF,若AB=6,则线段DF长度的最小值是( )A. 3B. √3C. 1.5D. 1二、填空题(本大题共6小题,共18.0分)11.计算:(a2)3=______,(3a)2=______,3−2=______.12.若分式x2−1x+1的值为0,则x=______.13.已知一个等腰三角形的一个外角为100°,则它的顶角的度数是______.14.如图,△ABC中,AB=6,BC=5,将△ABC沿折痕AD折叠,使点B恰好落在AC边上的点E处,若△DEC的周长为7,则AC的长为______.15.如果关于x的方程axx−1+11−x=2无解,则a的值为______.16.如图,在等腰直角三角形ABC中,∠ABC=90°,O是AC的中点,点F、D分别在AB、BC上(点F、D与点A、B、C都不重合)运动,其中OF⊥OD、OE⊥AD交AB于点E.下列结论:①BD=BE ;②AF =BD ;③点E 是BF 的中点;④CDEF的值为定值.其中正确的结论是______(填写序号).三、计算题(本大题共2小题,共16.0分)17. 计算:(1)3a(5a −2);(2)(7x 2y 3−8x 3y 2z)÷8x 2y 2.18. 因式分解:(1)x 2−9;(2)ax 2+2a 2x +a 3.四、解答题(本大题共6小题,共56.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省武汉市2021~2022年度第一学期期中考试卷八年级数学(考试时间 100分钟全卷满分 120分)学校:___________姓名:___________班级:___________考号:___________ 题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.2.(3分)等腰三角形两边的长分别为3cm和5cm,则这个三角形的周长是()A.11cm B.13cm C.11cm或13cm D.不确定3.(3分)如图,在△ABC和△ABD中,已知AC=AD,BC=BD,则能说明△ABC≌△ABD的依据是()A.SAS B.ASA C.SSS D.HL4.(3分)如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个B.2个C.3个D.4个5.(3分)为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等6.(3分)下列说法正确的有()个.①任何数的0次幂都等于1;②等腰三角形底边的中点到两腰的距离相等;③有一个角是60°的等腰三角形是等边三角形;④到三角形三条边距离相等的点是三角形三条中线的交点;⑤到三角形三个顶点距离相等的点是三角形三边垂直平分线的交点.A.1 B.2 C.3 D.47.(3分)如图,把一张长方形纸片ABCD沿EF折叠后,若∠2=40°,则∠1的度数为()A.110°B.115°C.125°D.130°8.(3分)如图,OP平分∠AOB,PC⊥OA,点D是OB上的动点,若PC=5cm,则PD的长可以是()A.2cm B.3cm C.4cm D.6cm9.(3分)点O在△ABC(非等边三角形)内,且OA=OB=OC,则点O为()A.△ABC的三条角平分线的交点B.△ABC的三条高线的交点C.△ABC的三条边的垂直平分线的交点D.△ABC的三条边上的中线的交点10.(3分)下列说法不正确的是()A.面积相等的两个三角形全等B.全等三角形对应边上的中线相等C.全等三角形的对应角的角平分线相等D.全等三角形的对应边上的高相等二.填空题(共6小题,满分18分,每小题3分)11.(3分)点P(2,3)关于y轴的对称点Q的坐标为.12.(3分)一个多边形的每一个外角为30°,那么这个多边形的边数为.13.(3分)如图,在△ABC中,AB=AC,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E,点D在运动过程中,若△ADE是等腰三角形,则∠BDA的度数为.14.(3分)如图所示,已知△ABC的周长是10,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=1,则△ABC的面积是.15.(3分)如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),经过第1次变换后得到A1坐标是(a,﹣b),则经过第2021次变换后所得的点A2021坐标是.16.(3分)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3=.三.解答题(共8小题,满分72分)17.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.18.(8分)在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.19.(8分)如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求写作法).(2)连接CE,如果△ABC的周长为32,DC的长为6,求△BCE的周长.20.(8分)如图,在平面直角坐标系中,A(﹣1,2)、B(﹣4,0)、C(﹣3,﹣2).(1)在图中作出△ABC关于y轴的对称图形△A′B′C',并写出点B′的坐标;(2)请直接写出△ABC的面积;(3)若点M(m﹣1,3)与点N(﹣2,n+1)关于x轴对称,请直接写出m、n的值.21.(8分)如图,D,E分别是BC,AB的中点,AD⊥BC于D,CE⊥AB于E,AD,CE交于点F.(1)证明:AB=BC;(2)连接BF,求证:BF是∠B的平分线.22.(10分)如图,OM是∠AOB的平分线,C是OM上一点,CD⊥OA,CE⊥OB,垂足分别为D,E.F 是OM上的另一点,连接DF,EF.求证∠DFO=∠EFO.23.(10分)在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB 于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上24.(12分)【实验操作】如图①,在△ABC中,AB=AC,现将AB边沿∠ABC的平分线BD翻折,点A 落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,连接DA2.【探究发现】若点B,D,A2三点共线,则∠ADB的大小是,∠BAC的大小是,此时三条线段AD,BD,BC之间的数量关系是【应用拓展】(1)如图②,将图①中满足【实验操作】与【探究发现】的△ABC的边AB延长至E,使得AE=BC,连接CE,直接写出∠BCE的度数.(2)如图③,在△MNP中,∠MNP=60°,∠MPN=70°,Q为NP上一点,且∠NMQ=20°,求证:MN+NQ=MQ+QP.答案与解析一.选择题(共10小题,满分30分,每小题3分)1.D.2.C.3.C.4.C.5.C.6.C.7.B.8.D.9.C.10.A.二.填空题(共6小题,满分18分,每小题3分)11.(﹣2,3).12.12.13.108°或72°.14.5.15.(a,﹣b).16.58°.三.解答题(共8小题,满分72分)17.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.【答案】见解析【解析】证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS).18.(8分)在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.【答案】见解析【解析】∵在△ABC中,AB=3,AC=7,∴第三边BC的取值范围是:4<BC<10,∴符合条件的偶数是6或8,∴当BC=6时,△ABC的周长为:3+6+7=16;当BC=8时,△ABC的周长为:3+7+8=18.∴△ABC的周长为16或18.19.(8分)如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求写作法).(2)连接CE,如果△ABC的周长为32,DC的长为6,求△BCE的周长.【答案】见解析【解析】(1)作图如图所示.(2)∵DE是AC的平分线,∴DA=DC,EA=EC,又∵DC=6,∴AC=2DC=12,又∵△ABC的周长=AB+BC+AC=32,∴AB+BC=32﹣AC=32﹣12=20,∴△BEC的周长=BE+EC+BC,=BE+EA+BC=AB+BC=20.20.(8分)如图,在平面直角坐标系中,A(﹣1,2)、B(﹣4,0)、C(﹣3,﹣2).(1)在图中作出△ABC关于y轴的对称图形△A′B′C',并写出点B′的坐标;(2)请直接写出△ABC的面积;(3)若点M(m﹣1,3)与点N(﹣2,n+1)关于x轴对称,请直接写出m、n的值.【答案】见解析【解析】(1)如图,△A′B′C'即为所求,点B′的坐标为(4,0);(2)△ABC的面积为:3×4﹣2×3﹣2×4﹣1×2=12﹣3﹣4﹣1=4;(3)∵点M(m﹣1,3)与点N(﹣2,n+1)关于x轴对称,∴m﹣1=﹣2,n+1=﹣3,解得m=﹣1,n=﹣4.21.(8分)如图,D,E分别是BC,AB的中点,AD⊥BC于D,CE⊥AB于E,AD,CE交于点F.(1)证明:AB=BC;(2)连接BF,求证:BF是∠B的平分线.【答案】见解析【解析】(1)证明:如图1,连接AC,∵CE⊥AB,E为AB的中点,∴AC=BC,∵AD⊥BC,D为BC的中点,∴AB=BC;(2)证明:如图2,∵D,E分别是BC,AB的中点,AB=BC,∴BE=BD,在Rt△BEF和Rt△BDF中,,∴Rt△BEF≌Rt△BDF(HL),∴EF=FD,∵FE⊥AB,FD⊥BC,∴点F在∠EBD的平分线上,即BF是∠B的平分线.22.(10分)如图,OM是∠AOB的平分线,C是OM上一点,CD⊥OA,CE⊥OB,垂足分别为D,E.F 是OM上的另一点,连接DF,EF.求证∠DFO=∠EFO.【答案】见解析【解析】证明:∵OM是∠AOB的平分线,CD⊥OA,CE⊥OB,垂足分别为D、E,∴∠FOD=∠FOE,CD=CE,∠CDO=∠CEO=90°,又∵OC=OC,在△DFO和△EFO中,,∴△DFO≌△EFO(SAS),∴∠DFO=∠EFO.23.(10分)在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB 于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上【答案】见解析【解析】(1)解:四边形AEDF的形状是菱形;理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠F AD,∵DE∥AC,∴∠EDA=∠F AD,∴∠EAD=∠EDA,∴AE=DE,∴四边形AEDF是菱形;(2)(i)解:连接EF交AD于点Q,如图2所示:∵∠BAC=60°,四边形AEDF是菱形,∴∠EAD=30°,AD、EF相互垂直平分,△AEF是等边三角形,∴∠EAF=∠AEF=∠AFE=60°,∵AD=4,∴AQ=2,在Rt△AQE中,cos∠EAQ=,即cos30°=,∴AE===4,∴AE=AF=EF=4,在△AEG和△EFH中,,∴△AEG≌△EFH(SAS),∴∠AEG=∠EFH,∴∠ENH=∠EFH+∠GEF=∠AEG+∠GEF=60°,∴∠ENH=∠EAG,∵∠AEG=∠NEH,∴△AEG∽△NEH,∴=,∴EN•EG=EH•AE=3×4=12;(ii)证明:如图3,连接FM',∵DE∥AC,∴∠AED=180°﹣∠BAC=120°,由(1)得:△EDF是等边三角形,∴DE=DF,∠EDF=∠FED=∠EFD=60°,由旋转的性质得:∠MDM'=60°,DM=DM',∴∠EDM=∠FDM',在△EDM和△FDM'中,,∴△EDM≌△FDM'(SAS),∴∠MED=∠DFM',由(i)知,∠AEG=∠EFH,∴∠DFM'+∠EFH=∠MED+∠AEG=∠AED=120°,∴∠HFM'=∠DFM'+∠HFE+∠EFD=120°+60°=180°,∴H,F,M′三点在同一条直线上.24.(12分)【实验操作】如图①,在△ABC中,AB=AC,现将AB边沿∠ABC的平分线BD翻折,点A 落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,连接DA2.【探究发现】若点B,D,A2三点共线,则∠ADB的大小是________,∠BAC的大小是________,此时三条线段AD,BD,BC之间的数量关系是________【应用拓展】(1)如图②,将图①中满足【实验操作】与【探究发现】的△ABC的边AB延长至E,使得AE=BC,连接CE,直接写出∠BCE的度数.(2)如图③,在△MNP中,∠MNP=60°,∠MPN=70°,Q为NP上一点,且∠NMQ=20°,求证:MN+NQ=MQ+QP.【答案】见解析【解析】【探究发现】∵将AB边沿∠ABC的平分线BD翻折,点A落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,∴∠ADB=∠A1DB,∠CDA1=∠CDA2,∠ABD=∠DBC,∠DCA1=∠DCA2,AD=A1D=A2D,∵点B,D,A2三点共线,∴∠A2DC=∠ADB,∴∠ADB=∠A1DB=∠CDA1=∠CDA2,∵∠ADB+∠A1DB+∠CDA1=180°,∴∠ADB=60°,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=2∠DBC,∵∠ADB=∠DBC+∠ACB=3∠DBC=60°,∴∠DBC=20°,∴∠ACB=40°,∴∠BAC=180°﹣∠ABC﹣∠ACB=100°,∵∠DCA1=∠DCA2=40°∴∠BCA2=80°,∠BA2C=180°﹣80°﹣20°=80°,∴∠BCA2=∠BA2C,∴BC=A2B=BD+A2D=BD+AD,故答案为:60°,100°,BC=BD+AD;【应用拓展】(1)如图,将AB边沿∠ABC的平分线BD翻折,点A落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,以A2C为边作等边三角形A2CF,连接BF,由【探究发现】可知:∠ABC=∠ACB=∠A2CD=40°,A1C=A2C,A2B=BC,AB=BA1,∠BCA2=∠BA2C=80°,∴∠CBE=140°,∵AE=BC,AB=A1B,∴BE=A1C,∵△A2CF是等边三角形,∴∠A2CF=∠CA2F=60°,A2F=A2C=CF,∴A2F=CF=BE,∠BA2F=140°=∠BCF=∠EBC,且BC=BC,∴△EBC≌△FCB(SAS),∴∠FBC=∠ECB,∵A2F=BE,∠BA2F=140°=∠EBC,BC=A2B∴△EBC≌△F A2B(SAS)∴∠BCE=∠A2BF,∴∠BCE=∠A2BF=∠FBC,且∠A2BC=20°∴∠BCE=10°;(2)如图3,将△MNQ沿MN翻折,得到△MNC,延长MC交直线PN于点E,将△MPQ沿MP翻折,得到△MP A,延长MA,交直线NP于点B,延长MN使NF=NQ,连接EF,∵∠MNP=60°,∠MPN=70°,∴∠NMP=50°,且∠NMQ=20°,∴∠QMP=30°,∴∠MQP=80°,∵将△MNQ沿MN翻折,得到△MNC,将△MPQ沿MP翻折,得到△MP A,∴∠NMQ=∠NMC=20°,∠CNM=∠MNQ=60°,CN=NQ,∠QMP=∠PMA=30°,MQ=AM,QP=AP,∠QPM=∠MP A=70°,∠MQP=∠MAP=80°,∴∠APB=180°﹣∠QPM﹣∠MP A=40°,∠EMB=100°∵∠MAP=∠B+∠APB,∴∠B=40°=∠APB,∴AP=AB,∠MEB=180°﹣∠B﹣∠EMB=40°,∴∠B=∠MEB=40°,∴ME=MB=AM+AB=MQ+PQ,∵∠ENF=∠MNQ=60°=∠MNC,∴∠CNE=∠ENF=60°,且CN=NQ=NF,EN=EN,∴△EFN≌△ECN(SAS)∴∠CEN=∠FEN=40°,∴∠MEF=80°,∴∠MFE=180°﹣∠EMF﹣∠MEF=80°,∴∠MEF=∠MFE=80°,∴MF=EM,∴MN+NF=MQ+PQ,∴MN+NQ=MQ+PQ。

相关文档
最新文档