武汉市八年级上学期数学期中考试试卷

合集下载

湖北省武汉市东湖高新区2024-2025学年八年级上学期期中考试数学试卷

湖北省武汉市东湖高新区2024-2025学年八年级上学期期中考试数学试卷

2024—2025学年度第一学期期中考试八年级数学试卷时间: 120分钟满分: 120分一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑1. 下列长度的三条线段中,能组成三角形的是 ( )A. 4, 4, 9B. 5, 6, 10C. 6, 7, 13D. 1, 3, 22. 下列各式运算正确的是 ( )A.(−2a)³=−6a³B.a+a=a²C.a³⋅a²=a⁵D.a⁸÷a⁴=a²3. 下列三个图形中,具有稳定性的图形的个数是( )A. 0个B. 1个C. 2个D. 3个4. 工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M、N重合,连接OC.可知△OMC≌△ONC, OC便是∠AOB的平分线. 则△OMC≌△ONC的理由是( )A. SSSB. SASC. ASAD. AAS5. 一个多边形的每个外角都是45°,则此多边形是 ( )A. 五边形B. 六边形C. 七边形D. 八边形6. 下面四个三角形中,与图中的△ABC全等的是( )7. 如图, D 是AB 上一点, E 是AC 上一点, BE 和CD 相交于点 F, ∠A =61°,∠ACD =34°,∠ABE=19°, 则∠BFD=( )A. 44°B. 45°C. 53°D. 66°8. 下列说法正确的是 ( )A. 三角形的一个外角大于任何一个内角B. 有两边和其中一边上的高对应相等的两个三角形全等C. 各条边都相等的多边形叫做正多边形D. 三角形的三条高交于一点,这一点不一定在三角形内部9. 如图, 已知四边形ABCD 中, AB=15cm, BC=9cm, CD=10cm, ∠B=∠C, 点E 是线段BA 的三等分点(靠近B 处) .如果点P 在线段BC 上以3cm/s 的速度由点B 向点C 运动,同时,点Q 在线段 CD 上由点 C 向点D 运动.若要使得△BPE 与△CQP 全等,则点Q 的运动速度为( ) cm/s.A. 3B. 3 或 103C.203D. 3 或 20310. 我们定义:一个整式能表示成( a²+b²(a 、b 是整式) 的形式,则称这个整式为“完全式”.例如:因为M =x²+2xy +2y²=(x +y )²+y²(x 、y 是整式) ,所以M 为“完全式”.若 S =x²+4y²−8x +12y +k (x 、y 是整式,k 为常数) 为“完全式”,则k 的值为 ( )A. 23B. 24C. 25D. 26二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接写在答题卡指定位置.11. 计算:2024°= ; x(x-2)= ; a-b-c=a- ( ) .12. 在△ABC 中, ∠A: ∠B: ∠C=2:3:4, 则∠C= .13. 已知2ᵐ=64,2ⁿ=16,,m, n为正整数, 则2ᵐ⁻ⁿ=.14. 等腰三角形一腰上的高与另一腰的夹角为35°,则它的顶角的大小是 .15. 如图,在△ABC中, ∠ABC和∠ACB的平分线BE、CD相交于点O, 过点O作OM⊥BC于点 M, 则下列结论:①若∠A=50°,则∠BOC=115°;②AEEC =ABBC;③若OM=m,AB+BC+AC=n, 则S ABC=12mn;④平面内到三条直线AB、AC、BC距离相等的点有3个.正确的有 .(只填写序号)16.如图,在△ABC中,∠BAC和∠ACB的平分线相交于点O,OD⊥OA交AB于点D, OE⊥OC交 BC于点E, 连接DE, AC=7, BC=8, △BDE的周长为6, 则AB的长为 .三、解答题(共8大题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形17. (本题8分) 计算: (1)x⋅x⁵+(x³)²+(−2x²)³;(2)(12x²y−8xy²)÷4xy18. (本题8分)如图,点 B、F、C、E在一条直线上,BC=EF,AB=DE.请从下列条件①AB∥DE;②AC=DF;③AC∥DF中添加一个条件证明: ∠A=∠D.19. (本题8分) 先化简, 再求值[(2x+y)(2x−y)−(2x+3y)²]+y,其中6x+5y−2=0.20. (本题8分) 如图, AB∥CD,点E是BC的中点, AE是∠BAD的平分线.(1) 求证: DE 是∠CDA的平分线;(2) 若AB=5, AD+2CD=10, 求CD 的长.21. (本题8分)如图是由小正方形组成的9×9的网格,每个小正方形的顶点叫做格点.如图,A,B,C均为格点,用无刻度直尺在给定网格中完成画图,画图过程用虚线,画图结果用实线.(1) 在图1中, 画△PQC,使得△PQC≌△ABC;(2) 在图1中,过点C画直线m,使得直线m平分△ABC的面积;(3) 在图2中, 画△ABC的高AE;(4) 在图2中, 在高AE上作点 F, 使得∠ABF=45°.22. (本题10分) 我们在学习“整式的乘法公式”时,曾用两种不同的方法计算同一个图形的面积,得到一些代数恒等式。

湖北省武汉市2020-2021学年八年级上学期期中数学试卷

湖北省武汉市2020-2021学年八年级上学期期中数学试卷

2020-2021学年湖北省武汉市八年级上册期中数学试卷一、选择题(本大题共10小题,共30.0分)1.一个三角形的两条边长分别为3和7,则第三边的长可能是( )A. 3B. 7C. 10D. 112.下列图形一定是轴对称图形的是( )A. 平行四边形B. 正方形C. 三角形D. 梯形3. 4.一个n边形的内角和等于它的外角和,则n=( )A. 3B. 4C. 5D. 64.下列图形中有几个具有稳定性?( )A. 三个B. 四个C. 五个D. 六个5.下列各条件不能作出唯一直角三角形的是( )A. 已知两直角边B. 已知两锐角C. 已知一直角边和一锐角D. 已知斜边和一直角边6.如图,△ABC≌△DEF,则∠E的度数为( )A. 80°B. 40°C. 62°D. 38°7.如图,点P在∠AOB的平分线上,PC⊥OA于点C,PC=1,点Q是射线OB上的一个动点,线段PQ长度的最小值为a,下列说法正确的是()A. a=0B. a=0.5C. a=1D. a=28. 如图,△ABC 中,∠BAC =100°,DF ,EG 分别是AB ,AC 的垂直平分线,则∠DAE 等于( )A. 50°B. 45°C. 30°D. 20°9. 如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A ˈ处,折痕为DE.如果∠A =α,∠CEA ′=β,∠BDA ˈ=γ,那么下列式子中正确的是( )A. γ=2α+βB. γ=α+2βC. γ=α+βD. γ=180∘−α−β10. 如图,等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连接PQ 交AC 于点D ,则下列结论中不一定正确的是( )A. PD =DQB. DE =12ACC. AE =12CQD. PQ ⊥AB二、填空题(本大题共6小题,共18.0分)11. 已知点A (a ,4)关于y 轴的对称点B 的坐标为(−2,b ),则a +b =______ .12. 已知等腰三角形的一个内角是70°,则它的底角为______.13. 如图,△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC 交BC 于点D ,AD =3,则BC =______.14. AD 是△ABC 的边BC 上的中线,AB =6,AC =4,则边BC 的取值范围是______ ,中线AD 的取值范围是______ .15. 如图,∠AOB =30°,点M 、N 分别是射线OA 、OB 上的动点,OP 平分∠AOB ,且OP =6,△PMN 的周长最小值为______.16.已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC=______°.三、解答题(本大题共8小题,共72.0分)17.如图,AD=BC,AC=BD.求证:∠A=∠B.18.如图,在△ABC中,D是BC边上一点,且BA=BD,∠DAC=1∠B,∠C=50°.求2∠BAC的度数.(AB+BC+19.如图所示,O是△ABC内的一点,试说明:OA+OB+OC>12CA).20.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA−PC2|的值最大.21.已知,如图,AB=AE,∠B=∠E,BC=ED,∠CAF=∠DAF.求证:AF⊥CD.22.如图:在△ABC中,BF=CF,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.23.如图,△ABE和△ACD都是等边三角形,BD与CE相交于点O.(1)求证:△AEC≌△ABD;(2)求∠BOC的度数.24.如图:已知A(a,0)、B(0,b),且a、b满足(a−2)2+|2b−4|=0.(1)如图1,求△AOB的面积;(2)如图2,点C在线段AB上(不与A、B重合)移动,AB⊥BD,且∠COD=45°,猜想线段AC、BD、CD之间的数量关系并证明你的结论;(3)如图3,若P为x轴上异于原点O和点A的一个动点,连接PB,将线段PB绕点P顺时针旋转90°至PE,直线AE交y轴,点Q,当P点在x轴上移动时,线段BE和线段BQ中,请判断哪条线段长为定值,并求出该定值.答案1.B.2.B.3.B.4.A.5.B.6.D.7.C.8.D9.A.10.D.11.6.12.55°或70°.13.9.14.2<BC<10,1<AD<5.15.616.75°或35°.17.【答案】证明:连接CD,在△BCD和△ADC中,∴△BCD≌△ADC(SSS),∴∠A=∠B.18.解:设∠DAC=x°,则∠B=2x°,∠BDA=∠C+∠DAC=50°+x°.∵BD=BA,∴∠BAD=∠BDA=50°+x°,∵∠B+∠BAD+∠BDA=180°,即2x+50+x+50+x=180,解得x=20.∴∠BAD=∠BDA=50°+20°=70°,∴∠BAC=∠BAD+∠DAC=70°+20°=90°.19.解:∵在△ABO中,OA+OB>AB,同理可得:OA+OC>CA,OB+OC>BC,∴2(OA+OB+OC)>AB+BC+CA,(AB+BC+CA).∴OA+OB+OC>1220.解:作图如下:(1)如图,△A1B1C1.(2)如图,△A2B2C2.(3)如图,点P即为所求.21.证明:在△ABC与△AED中,AB=AE∠B=∠E,BC=ED∴△ABC≌△AED(SAS),∴AC=AD,∵∠CAF=∠DAF,即AF为∠CAD的角平分线,∴AF⊥CD.22.证明:∵BD⊥AC于D,CE⊥AB于E,∴∠BEF=∠CDF=90°,在△BEF与△CDF中,∠BEF=∠CDF,∠EFB=∠DFCBF=CF∴EF=DF,∵FE⊥AB,FD⊥AC,∴AF平分∠BAC.23.解:(1)证明:∵△ABE和△ACD是等边三角形,∴AE=AB,AD=AC,∠EAB=60°,∠DAC=60°,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△AEC和△ABD中,∴△AEC≌△ABD;(2)由(1)得△AEC≌△ABD,∴∠AEC=∠ABD,∵∠AFE=∠BFO(对顶角),在△AEF中,∠AEF+∠EFA+∠EAF=180°,在△BFO中,∠FBO+∠BFO+∠FOB=180°,∴∠EAB=∠EOB=60°,∴∠BOC=180°−∠EOB=120°.24.解:(1)∵(a−2)2+|2b−4|=0,∴a−2=0,2b−4=0,∴a=2,b=2,∴A(2,0)、B(0,2),∴OA=1,OB=1,∴△AOB的面积=12×2×2=2;(2)如图2,证明:将△AOC绕点O逆时针旋转90°得到△OBF,∵∠OAC=∠OBF=∠OBA=45°,∠DBA=90°,∴∠DBF=180°,∵∠DOC=45°,∠AOB=90°,∴∠BOD+∠AOC=45°,∴∠FOD=∠BOF+∠BOD=∠BOD+∠AOC=45°,在△ODF与△ODC中,OF=OC∠FOD=∠COD OD=OD,∴△ODF≌△ODC(SAS),∴DC=DF,DF=BD+BF,(3)解:BQ是定值,作EF⊥OA于F,在FE上截取PF=FD,∵∠BAO=∠PDF=45°,∴∠PAB=∠PDE,∠PED=135°,∴∠BPA+∠EPF=90°,∠EPF+∠PED=90°,∴∠BPA=∠PED,在△PBA与△EPD中,PF=PD∠BPA=∠PED PB=PE∴△PBA≌EPD(SAS),∴AP=ED,∴FD+ED=PF+AP,即:FE=FA,∴∠FEA=∠FAE=45°,∴∠QAO=∠EAF=∠OQA=45°,∴OA=OQ=2,∴BQ=4.。

武汉市八年级(上)期中考试数学试题

武汉市八年级(上)期中考试数学试题

A 、B 、C 、D 、 八年级上学期期中测试题(二)一、选择题(每小题3分,共36分) 1.下列平面图形中,不是..轴对称图形的是( )2.在实数-3,0.21,π2,18,0.001,0.20202中,无理数的个数为( )A 、1B 、2C 、3D 、4 3.在直角坐标系中点(-6,3)关于y 轴的对称点的坐标是( )A .(-6,3)B .(-6,-3)C .(6,3)D .(6,-3)4.若△ABC 与△DEF 全等,A 和E ;B 和D 分别是对应点,•则下列结论错误的是( ) A .BC=EF B .∠B=∠D C .∠C=∠F D .AC=EF 5.下列计算正确的是( )A .93=±B .3273-=C .42-=-D .382--= 6.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF ;②AB=DE,∠B=∠E,BC=EF ; ③∠B=∠E,BC=EF,∠C=∠F ;④AB=DE,AC=DF,∠B=∠E . 其中,能使△ABC ≌△DEF 的条件共有 (A)1组 (B)2组 (C)3组 (D)4组 7.如图,在△ABC 中,∠BAC=120°,AB 、AC 的垂直平分线分别交BC 于D 、E 则∠DAE=( )A .50°B .60°C .65°D .80°8.下列条件中,不能判定两个直角三角形全等的是( ) A .一锐角和斜边对应相等 B .两条直角边对应相等 C .斜边和一直角边对应相等 D .两个锐角对应相等 9.下列说法正确的是( )A .一个数的算术平方根等于它本身的数只有0B .一个数的平方根等于它的立方根的数只有1C .一个数的平方根等于它的倒数的数只有±1D .一个数的立方根等于它的倒数的数只有±1 10.如图所示,点A 为∠MON 的角平分线上一点,过A 任作一直线分别与∠MON 的两边交于B 、C ,P 为BC 的中点,过P 作BC 的垂线交OA 于点D 。

湖北省武汉市2021-2022学年八年级上学期期中数学试题(含答案与解析)

湖北省武汉市2021-2022学年八年级上学期期中数学试题(含答案与解析)

湖北省武汉市2021~2022年度第一学期期中考试卷八年级数学(考试时间 100分钟全卷满分 120分)学校:___________姓名:___________班级:___________考号:___________ 题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.2.(3分)等腰三角形两边的长分别为3cm和5cm,则这个三角形的周长是()A.11cm B.13cm C.11cm或13cm D.不确定3.(3分)如图,在△ABC和△ABD中,已知AC=AD,BC=BD,则能说明△ABC≌△ABD的依据是()A.SAS B.ASA C.SSS D.HL4.(3分)如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个B.2个C.3个D.4个5.(3分)为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等6.(3分)下列说法正确的有()个.①任何数的0次幂都等于1;②等腰三角形底边的中点到两腰的距离相等;③有一个角是60°的等腰三角形是等边三角形;④到三角形三条边距离相等的点是三角形三条中线的交点;⑤到三角形三个顶点距离相等的点是三角形三边垂直平分线的交点.A.1 B.2 C.3 D.47.(3分)如图,把一张长方形纸片ABCD沿EF折叠后,若∠2=40°,则∠1的度数为()A.110°B.115°C.125°D.130°8.(3分)如图,OP平分∠AOB,PC⊥OA,点D是OB上的动点,若PC=5cm,则PD的长可以是()A.2cm B.3cm C.4cm D.6cm9.(3分)点O在△ABC(非等边三角形)内,且OA=OB=OC,则点O为()A.△ABC的三条角平分线的交点B.△ABC的三条高线的交点C.△ABC的三条边的垂直平分线的交点D.△ABC的三条边上的中线的交点10.(3分)下列说法不正确的是()A.面积相等的两个三角形全等B.全等三角形对应边上的中线相等C.全等三角形的对应角的角平分线相等D.全等三角形的对应边上的高相等二.填空题(共6小题,满分18分,每小题3分)11.(3分)点P(2,3)关于y轴的对称点Q的坐标为.12.(3分)一个多边形的每一个外角为30°,那么这个多边形的边数为.13.(3分)如图,在△ABC中,AB=AC,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E,点D在运动过程中,若△ADE是等腰三角形,则∠BDA的度数为.14.(3分)如图所示,已知△ABC的周长是10,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=1,则△ABC的面积是.15.(3分)如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),经过第1次变换后得到A1坐标是(a,﹣b),则经过第2021次变换后所得的点A2021坐标是.16.(3分)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3=.三.解答题(共8小题,满分72分)17.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.18.(8分)在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.19.(8分)如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求写作法).(2)连接CE,如果△ABC的周长为32,DC的长为6,求△BCE的周长.20.(8分)如图,在平面直角坐标系中,A(﹣1,2)、B(﹣4,0)、C(﹣3,﹣2).(1)在图中作出△ABC关于y轴的对称图形△A′B′C',并写出点B′的坐标;(2)请直接写出△ABC的面积;(3)若点M(m﹣1,3)与点N(﹣2,n+1)关于x轴对称,请直接写出m、n的值.21.(8分)如图,D,E分别是BC,AB的中点,AD⊥BC于D,CE⊥AB于E,AD,CE交于点F.(1)证明:AB=BC;(2)连接BF,求证:BF是∠B的平分线.22.(10分)如图,OM是∠AOB的平分线,C是OM上一点,CD⊥OA,CE⊥OB,垂足分别为D,E.F 是OM上的另一点,连接DF,EF.求证∠DFO=∠EFO.23.(10分)在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB 于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上24.(12分)【实验操作】如图①,在△ABC中,AB=AC,现将AB边沿∠ABC的平分线BD翻折,点A 落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,连接DA2.【探究发现】若点B,D,A2三点共线,则∠ADB的大小是,∠BAC的大小是,此时三条线段AD,BD,BC之间的数量关系是【应用拓展】(1)如图②,将图①中满足【实验操作】与【探究发现】的△ABC的边AB延长至E,使得AE=BC,连接CE,直接写出∠BCE的度数.(2)如图③,在△MNP中,∠MNP=60°,∠MPN=70°,Q为NP上一点,且∠NMQ=20°,求证:MN+NQ=MQ+QP.答案与解析一.选择题(共10小题,满分30分,每小题3分)1.D.2.C.3.C.4.C.5.C.6.C.7.B.8.D.9.C.10.A.二.填空题(共6小题,满分18分,每小题3分)11.(﹣2,3).12.12.13.108°或72°.14.5.15.(a,﹣b).16.58°.三.解答题(共8小题,满分72分)17.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.【答案】见解析【解析】证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS).18.(8分)在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.【答案】见解析【解析】∵在△ABC中,AB=3,AC=7,∴第三边BC的取值范围是:4<BC<10,∴符合条件的偶数是6或8,∴当BC=6时,△ABC的周长为:3+6+7=16;当BC=8时,△ABC的周长为:3+7+8=18.∴△ABC的周长为16或18.19.(8分)如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求写作法).(2)连接CE,如果△ABC的周长为32,DC的长为6,求△BCE的周长.【答案】见解析【解析】(1)作图如图所示.(2)∵DE是AC的平分线,∴DA=DC,EA=EC,又∵DC=6,∴AC=2DC=12,又∵△ABC的周长=AB+BC+AC=32,∴AB+BC=32﹣AC=32﹣12=20,∴△BEC的周长=BE+EC+BC,=BE+EA+BC=AB+BC=20.20.(8分)如图,在平面直角坐标系中,A(﹣1,2)、B(﹣4,0)、C(﹣3,﹣2).(1)在图中作出△ABC关于y轴的对称图形△A′B′C',并写出点B′的坐标;(2)请直接写出△ABC的面积;(3)若点M(m﹣1,3)与点N(﹣2,n+1)关于x轴对称,请直接写出m、n的值.【答案】见解析【解析】(1)如图,△A′B′C'即为所求,点B′的坐标为(4,0);(2)△ABC的面积为:3×4﹣2×3﹣2×4﹣1×2=12﹣3﹣4﹣1=4;(3)∵点M(m﹣1,3)与点N(﹣2,n+1)关于x轴对称,∴m﹣1=﹣2,n+1=﹣3,解得m=﹣1,n=﹣4.21.(8分)如图,D,E分别是BC,AB的中点,AD⊥BC于D,CE⊥AB于E,AD,CE交于点F.(1)证明:AB=BC;(2)连接BF,求证:BF是∠B的平分线.【答案】见解析【解析】(1)证明:如图1,连接AC,∵CE⊥AB,E为AB的中点,∴AC=BC,∵AD⊥BC,D为BC的中点,∴AB=BC;(2)证明:如图2,∵D,E分别是BC,AB的中点,AB=BC,∴BE=BD,在Rt△BEF和Rt△BDF中,,∴Rt△BEF≌Rt△BDF(HL),∴EF=FD,∵FE⊥AB,FD⊥BC,∴点F在∠EBD的平分线上,即BF是∠B的平分线.22.(10分)如图,OM是∠AOB的平分线,C是OM上一点,CD⊥OA,CE⊥OB,垂足分别为D,E.F 是OM上的另一点,连接DF,EF.求证∠DFO=∠EFO.【答案】见解析【解析】证明:∵OM是∠AOB的平分线,CD⊥OA,CE⊥OB,垂足分别为D、E,∴∠FOD=∠FOE,CD=CE,∠CDO=∠CEO=90°,又∵OC=OC,在△DFO和△EFO中,,∴△DFO≌△EFO(SAS),∴∠DFO=∠EFO.23.(10分)在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB 于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上【答案】见解析【解析】(1)解:四边形AEDF的形状是菱形;理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠F AD,∵DE∥AC,∴∠EDA=∠F AD,∴∠EAD=∠EDA,∴AE=DE,∴四边形AEDF是菱形;(2)(i)解:连接EF交AD于点Q,如图2所示:∵∠BAC=60°,四边形AEDF是菱形,∴∠EAD=30°,AD、EF相互垂直平分,△AEF是等边三角形,∴∠EAF=∠AEF=∠AFE=60°,∵AD=4,∴AQ=2,在Rt△AQE中,cos∠EAQ=,即cos30°=,∴AE===4,∴AE=AF=EF=4,在△AEG和△EFH中,,∴△AEG≌△EFH(SAS),∴∠AEG=∠EFH,∴∠ENH=∠EFH+∠GEF=∠AEG+∠GEF=60°,∴∠ENH=∠EAG,∵∠AEG=∠NEH,∴△AEG∽△NEH,∴=,∴EN•EG=EH•AE=3×4=12;(ii)证明:如图3,连接FM',∵DE∥AC,∴∠AED=180°﹣∠BAC=120°,由(1)得:△EDF是等边三角形,∴DE=DF,∠EDF=∠FED=∠EFD=60°,由旋转的性质得:∠MDM'=60°,DM=DM',∴∠EDM=∠FDM',在△EDM和△FDM'中,,∴△EDM≌△FDM'(SAS),∴∠MED=∠DFM',由(i)知,∠AEG=∠EFH,∴∠DFM'+∠EFH=∠MED+∠AEG=∠AED=120°,∴∠HFM'=∠DFM'+∠HFE+∠EFD=120°+60°=180°,∴H,F,M′三点在同一条直线上.24.(12分)【实验操作】如图①,在△ABC中,AB=AC,现将AB边沿∠ABC的平分线BD翻折,点A 落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,连接DA2.【探究发现】若点B,D,A2三点共线,则∠ADB的大小是________,∠BAC的大小是________,此时三条线段AD,BD,BC之间的数量关系是________【应用拓展】(1)如图②,将图①中满足【实验操作】与【探究发现】的△ABC的边AB延长至E,使得AE=BC,连接CE,直接写出∠BCE的度数.(2)如图③,在△MNP中,∠MNP=60°,∠MPN=70°,Q为NP上一点,且∠NMQ=20°,求证:MN+NQ=MQ+QP.【答案】见解析【解析】【探究发现】∵将AB边沿∠ABC的平分线BD翻折,点A落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,∴∠ADB=∠A1DB,∠CDA1=∠CDA2,∠ABD=∠DBC,∠DCA1=∠DCA2,AD=A1D=A2D,∵点B,D,A2三点共线,∴∠A2DC=∠ADB,∴∠ADB=∠A1DB=∠CDA1=∠CDA2,∵∠ADB+∠A1DB+∠CDA1=180°,∴∠ADB=60°,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=2∠DBC,∵∠ADB=∠DBC+∠ACB=3∠DBC=60°,∴∠DBC=20°,∴∠ACB=40°,∴∠BAC=180°﹣∠ABC﹣∠ACB=100°,∵∠DCA1=∠DCA2=40°∴∠BCA2=80°,∠BA2C=180°﹣80°﹣20°=80°,∴∠BCA2=∠BA2C,∴BC=A2B=BD+A2D=BD+AD,故答案为:60°,100°,BC=BD+AD;【应用拓展】(1)如图,将AB边沿∠ABC的平分线BD翻折,点A落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,以A2C为边作等边三角形A2CF,连接BF,由【探究发现】可知:∠ABC=∠ACB=∠A2CD=40°,A1C=A2C,A2B=BC,AB=BA1,∠BCA2=∠BA2C=80°,∴∠CBE=140°,∵AE=BC,AB=A1B,∴BE=A1C,∵△A2CF是等边三角形,∴∠A2CF=∠CA2F=60°,A2F=A2C=CF,∴A2F=CF=BE,∠BA2F=140°=∠BCF=∠EBC,且BC=BC,∴△EBC≌△FCB(SAS),∴∠FBC=∠ECB,∵A2F=BE,∠BA2F=140°=∠EBC,BC=A2B∴△EBC≌△F A2B(SAS)∴∠BCE=∠A2BF,∴∠BCE=∠A2BF=∠FBC,且∠A2BC=20°∴∠BCE=10°;(2)如图3,将△MNQ沿MN翻折,得到△MNC,延长MC交直线PN于点E,将△MPQ沿MP翻折,得到△MP A,延长MA,交直线NP于点B,延长MN使NF=NQ,连接EF,∵∠MNP=60°,∠MPN=70°,∴∠NMP=50°,且∠NMQ=20°,∴∠QMP=30°,∴∠MQP=80°,∵将△MNQ沿MN翻折,得到△MNC,将△MPQ沿MP翻折,得到△MP A,∴∠NMQ=∠NMC=20°,∠CNM=∠MNQ=60°,CN=NQ,∠QMP=∠PMA=30°,MQ=AM,QP=AP,∠QPM=∠MP A=70°,∠MQP=∠MAP=80°,∴∠APB=180°﹣∠QPM﹣∠MP A=40°,∠EMB=100°∵∠MAP=∠B+∠APB,∴∠B=40°=∠APB,∴AP=AB,∠MEB=180°﹣∠B﹣∠EMB=40°,∴∠B=∠MEB=40°,∴ME=MB=AM+AB=MQ+PQ,∵∠ENF=∠MNQ=60°=∠MNC,∴∠CNE=∠ENF=60°,且CN=NQ=NF,EN=EN,∴△EFN≌△ECN(SAS)∴∠CEN=∠FEN=40°,∴∠MEF=80°,∴∠MFE=180°﹣∠EMF﹣∠MEF=80°,∴∠MEF=∠MFE=80°,∴MF=EM,∴MN+NF=MQ+PQ,∴MN+NQ=MQ+PQ。

2020-2021学年湖北省武汉市八年级(上)期中数学试卷

2020-2021学年湖北省武汉市八年级(上)期中数学试卷

2020-2021学年湖北省武汉市八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.有4cm和6cm的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,下列长度的小棒可选的是()A. 1cmB. 2cmC. 7cmD. 10cm2.下列图案中,是轴对称图形的是()A. B. C. D.3.已知在△ABC中,∠C=∠A+∠B,则△ABC的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定4.用三个正多边形镶嵌成一个平面时,若前两种是正方形和正六边形,则第三种是()A. 正十二边形B. 正十边形C. 正八边形D. 正三角形5.如图所示,△ABC≌△BDA,如果AB=6cm,BD=7cm,AD=4cm,那么BC的长为()A. 6cmB. 4cmC. 7cmD. 不能确定6.7.正多边形的一个内角等于144°,则该多边形是正()边形.A. 8B. 9C. 10D. 117.如果两个三角形有两边及一角对应相等,那么这两个三角形()A. 一定全等B. 一定不全等C. 不一定全等D. 面积相等8.如图,在Rt△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°,得到△OA1B1,求∠A1OB的度数()A. 100°B. 70°C. 40°D. 30°9.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD.其中正确的是()A. ①②④B. ①②③C. ②③④D. ①③10.如图,在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD、DE、BE,则下列结论:①∠ECA=165°,②BE=BC;③AD=BE;④CD=BD.其中正确的是()A. ①②③B. ①②④C. ①③④D. ①②③④二、填空题(本大题共6小题,共18.0分)11.△ABC中,∠A=80°,∠B=3∠C,则∠B=______ °.12.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是______ cm.13.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,△ABC的面积是7,DE=2,AB=4,则AC长是______.14.如图,平面直角坐标系中有一正方形OABC,点C的坐标为(−2,−1),则点A坐标为______,点B坐标为______.15.如图,在△ABC中,AB=AC,∠BAC=90°,点E在边AC上,连接BE,过点A作AD⊥BE于点D,连接DC,若AD=4,则△ADC的面积为______.16.等边三角形ABC的边长为6,点E在AC边上从点A向点C运动,同时点F在BC边上从点C向点B运动,速度相同,连接AF,BE相交于点P.当点E从点A运动到点C时,则点P经过的路径长______ .三、解答题(本大题共8小题,共72.0分)17.已知等腰三角形的一边长等于5,另一边长等于9,求这个三角形的周长.18.如图,已知AC、BD相交于点O,AD=BC,AC=BD,求证:OA=OB.19.如图,在△ABC中,AB=AC,∠BAC=80°,D是AC上一点,E是BC延长线上一点,连接BD,DE,若∠ABD=20°,BD=DE,求∠CDE的度数.20.如图,△ABC中,AB=AC,∠DBC=∠DCB,求证:直线AD是线段BC的垂直平分线.21.四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F.求证:(1)△CBE≌△CDF;(2)AB+DF=AF.22.等腰Rt△ABC中,∠ACB=90°,AC=BC,点G是BC上一点,CF⊥AG于E,BF⊥CF,D为AB中点,连接DF.(1)求证:△AEC≌△CFB;(2)求证:EF=√2DF.23.如图,在△ABC中,∠ACB=60°,点D在射线BC上,AB=AD.(1)如图1,求证:BC+CD=AC;(2)如图2,取AB的中点F,延长CA至点E,连接BE、DE、EF,使得∠ABE=∠CAD,EF=AE,求证:∠BEF=2∠ABD;(3)如图3,在(2)的条件下,FG⊥BE于点G,FG=4,EF=374,求△AED的面积.24.在平面直角坐标系中,点A、B分别在x轴、y轴上,直线l是第一、三象限的夹角平分线,P为直线l上的一点,且AP⊥AB,AP=AB(1)如图1,若点A坐标为(−1,0),试求点B的坐标(2)如图2,点Q位于点P的右侧,且PQ//x轴,连接AQ,E为y轴正半轴上一点,且AE=AQ,请探究线段OE、PQ、OB三者之间的数量关系?(3)如图3,在(1)的条件下,M为线段PB上的一点,且M(34 , 14),试求∠PAO+∠MAP的度数.答案和解析1.【答案】C【解析】解:设第三根小棒的长度为xcm,由题意得:6−4<x<6+4,解得:2<x<10,故选:C.根据三角形的三边关系可得6−4<第三根小棒的长度<6+4,再解不等式可得答案.此题主要考查了三角形的三边关系,关键是掌握三边关系定理:三角形两边之和大于第三边.角形的两边差小于第三边.2.【答案】B【解析】【分析】此题主要考查了轴对称图形,关键是正确确定对称轴,图形两部分沿对称轴折叠后可重合.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A.不是轴对称图形,故此选项错误;B.是轴对称图形,故此选项正确;C.不是轴对称图形,故此选项错误;D.不是轴对称图形,故此选项错误.故选B.3.【答案】B【解析】【分析】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.根据在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°可求出∠C的度数,进而得出结论.【解答】解:∵在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,解得∠C=90°,∴△ABC是直角三角形.故选B.4.【答案】A【解析】【分析】分别求出各个正多边形的每个内角的度数,再利用镶嵌应符合一个内角度数能整除360即可作出判断.本题考查正多边形的镶嵌问题.【解答】解:正方形的每个内角是90°,正六边形每个内角是180°−360°÷6=120°,∵360°−90°−120°=150°,∴第三种正多边形的每个内角是150°又正十二边形每个内角是180°−360°÷12=150°,故第三种正多边形是正十二边形.故选A.5.【答案】B【解析】解:∵△ABC≌△BDA,∴BC=AD,∵AD=4cm,∴BC=4cm,故选B.根据全等三角形的性质得出BC=AD,代入求出即可.本题考查了全等三角形的性质的应用,解此题的关键是能根据全等三角形的性质得出BC=AD,注意:全等三角形的对应边相等,对应角相等.6.【答案】C【解析】试题分析:设正多边形是n边形,由题意得(n−2)×180°=144°n.解得n=10,故选C.考点:多边形内角与外角.7.【答案】C【解析】【分析】本题主要考查对全等三角形的判定的理解和掌握,能熟练地运用全等三角形的判定定理进行推理是解此题的关键.根据全等三角形的判定定理判断即可.【解答】解:非直角三角形的两个三角形有两边及一角对应相等,这一角必须是两边的夹角对应相等,才能根据SAS,判断两个三角形全等,否则不能,例如若AB=DE,AC=DF,∠A=∠F,而△ABC和△DEF不一定全等,面积也不一定相等,故选:C.8.【答案】B【解析】解:∠BOB1=100°,∠AOB=30°,则∠A1OB=∠BOB1−∠AOB=100°−30°=70°.故选B.根据∠A1OB=∠BOB1−∠AOB即可求解.本题考查了图形的旋转,正确确定旋转角是关键.9.【答案】A【解析】【分析】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.也考查了三角形全等的判定与性质.过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠BEC=90°,即可判断出正确的结论.∠AED=∠AEF+∠FED=12【解答】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB,∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∠BEC=90°,所以①正确.∴∠AED=∠AEF+∠FED=12故选A.10.【答案】D【解析】解:∵∠CAD=30°,AC=AD,∴∠ACD=∠ADC=75°,∵CE⊥CD,∴∠ECA=165°,①正确;∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,{AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE,∴BE=AD,③正确;∵BC=AD,∴BE=BC,②正确;过D作DM⊥AC于M,过D作DN⊥BC于N.∵∠CAD=30°,∴DM=12AD=12BC,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠NCD=90°−∠ACD=15°,∠MDC=90°−∠ACD=15°,在△CMD和△DNC中,{∠CMD=∠CND ∠MDC=∠NCD CD=CD,∴△CMD≌△DNC,∴CN=DM=12AC=12BC,∴CN=BN.∵DN⊥BC,∴BD=CD.∴④正确,故选:D.①根据:∠CAD=30°,AC=BC=AD,CE⊥CD,利用等腰三角形的性质和三角形内角和定理即可求出∠ECA=165°,从而得证结论正确;③根据CE⊥CD,∠ACB=90°,AC=BC,利用SAS求证△ACD≌△BCE即可得出结论;②由③的结论,等量代换即可;④过D作DM⊥AC于M,过D作DN⊥BC于N.由∠CAD=30°,可得DM=12BC,求证△CMD≌△DNC,可得CN=DM=12AC=12BC,从而得出CN=BN.然后即可得出结论.此题主要考查等腰直角三角形,全等三角形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形等知识点的理解和掌握.11.【答案】75【解析】解:∵∠A=80°,∴∠B+∠C=180°−80°=100°,∵∠B=3∠C,∴3∠C+∠C=100°,∠C=25°,∴∠B=75°.故答案为:75.根据三角形内角和定理可得∠B+∠C=180°−80°=100°,然后再把∠B=3∠C代入可得∠C的度数,进而可得∠B的度数.此题主要考查了三角形内角和定理,关键是掌握三角形内角和为180°.12.【答案】17【解析】【分析】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17cm.故答案为:17.13.【答案】3【解析】【分析】本题考查了角平分线的性质和三角形的面积公式.利用角平分线上的点到角两边的距离相等是解题的关键,过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DE=DH,再根据S△ABC=S△ABD+S△ACD可得AC的长.【解答】解:如图,过点D作DH⊥AC于H,∵DE⊥AB于点E,AD是△ABC中∠BAC的角平分线,∴DE=DH,∵S△ABC=S△ABD+S△ACD,即12×AB×DE+12×DH×AC=7,∴12×4×2+12×2×AC=7,解得AC=3.故答案为3.14.【答案】(−1,2);(−3,1)【解析】解:如图,过点A作AD⊥y轴于D,过点C作CE⊥x轴,过点B作BF⊥CE交CE的延长线于F,∵C(−2,−1),∴OE=2,CE=1,∵四边形OABC是正方形,∴OA=OC=BC,易求∠AOD=∠COE=∠BCF,又∵∠ODA=∠OEC=∠F=90°,∴△AOD≌△COE≌△BCF,∴AD=CE=BF=1,OD=OE=CF=2,∴点A的坐标为(−1,2),EF=2−1=1,点B到y轴的距离为1+2=3,∴点B的坐标为(−3,1).故答案为:(−1,2);(−3,1).过点A作AD⊥y轴于D,过点C作CE⊥x轴,过点B作BF⊥CE交CE的延长线于F,根据点C的坐标求出OE、CE,再根据正方形的性质可得OA=OC=BC,再求出∠AOD=∠COE=∠BCF,然后求出△AOD、△COE、△BCF全等,根据全等三角形对应边相等可得AD=CE=BF,OD=OE=CF,然后求解即可.本题考查了正方形的性质,全等三角形的判定与性质,坐标与图形性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形.15.【答案】8【解析】解:如图,作CH⊥AD交AD的延长线于H.∵AD⊥BE,CH⊥AH,∴∠ADB=∠H=∠BAC=90°,∴∠ABD+∠BAD=90°,∠BAD+∠CAH=90°,∴∠CAH=∠ABD,∵AB=AC,∴△ABD≌△CAH(AAS),∴AD=CH=4,×4×4=8.∴S△ADC=12故答案为8.如图,作CH⊥AD交AD的延长线于H.只要证明△ABD≌△CAH(AAS),推出AD=CH=4,即可解决问题;本题考查全等三角形的判定和性质、等腰直角三角形的性质、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.16.【答案】4√33π【解析】解:如图,∵△ABC是等边三角形,∴AB=AC=BC=6,∠BAC=∠C=60°.∵点E在AC边上从点A向点C运动,同时点F在BC边上从点C向点B运动,速度相同∴AE=CF.点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形.且∠ABP=∠BAP=30°,∴∠AOB=120°,∵AB=6,∴OA=2√3,∴点P的路径是:nπr180=120π⋅2√3180=4√33π.故答案为:4√3π3.点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,由弧线长公式就可以得出结论.本题考查了等边三角形的性质、圆周角定理、弧线长公式的运用.17.【答案】解:若底边长为5,腰长为9,则它的周长为:5+9+9=23;若底边长为9,腰长为5,则它的周长为:9+5+5=19.故它的周长为23或19.【解析】此题考查了等腰三角形的性质以及三角形三边关系有关知识,分别从若底边长为5,腰长为9与若底边长为9,腰长为5,去分析求解即可求得答案.18.【答案】证明:在△ABD和△BAC中,∵{AD=BC BD=AC AB=BA,∴△ABD≌△BAC(SSS),∴∠ABD=∠BAC,∴OA=OB.【解析】【试题解析】本题考查全等三角形的判定和性质,以及等腰三角形的判定,掌握全等三角形的判定方法是解题关键.首先利用SSS证得△ABD≌△BAC,根据全等三角形的性质得出∠ABD=∠BAC,再根据等腰三角形的判定即可得证.19.【答案】解:∵在△ABC中,AB=AC,∠BAC=80°,(180°−80°)=50°,∴∠ABC=∠ACB=12∵∠ABD=20°,∴∠DBC=∠ABC−∠ABD=30°.∵BD=DE,∴∠E=∠DBC=30°,∴∠CDE=∠ACB−∠E=20°.【解析】由等腰三角形的性质以及三角形内角和定理可得∠ABC=∠ACB=50°,那么∠DBC=∠ABC−∠ABD=30°.因为△BDE是等腰三角形,所以∠E=∠DBC=30°,然后根据三角形外角的性质即可求出∠CDE的度数.本题考查了等腰三角形的性质、三角形内角和定理以及三角形外角的性质,求出∠ACB与∠E的度数是解题关键.20.【答案】证明:∵∠DBC=∠DCB,∴DB=DC,∴点D在线段BC的垂直平分线上,∵AB=AC,∴点A在线段BC的垂直平分线上,∴直线AD是线段BC的垂直平分线.【解析】欲证明直线AD是线段BC的垂直平分线,只要证明点A、点D在线段BC的垂直平分线上即可.本题考查线段的垂直平分线的定义,解题的关键是知道一条直线上有两个点在线段BC 的垂直平分线上,那么这条直线是线段BC的垂直平分线,属于中考常考题型.21.【答案】证明:(1)∵AC平分∠BAD,CE⊥AB,CF⊥AD,∴CE=CF.∵∠ABC+∠D=180°,∠ABC+∠EBC=180°,∴∠EBC=∠D,∵∠CEB=∠CFD=90°,∴△CBE≌△CDF.(2)证明:∵CE=CF,AC=AC,∴Rt△ACE≌Rt△ACF.∴AE=AF,∴AB+DF=AB+BE=AE=AF.【解析】本题考查了全等三角形的判定和全等三角形的性质.(1)根据角平分线的性质可得到CE=CF,根据余角的性质可得到∠EBC=∠D,已知CE⊥AB,CF⊥AD,从而利用AAS即可判定△CBE≌△CDF.(2)已知EC=CF,AC=AC,则根据HL判定△ACE≌△ACF得AE=AF,最后证得AB+ DF=AF即可.22.【答案】证明:(1)如图,∵CF⊥AG,BF⊥CF,∴∠BFC=∠CEA=90°,∴∠2+∠3=90°,又∵∠ACB=90°,∴∠1+∠3=90°,∴∠1=∠2,∴在△AEC和△CFB中,{∠BFC=∠CEA∠1=∠2BC=AC,∴△AEC≌△CFB(AAS);(2)连接ED,CD,如图所示:∵D为AB的中点,∴CD=BD=AD,∠CDA=90°,∴∠BCD=∠CBD=45°,∴∠DCF=45°−∠1,∵∠4=∠CAB−∠2=45°−∠2,由(1)知:∠1=∠2,∴∠4=∠DCF,由(1)知:△AEC≌△CFB,∴FC=AE,∴△AED≌△CFD(SAS),∴ED=FD,∠FDC=∠EDA,∴∠FDE=∠CDA=90°,即△FDE是等腰直角三角形,∴EF=√2DF.【解析】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造全等三角形是解题的关键.(1)根据垂直的定义得到∠BCF=∠CAE=90°−∠ACE,根据全等三角形的判定即可得到结论;(2)连接CD,DE,根据等腰直角三角形的性质得到CD=BD,∠CDB=90°,根据余角的性质得到∠FBD=∠DCE,由全等三角形的性质得到AE=CF,CE=BF,推出△BFD≌△CDE,由全等三角形的性质得到DF=DE,∠FDB=∠EDC,证得△DEF是等腰直角三角形,即可得到结论.23.【答案】(1)证明:延长DB至E,使BE=CD,连接AE,∵AB=AD,∴∠ABD=∠ADB,∵∠ABE+∠ABD=180°,∠ADC+∠ADB=180°,∴∠ABE=∠ADC,在△ABE和△ADC中,{BE=DC∠ABE=∠ADC AB=AD,∴△ABE≌△ADC,∴∠C=∠E=60°,∴△AEC为等边三角形,∴AC=CE,∵BC+BE=CE,∴BC+CD=AC;(2)证明:∵AB=AD,∴∠ABD=∠ADB,∵∠CAD+∠ADB=∠ACB=60°,∠CAD=∠ABE,∴∠ABE+∠ABD=∠CAD+∠ADB=60°,∴△BEC为等边三角形,过点A作AN//BC交EB于N,∴△ENA为等边三角形,∠NAB=∠ABD,∴AN=AE,∴BN=AC,∴∠NAB=∠ADC,在△BNA和△ACD中,{∠ANB=∠DCA ∠NAB=∠CDA BN=AC,∴△BNA≌△ACD,∴AN=CD,∴CD=AE,延长EF至M使得EF=FM,连接BM,∴△AEF≌△BMF,∴AE=BM,AE//BM,∴BM=CD,∠MBC=∠ECB=60°,∴∠EBM=∠EBC+∠MBC=120°,又∵∠ECD=∠EBM=120°,∴△BEM≌△CED,∴∠BEF=∠CED,∵EF=AE,∴∠EFA=∠EAF,∴∠BEF+∠EBF=∠ACB+∠ABD,∴∠BEF+60°−∠ABD=∠ABD+60°,∴∠BEF=2∠ABD∠CED=2∠ABD;(3)解:由(2)得,△EMD是等边三角形,∴DE=2EF=2×374=372,过点A作AP⊥DE于P,由(2)可证△EFG≌△EAP,∴AP=FG=4,∴S△AED=12DE×AP=12×372×4=37.【解析】(1)延长DB至E,使BE=CD,连接AE,证明△ABE≌△ADC,得到△AEC为等边三角形,根据等边三角形的性质证明;(2)过点A作AN//BC交EB于N,延长EF至M使得EF=FM,连接BM,证明△BNA≌△ACD,△BEM≌△CED,根据全等三角形的性质证明;(3)利用(2)的结论,根据三角形的面积公式计算即可.本题考查的是三角形的知识的综合运用,正确全等三角形的判定定理和性质定理、等边三角形的判定和性质是解题的关键.24.【答案】解:(1)如图1中,作PH⊥x轴于H.∵A(−1,0),∴OA=1,∵PA⊥AB,∴∠PAB=∠AOB=∠PHA=90°,∴∠PAH+∠APH=90°,∠PAH+∠OAB=90°,∴∠APH=∠OAB,∵AP=AB,∴△APH≌△BAO(AAS),∴PH=OA=1,AH=OB,∵直线l是第一、三象限的夹角平分线,∴∠POH=45°,△POH是等腰直角三角形,∴OH=OP=1,H=OA+OH=1+1=2,∴OB=AH=2,∴B(0,−2).(2)结论:OE−OB=PQ.理由:如图2中,作PH⊥x轴于H,QT⊥x轴于T,在OE上截取OK,使得OK=OB,连接AK.∵PQ//x轴,PH⊥x轴,QT⊥x轴,∴四边形PQTH是矩形,∴QT=PH=OA,PQ=TH,∵AE=AQ,∠AOE=∠ATQ=90°,∴△AOE≌△QTA(HL),∴EO=AT,∵OK=OB=AH,∴EK=HT=PQ,∴OE−OB=OE−OK=AT−AH=HT=PQ.(3)如图3中,设AM交直线l于J,直线l交AB于T.∵A(−1,0),M(34,14),∴直线AM 的解析式为y =17x +17,由{y =x y =17x +17,解得{x =16y =16,可得J(16,16), ∵A(−1,0),B(0,−2),∴直线AB 的解析式为y =−2x −2,由{y =−2x −2y =x ,解得{x =−23y =−23,可得T(−23,−23), ∴JA =√(16+1)2+(16)2=5√26,JT =√(16+23)2+(16+23)2=5√26, ∴JA =JT ,∴∠JQT =∠JTA ,∵∠JAT +∠PAM =90°,∠APO +∠JTA =90°,∴∠PAM =∠APO ,∵∠AOT =45°=∠APO +∠PAO ,∴∠PAO +∠MAP =45°.【解析】(1)如图1中,作PH ⊥x 轴于H.证明△APH≌△BAO(AAS)即可解决问题.(2)结论:OE −OB =PQ.如图2中,作PH ⊥x 轴于H ,QT ⊥x 轴于T ,在OE 上截取OK ,使得OK =OB ,连接AK.证明△AOE≌△QTA(HL)即可解决问题.(3)如图3中,设AM 交直线l 于J ,直线l 交AB 于T.想办法证明JA =JT ,推出∠JQT =∠JTA ,推出∠PAM =∠APO 即可解决问题.本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理,一次函数的性质等知识,解题的关键是学会构建一次函数,利用方程组确定交点坐标,属于中考压轴题.。

【新精品卷】湖北省武汉市八中八年级上册期中考试数学试卷(内含答案详析)

【新精品卷】湖北省武汉市八中八年级上册期中考试数学试卷(内含答案详析)

人教版湖北省武汉市八中八年级数学上册期中考试试卷(考试时间共分钟,满分分)准考证号:__________ 姓名:________ 座位号:_________【请考生认真审题,争取会做的不要错,不会做的冷静思考】一、选择题(每小题3分,共30分)1.下列图形中,是轴对称图形的是()A. B. C. D.2.如果三角形的两边长分别为6和8,第三边长为偶数,那么这个三角形的周长可以是()A.16B.17C.24D.253.如图,在六边形ABCDEF中,∠A+∠F+∠E+∠D=,∠ABC的平分线与∠BCD的平分线交于点P,则∠P度数为().A. B. C. D.4.下面设计的原理不是利用三角形稳定性的是()A.三角形的房架B.自行车的三角形车架C.斜钉一根木条的长方形窗框D.由四边形组成的伸缩门5.如图,已知AB=AC,AB=5,BC=3,以AB两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M、N,连接MN与AC相交于点D,则△BDC的周长为()A.8B.10C.11D.136.如图,DE∥GF,A在DE上,C在GF上△ABC为等边三角形,其中∠EAC=80°,则∠BCG度数为()A.20°B.10°C.25°D.30°7.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;其中正确的有()A.1个B.2个C.3个D.4个8.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在ΔABC外的点处,若∠1=20°,则∠2的度数为()A.80°B.90°C.100°D.110°9.如图,已知:∠MON=30°,点A1、A2、A3、…在射线ON上,点B1、B2、B3、…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4、…均为等边三角形,若OA1=1,则△A9B9A10的边长为()A.32B.64C.128D.25610.如图,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是6cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°二、填空题(每小题3分,共18分)11.如图,∠A+∠B+∠C+∠D+∠E+∠F=________.12.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有________对全等三角形.13.如图,△ABC中,AB=BC,M、N为BC边上的两点,并且∠BAM=∠CAN,MN=AN,则∠MAC=________度.14.如图,△ABC中,DE是边AB的垂直平分线,AB=6,BC=8,AC=5,则△ADC的周长是________.15.如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=________,△APE的面积等于6.16.如图,等腰三角形ABC底边BC的长为4 cm,面积是12 cm2,腰AB的垂直平分线EF交AG 于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为________cm.三、解答题(本大题8小题,共52分)17.如图,在中,,,BD是的平分线,求的度数.18.如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:BD=CE.19.尺规作图:作点A关于直线l的对称点A'.已知:直线l和l外一点A.求作:点A关于l的对称点A'.作法:①在l上任取一点P,以点P为圆心,PA长为半径作孤,交l于点B;②以点B为圆心,AB长为半径作弧,交弧AB于点A'.点A'就是所求作的对称点.由步骤①,得________由步骤②,得________将横线上的内容填写完整,并说明点A与A'关于直线l对称的理由________.20.一个等腰三角形的周长为25cm.(1)已知腰长是底边长的2倍,求各边的长;(2)已知其中一边的长为6cm.求其它两边的长.21.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)若△ABC的面积为40,BD=5,则E到BC边的距离为多少.22.如图,四边形ABCD中,∠A=∠B=90度,E是AB上一点,且AE=BC,∠1=∠2(1)Rt△ADE与Rt△BEC全等吗?请说明理由;(2)AB=AD+BC(3)△CDE是不是直角三角形?请说明理由.23.如图(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.24.己知:为等边三角形,点E为射线AC上一点,点D为射线CB上一点,.(1)如图1,当E在AC的延长线上且时,AD是的中线吗?请说明理由;(2)如图2,当E在AC的延长线上时,等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系.人教版湖北省武汉市八中八年级数学上册期中考试试卷一、选择题(30分)1.解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意.故答案为:C.2.解:设第三边为acm,根据三角形的三边关系知,2<a<14.由于第三边的长为偶数,则a可以为4cm或6cm或8cm或10cm或12cm.∴三角形的周长是6+8+4=18cm或6+8+6=20cm或6+8+8=22cm或6+8+10=24cm或6+8+12=26cm.故答案为:C.3.解:六边形内角和=(6-4)×180°=720°,∴∠B+∠C=720°-∠A+∠F+∠E+∠D=720°-,∵∠ABC的平分线与∠BCD的平分线交于点P,∴∠PBC+∠PCB=(720°-)=360°-,∴∠P=180°-(∠PBC+∠PCB)=180°-(360°-)=-180°,故答案为:A.4.解:伸缩门是利用了四边形的不稳定性,A、B、D都是利用了三角形的稳定性,故答案为:D。

湖北省武汉市 八年级(上)期中数学试卷

湖北省武汉市 八年级(上)期中数学试卷

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图形中不是轴对称图形的是()A. B. C. D.2.下列线段能构成三角形的是()A. 2,2,4B. 3,4,5C. 1,2,3D. 2,3,63.已知一个多边形的内角和是900°,则这个多边形是()A. 五边形B. 六边形C. 七边形D. 八边形4.下列图形中有稳定性的是()A. 正方形B. 长方形C. 直角三角形D. 平行四边形5.根据下列条件不能唯一画出△ABC的是()A. AB=5,BC=6,AC=7B. AB=5,BC=6,∠B=45∘C. AB=5,AC=4,∠C=90∘D. AB=5,AC=4,∠C=45∘6.在△ABC中,2(∠A+∠B)=3∠C,则∠C的补角等于()A. 36∘B. 72∘C. 108∘D. 144∘7.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A. 1cm<AB<4cmB. 5cm<AB<10cmC. 4cm<AB<8cmD. 4cm<AB<10cm8.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A. 31B. 46C. 51D. 669.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()A. 2个B. 4个C. 6个D. 8个10.如图,在△ABC中,点D是BC上的一点,已知∠DAC=30°,∠DAB=75°,CE平分∠ACB交AB于点E,连接DE,则∠DEC=()A. 10∘B. 15∘C. 20∘D. 25∘二、填空题(本大题共6小题,共18.0分)11.点P(-1,2)关于y轴对称的点的坐标是______.12.一个凸多边形的每个内角都等于140°,那么从这个多边形的一个顶点出发共有______条对角线.13.已知:△ABC中,∠A=50°,△ABC的高BD、CE所在的直线交于点F,则∠BFC=______度.14.已知如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB是______度.15.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管______根.16.△ABC中,AC=5,∠BAC=45°,且∠CAD=2∠DAB,以BC为直角边,以B为直角顶点向三角形外作等腰直角△BCD,则AD的长为______.三、解答题(本大题共8小题,共72.0分)17.△ABC中,∠B=∠A+10°,∠C=∠B+10°,求△ABC的各内角的度数.18.如图,点B,E,F,C在一条直线上,AB=DC,BE=CF,∠B=∠C.求证:∠A=∠D.19.如图,∠AOB=30°,OC平分∠AOB,过点C作CD⊥OA于点D,过点C作CE∥OA交OB于点E.若CE=20cm,求CD的长.20.如图,方格纸中每个小正方形的边长都是1,△ABC在平面直角坐标系中的位置如图所示(1)将△ABC向右平移4个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点C1的坐标______;(2)作出△A1B1C1关于x轴的对称图形△A2B2C2,并直接写出点A2的坐标______;(3)在第二象限5×5的网格中作△ABC的轴对称图形,要求各顶点都在格点上,共能作______个.21.已知AD为△ABC的内角平分线,AB=7cm,AC=8cm,BC=9cm,(1)请画出图形,(必须保留作图痕迹).(2)求CD的长.22.如图,在△ABC中,AB=AC,∠BAC=90°,D为AC的中点,AE⊥BD于F交BC于E.(1)求证:∠ABD=∠CAE.(2)求证:∠ADB=∠CDE.(3)直接写出BD、AE、ED之间满足的数量关系.23.点E是△ABC内的一点(1)如图,CD平分∠ACB交AB于点D,点E在线段CD上(点E不与点C、D 重合),且∠EAC=2∠EBC,求证:AE+AC=BC(2)如图,若△ABC是等边三角形,∠AEB=100°,∠BEC=α,以EC为边作等边△CEF,连AF.当△AEF是等腰三角形时,试求出α的度数.24.△ABC的顶点A在y轴上,B、C关于y轴对称.且∠ABO=∠CAO,过AB上一点D,作射线交y轴负半轴于E(1)判断△ABC的形状并说明理由.(2)连CD交y轴于F若BD=FD,∠BCD=∠DEF,求证:DE平分∠BDC(3)在(2)的条件下,若∠AED=15°,H是AB延长线上一动点,作∠CHG=60°HG 交射线DE于G则DG−DHAD的值是否发生变化.若不变求其值.变化,求其范围.答案和解析1.【答案】A【解析】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误;故选:A.根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】B【解析】解:A、2+2=4,不能构成三角形,故A选项错误;B、3、4、5,能构成三角形,故B选项正确;C、1+2=3,不能构成三角形,故C选项错误;D、2+3<6,不能构成三角形,故D选项错误.故选:B.根据三角形的任意两边之和大于第三边,对各选项的数据进行判断即可.本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.3.【答案】C【解析】解:设这个多边形是n边形,则(n-2)•180°=900°,解得:n=7,即这个多边形为七边形.故选:C.设这个多边形是n边形,内角和是(n-2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.4.【答案】C【解析】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.稳定性是三角形的特性.稳定性是三角形的特性,这一点需要记忆.5.【答案】D【解析】解:A、∵AC与BC两边之和大于第三边,∴能作出三角形,且三边知道能唯一画出△ABC;B、∠B是AB,BC的夹角,故能唯一画出△ABC;C、根据HL可唯一画出△ABC;D、∠C并不是AB,AC的夹角,故可画出多个三角形.故选:D.判断其是否为三角形,即两边之和大于第三边,两边之差小于第三边,两边夹一角,或两角夹一边可确定三角形的形状,否则三角形并不是唯一存在,可能有多种情况存在.本题考查了全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.【答案】C【解析】解:∵2(∠A+∠B)=3∠C,∠A+∠B=180°-∠C,∴2(180°-∠C)=3∠C,∴∠C=72°,∴∠C的补角等于108°,故选:C.依据2(∠A+∠B)=3∠C,∠A+∠B=180°-∠C,即可得出2(180°-∠C)=3∠C,进而得到∠C的度数,可得∠C的补角.本题主要考查了三角形内角和定理以及补角的概念,解题时注意:三角形内角和是180°.7.【答案】B【解析】解:∵在等腰△ABC中,AB=AC,其周长为20cm,∴设AB=AC=x cm,则BC=(20-2x)cm,∴,解得5cm<x<10cm.故选:B.设AB=AC=x,则BC=20-2x,根据三角形的三边关系即可得出结论.本题考查的是等腰三角形的性质、解一元一次不等式组,熟知等腰三角形的两腰相等是解答此题的关键.8.【答案】B【解析】方法一:解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图有1+1×3+2×3+3×3+…+3n个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选:B.方法二:n=1,s=4;n=2,s=10;n=3,s=19,设s=an2+bn+c,∴,∴a=,b=,c=1,∴s=n2+n+1,把n=5代入,s=46.方法三:,,,,∴a5=19+12+15=46.由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n个图有1+1×3+2×3+3×3+…+3n个点.此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题.9.【答案】C【解析】解:第1个点在AC上,作线段AB的垂直平分线,交AC于点P,则有PA=PB;第2个点是以A为圆心,以AB长为半径截取AP=AB,交AC延长线上于点P;第3个点是以A为圆心,以AB长为半径截取AP=AB,在上边于CA延长线上交于点P;第4个点是以B为圆心,以BA长为半径截取BP=BA,与AC的延长线交于点P;第5个点是以B为圆心,以BA长为半径截取BP=BA,与BC在左边交于点P;第6个点是以A为圆心,以AB长为半径截取AP=AB,与BC在右边交于点P;∴符合条件的点P有6个点.故选:C.本题是开放性试题,根据题意,画出图形结合求解.本题考查了等腰三角形的判定来解决实际问题,其关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.10.【答案】B【解析】解:过点E作EM⊥AC于M,EN⊥AD于N,EF⊥BC于H,如图,∵∠DAC=30°,∠DAB=75°,∴∠EAM=75°,∴AE平分∠EAD,∴EM=EN,∵CE平分∠ACB,∴EM=EH,∴EN=EH,∴DE平分∠ADB,∴∠1=∠ADB,∵∠1=∠DEC+∠2,而∠2=∠ACB,∴∠1=∠DEC+∠ACB,而∠ADB=∠DAC+∠ACB,∴∠DEC=∠DAC=×30°=15°.故选:B.过点E作EM⊥AC于M,EN⊥AD于N,EF⊥BC于H,如图,先计算出∠EAM=75°,则AE平分∠EAD,根据角平分线的性质得EM=EN,再由CE平分∠ACB得到EM=EH,则EN=EH,于是根据角平分线定理的逆定理可判断DE平分∠ADB,则∠1=∠ADB,根据三角形外角性质得∠1=∠DEC+∠2,即∠1=∠DEC+∠ACB,∠ADB=∠DAC+∠ACB,所以∠DEC=∠DAC=15°.本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.解决本题的关键是运用角平分线定理的逆定理证明DE平分∠ADB.11.【答案】(1,2)【解析】解:点P(-1,2)关于y轴对称的点的坐标是(1,2).故答案为:(1,2).根据关于y轴对称,横坐标互为相反数,纵坐标不变;即可得出答案.本题考查了关于x轴、y轴对称点的坐标,注:关于y轴对称,横坐标互为相反数,纵坐标不变;关于x轴对称,纵坐标互为相反数,横坐标不变;关于原点对称,横纵坐标都互为相反数.12.【答案】6【解析】解:360÷40=9,即这个多边形是9边形,因而从这个多边形的一个顶点出发的对角线的条数是9-3=6条.一个凸多边形的每个内角都等于140°,则每个外角是40度.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出,外角和中外角的个数,即多边形的边数.就可以求出从这个多边形的一个顶点出发的对角线的条数.根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.n边形中从这个多边形的一个顶点出发共有n-3条对角线.13.【答案】130或50【解析】解:若F在△ABC内,如图1,∵BD、CE是△ABC的高,∠A=50°,∴∠ABD=40°,∠BEF=90°,∴∠BFC=∠ABD+∠BEF=90°+40°=130°;若F在△ABC外,如图2,∵BD、CE是△ABC的高,∠A=50°,∴∠ABD=40°,∠BEF=90°,∴∠BFC=90°-40°=50°;故答案为:130或50.根据三角形外角的性质及三角形的内角和定理,分F在△ABC内,及F在△ABC外两种情况讨论,即可得出答案.此题考查了三角形内角和定理及内角与外角的性质,解答此题的关键是根据题意画出图形,要根据△ABC为锐角三角形或钝角三角形两种情况讨论,不要漏解.14.【答案】35【解析】解:过点E作EF⊥AD,∵DE平分∠ADC,且E是BC的中点,∴CE=EB=EF,又∵∠B=90°,且AE=AE,∴△ABE≌△AFE,∴∠EAB=∠EAF.又∵∠CED=35°,∠C=90°,∴∠CDE=90°-35°=55°,∴∠CDA=110°,∵∠B=∠C=90°,∴DC∥AB,∴∠CDA+∠DAB=180°,∴∠DAB=70°,∴∠EAB=35°.故答案为:35.过点E作EF⊥AD,证明△ABE≌△AFE,再求得∠CDE=90°-35°=55°,进而得到∠CDA和∠DAB的度数,即可求得∠EAB的度数.本题考查了角平分线的性质,解答此题的关键是根据题意作出辅助线EF⊥AD,构造出全等三角形,再由全等三角形的性质解答.15.【答案】8【解析】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.此题考查了三角形的内角和是180度的性质和等腰三角形的性质及三角形外角的性质;发现并利用规律是正确解答本题的关键.16.【答案】10【解析】解:∵∠CAB=45°,∠CAD=2∠DAB,∴∠BAD=15°,将△ABD绕着点B逆时针旋转90°,得到△CBE,则△ABD≌△EBC,∴AB=BE,∠ABE=∠CBD=90°,CE=AD,∠BEC=∠BAD=15°,∴△ABE是等腰直角三角形,∴∠BAE=∠AEB=45°,∴∠CAE=90°,∠AEC=30°,∴CE=2AC=10,∴AD=CE=10,故答案为:10.根据已知条件得到∠BAD=15°,根据旋转的性质得到△ABD≌△EBC,根据全等三角形的性质得到AB=BE,∠ABE=∠CBD=90°,CE=AD,∠BEC=∠BAD=15°,推出△ABE是等腰直角三角形,求得∠CAE=90°,∠AEC=30°,根据直角三角形的性质即可得到结论.本题考查了旋转的性质,全等三角形的性质,等腰直角三角形的性质,直角三角形中30°所对的边等于斜边的一半,正确的作出辅助线是解题的关键.17.【答案】解:∵∠B=∠A+10°,∠C=∠B+10°,∴∠C=∠A+10°+10°=∠A+20°,由三角形内角和定理得,∠A+∠B+∠C=180°,所以,∠A+∠A+10°+∠A+20°=180°,解得∠A=50°,所以,∠B=50°+10°=60°,∠C=50°+20°=70°.【解析】将第一个等式代入第二等式用∠A表示出∠C,再根据三角形的内角和等于本题考查了三角形的内角和定理,用∠A表示出∠C然后列出关于∠A的方程是解题的关键.18.【答案】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中AB=DC∠B=∠CBF=CE∴△ABF≌△DCE,∴∠A=∠D.【解析】求出BF=CE,根据SAS推出△ABF≌△DCE,根据全等三角形的性质推出即可.本题考查了全等三角形的性质和判定的应用,能求出△ABF≌△DCE是解此题的关键,注意:全等三角形的对应边相等,对应角相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.19.【答案】解:∵OC平分∠AOB,∴∠BOC=∠AOC,∵EC∥OA,∴∠ECO=∠AOC,∴∠ECO=∠BOC,∴CE=OE,∵CE=20,∴OE=CE=20,过C作CF⊥OB于点F,∵CD⊥OA,OC平分∠AOB,∴CD=CF,∵EC∥OA,∠AOB=30°∴∠FEC=∠AOB=30°在Rt△EFC中,CF=12CE=10,∴CD=CF=10.【解析】求出∠EOC=∠ECO=∠AOC,即可得出CE=OE,根据角平分线的性质得出CD=CF,求出CF,即可求出CD.本题主要考查了含30°角的直角三角形的性质,角平分线的性质,平行线的性质的应用,注意:角平分线上的点到角的两边距离相等.20.【答案】(1,4)(1,-1) 1【解析】解:(1)如图所示,△A1B1C1即为所求,C1的坐标为(1,4);(2)如图所示,△A2B2C2即为所求,A2的坐标为(1,-1);(3)如图所示,在第二象限5×5的网格中作△ABC的轴对称图形,要求各顶点都在格点上,共能作1个.故答案为:(1,4);(1,-1);1.(1)利用点平移的坐标规律写出A、B、C平移后对应点A1、B1、C1的坐标,然后描点即可;(2)利用关于x轴对称的点坐标规律写出A1、B1、C关于于x轴的后对称点A2、B2、C2的坐标,然后描点即可;本题主要考查作图-平移变换、轴对称变换,解题的关键是熟练掌握平移变换和轴对称变换的定义和性质.21.【答案】解:(1)如图所示,△ABC即为所求,其中AD是∠BAC.(2)过点D作DE⊥AB于点E,DF⊥AC于点F,AG⊥BC与点G,则DE=DF,∵S△ABD=12AB•DE,S△ACD=12AC•DF,∴S△ABDS△ACD=ABAC,∵S△ABD=12BD•AG,S△ACD=12CD•AG,∴S△ABDS△ACD=BDCD,∴ABAC=BDCD,则78=9−CDCD,解得:CD=245(cm).【解析】(1)根据作一线段等于已知线段和角平分线的尺规作图可得;(2)由S△ABD=AB•DE,S△ACD=AC•DF知=,由S△ABD= BD•AG,S△ACD=CD•AG知=,据此可得=,进一步计算可得.本题考查的是作图-复杂作图,掌握角平分线的性质,灵活运用角平分线的性质定理、找准对应关系是解题的关键.22.【答案】(1)证明:∵AE⊥BD,∴∠AFB=∠BAC=90°,∴∠ABD+∠BAF=90°,∠BAF+∠CAE=90°,∴∠ABD=∠CAE.(2)证明:过C作CM⊥AC,交AE的延长线于M,则∠ACM=90°=∠BAC,∴CM∥AB,∴∠MCE=∠ABC=∠ACB,∵∠BAF=∠ADB,∠ADB+∠FAD=90°,∠ABD+∠BAF=90°,∴∠ABD=∠CAM,在△ABD和△CAM中,∠DAB=∠ACMAB=AC∠ABD=∠CAM,∴△ABD≌△CAM(ASA),∴∠ADB=∠M,AD=CM,BD=AM,∵D为AC中点,∴AD=DC=CM,在△CDE和△CME中,CD=CM∠DCE=∠ECMCE=CE,∴△CDE≌△CME(SAS),∴∠M=∠CDE,∴∠ADB=∠CDE.(3)解:结论:BD=AE+DE.理由:∵△CDE≌△CME,∴ME=DE,∵AM=AE+ME=AE+DE,∵BD=AM,∴BD=AE+DE.【解析】(1)理由等角的余角相等即可证明;(2)过C作CM⊥AC,交AE的延长线于M,证明△ABD≌△CAM(ASA),推出∠ADB=∠M,AD=CM,BD=AM,再证明△CDE≌△CME(SAS)即可解决问题;(3)利用全等三角形的性质即可证明;本题考查了全等三角形的性质和判定,等腰直角三角形的性质等知识,正确的作出辅助线构造全等三角形是解题的关键.23.【答案】(1)证明:在CB上截取CH=CA,连接EH.∵CD平分∠ACB,∴∠ACE=∠ECH,∵CA=CH,CE=CE,∴△ECA≌△ECH(SAS),∴∠CAE=∠CHE,AE=EH,∵∠CAE=2∠CBE,∠CHE=∠CBE+∠BEH,∴∠HBE=∠HEB,∴EH=BH,∴BH=AE,∴BC=CH+BH=AC+AE.(2)证明:如图2中,∵∠BCA=∠ECF=60°,∴∠BCE=∠ACF,∵CB=CA,CE=CF,∴△BCE≌△ACF(SAS),∴∠BEC=∠AFC=α,∵∠COB=∠CAD=α,∠AOE=200°-α,∠AFE=α-60°,∠EAF=40°,①要使AE=AF,需∠AEF=∠AFE,∴200°-α=α-60°,∴α=130°;②要使EA=EF,需∠EAF=∠AFE,∴α-60°=40°,③要使EF=AF,需∠EAF=∠AEF,∴200°-α=40°,∴α=160°.所以当α为130°、100°、160°时,△AEF是等腰三角形.【解析】(1)在CB上截取CH=CA,连接EH.只要证明△ECA≌△ECH(SAS),BH=EH 即可解决问题;(2)首先证明△BCE≌△ACF(SAS),推出∠BEC=∠AFC=α,∠COB=∠CAD=α,∠AOE=200°-α,∠AFE=α-60°,∠EAF=40°,分三种情形分别讨论即可解决问题;本题考查全等三角形的判定和性质,等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.24.【答案】(1)解:结论:△ABC是等腰直角三角形.理由:∵B、C关于y轴对称,∴OB=OC,∵AO⊥BC,∴AB=AC,∴∠BAO=∠CAO,∵∠ABO=∠CAO,∴∠ABO=∠OAB,∵∠AOB=90°,∴∠ABO=∠OAB=45°,∴∠ABC=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.(2)证明:如图1中,连接BF,BE.∵DB=DF,∴∠DBF=∠DFB,∴OA垂直平分线段BC,∴∠FBC=∠FCB,设∠FBC=∠FCB=x,∴∠DFB=∠FBC+∠FCB=2x,∴∠DBF=2x,∴3x=45°,∴x=15°,∴∠DBF=∠DFB=30°,∴∠ADC=∠DBF+∠DFB=60°,∵∠DEF=∠BCD,∴∠DEF=15°,∵∠CFO=75°=∠EDF+∠DEF,∴∠EDF=60°,∴∠BDE=180°-60°-60°=60°,∴∠EDB=∠EDF,∴ED平分∠BDC.(3)解:结论:DG−DHAD的值是定值,定值为2.理由:如图2中,连接CG.在DG上截取DK,使得DK=DH.由(2)可知:∠CDG=∠GDH=60°,∵∠CHG=60°,∴∠CDG=∠CHG,∴C,D,H,G四点共圆,∴∠HCG=∠GDH=60°,∴△HCG是等边三角形,∵DH=DK,∠HDK=60°,∴△HDK是等边三角形,∵∠DHK=∠CHG=60°,∴∠DHC=∠KHG,∵DH=DK,HC=HG,∴△DHC≌△KHG(SAS),∴CD=KG,∴DG=DK+KG,∵DK=DH,KG=CD,∴DG=DH+CD,∴DG-DH=CD,在Rt△ADC中,∵∠ACD=30°,∴DG-DH=2AD,∴DG−DHAD=2.【解析】(1)结论:△ABC是等腰直角三角形.想办法证明AB=AC,∠ABC=∠ACB即可;(2)如图1中,连接BF,BE.通过计算证明∠EDC=∠EDB=60°即可;(3)结论:的值是定值,定值为2.如图2中,连接CG.在DG上截取DK,使得DK=DH.只要证明DG=DH+CD,CD=2AD即可解决问题;本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质,四点共圆等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

湖北省武汉市汉阳区2023-2024学年八年级上学期期中数学试题

湖北省武汉市汉阳区2023-2024学年八年级上学期期中数学试题

2023-2024学年度第一学期期中考试八年级数学试卷2023.11一、选择题(每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.下列四个交通标识图案中,是轴对称图案的是( )A. B. C. D.2.作三角形ABC 的一条高,其中正确的是( )A. B. C. D.3.如图,将一张含有30°角的三角形纸片的两个顶点叠放在长方形的两条对边上,若244∠=︒,则1∠的大小为( )A.14°B.16°C.90α︒-D.44α-︒4.在ABC 中90BAC ∠=︒,AC AB ≠,AD 是斜边BC 上的高,DE AC ⊥于E ,DF AB ⊥于F .如图,则图中与B ∠(B ∠除外)相等的角的个数是( )A.3B.4C.5D.65.如图,图①是一张正方形纸片,经过两次对折,并在如图③位置上剪去一个小正方形,打开后是( )A. B. C. D.6.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( ) A.8B.9C.10D.117.如图,将三角形纸片ABC 沿DE 折叠,点A 落在点F 处,已知12100∠∠+=︒,则A ∠的度数为( )A.80°;B.100°;C.50°;D.以上都不对.8.如图,ABC △中,D 为BC 上一点,ACD △的周长为12cm ,DE 是线段AB 的垂直平分线,5cm AE =,则ABC △的周长是( )A.17cmB.22cmC.29cmD.32cm9.如图中有三个正方形,最大正方形的边长为18,则阴影部分的面积(平方单位)为( )A.153B.154C.155D.15610.现有以下表述:①三角形按边相等关系分类有三边都不等的三角形、等腰三角形和等边三角形; ②三角形的三边中线一定交于一点,三角形的高也一定交于一点;③平面上有四个点A 、B 、C 、D ,用它们作顶点可以构成3个或4个三角形;④有8根木棒,长度分别为1、2、3、4、5、6、7、8,其中最长边是8,另两边的差大于2,这样的三角形可以有4种.其中正确的个数为( ) A.1;B.2;C.3;D.4二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请直接填写在答题卡指定的位置.11.点()2,4P 关于x 轴对称的点坐标为_________.12.已知a ,b ,c 是ABC △的三边长,a ,b 满足()2710a b -+-=,c 为奇数,则c =_________. 13.如图,在五边形ABCDE 中,300A B E ∠∠∠++=︒,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度数为_________.14.如图,ABC △中,90ACB ∠=︒,6BC =,8AC =,10AB =,45BCD ∠=︒,则AD =________.15.如图,在凸四边形ABCD 中,90BAC ADC ∠∠==︒,AB AC =.现有以下结论:①若E 为AC 中点,连BE ,过A 作BE 的垂线交BC 于F 点,连EF ,如图15-1,则有AEB CEF ∠∠=;图15-1②当D 点为凸四边形ABCD 的一个动点,BD 有最大值时,线段BD 一定过AC 的中点;③当D 点为凸四边形ABCD 的一个动点,则ABD △的面积为212AD ; ④45ADB ∠=︒.其中正确的结论有________________.16.如图是一个33⨯的小正方形拼成的大正方形,则图中1239∠∠∠∠++++L 的度数和是_________.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本小题满分8分)如图,在ABC △中,AB BC =,中线AD 将这个三角形的周长分成15和12两部分,求这个三角形三边的长.18.(本题满分8分)如图,AB CD =,AE BC ⊥于E ,DF BC ⊥于F ,若CE BF =,求证:(1)AE DF =;(2)AB CD ∥.19.(本题满分8分)一个凸多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数. 20.(本题满分8分)将44⨯的正方形棋盘沿格线划分成两个全等图形,约定某种划分法经过旋转、轴对称得到划分方法与原划分法相同.如图1与图2的涂色方式.请你按照这种划分方法,在备用图中涂色来表示划分办法.21.(本题满分8分)如图,在平面直角坐标系中,()4,1A -,()4,5B -,()1,3C -.(1)在图中作出ABC △关于直线m (直线m 上各点的横坐标都为1)对称的图形111A BC △; (2)线段BC 上有一点5,42P ⎛⎫- ⎝⎭,直接写出点P 关于直线m 对称的点的坐标;(3)线段BC 上有一点(),M a b ,直接写出点M 关于直线m 对称时a 与b 满足的数量关系; (4)若直线BC 交x 轴于N 点,直接写出N 点坐标. 22.(本题满分10分)已知,在Rt ABC △中,90ACB ∠=︒,AC BC =,D 为直线BC 上一点.(1)如图,D 在线段BC 上,连AD ,过C 作CE AD ⊥于F 点,交AB 于点E ,若AD 平分BAC ∠,则求证:2AD DF CE =+;(2)当D 点在直线BC 上移动时,连AD ,过B 作AD 的垂线,垂足为P ,连CP ,直接写出APC ∠的度数.23.(本题满分10分)问题的提出:如图1,ABC △中,AB AC =,则求证:B C ∠∠=.知识的运用:如图3,四边形ABCD 是正方形,AB BC CD AD ===,90ABC BCD ADC ∠∠∠===︒,点E 是边BC 上一点,90AEF ∠=︒,且EF AE =,连CF .求ECF ∠的度数.拓展与延伸:如图4,四边形ABCD 中,AB BC CD AD ===,AD BC ∥,AB CD ∥,E 为四边形ABCD 边BC 上一点,连AE ,若AE EF =,且()90AEF ABC ∠∠αα==≥︒,探究DCF ∠与α的数量关系.直接写出结果,不需说明理由.24.(本题满分12分)数学问题:如图1,ABC △的中线AD 、BE 交于P 点,试探究线段AP 与PD 间的数量关系,并说明理由.数学思考:如图2,ABC △的中线AD 、BE 交于P 点,连DE , (1)求证:12DE AB =;(2)求证:ABC BDC ∠∠=.数学运用:①如图3,在四边形ABCD 中,AB CD ∥,AB CD <,E 、F 分别是AD 、BC 边的中点,直接写出AB 、CD 与EF 间的数量关系,不需要说明理由.②如图4,现有一块四边形纸片ABCD ,AB CD ∥,AD CB =,P 、Q 分别为AD 、BC 中点,EF MN AB ∥∥,P 、Q 也同时是EM 、FN 的中点.现若有AB m =,CD n =,E 或F 点到MN 的距离为h ,请直接写出四边形EFNM 的面积(用m 、n 、h 表示).一、选择题二、填空题三、解答题:17.解:AD Q 为中线,BD DC ∴=, AB BC =Q ,22AB BD DC ∴==,…………………………3分设BD x =,AC y =,则依题意有:315x =时,12x y +=;或312x =时,15x y +=.5x ∴=时,7y =;或4x =时,11y =.………………………………5分10AB ∴=,10BC =,7AC =;或8AB =,8BC =,11AC =.……………………7分经验证,均满足条件,所以这个三角形的三边的长分别为:10、10、7或8、8、11.……………………8分.18.证明:(1)AE BC ⊥Q 于E ,DF BC ⊥于F ,90AEB DFC ∴∠=∠=︒,……………………2分CE BF =Q ,CE EF BF EF ∴-=-,BE CF ∴=,……………………4分在Rt CDF △与Rt BAE △中,CD ABCF BE=⎧⎨=⎩ ()Rt Rt HL CDF BAE ∴△≌△ AE DF ∴=,……………………1分 C D ∠=∠.AB CD ∴∥.…………………………8分19.解:设这个多边形的边数为n ,依题意有:()21801803360n -︒+︒=⨯︒…………………………4分解得:7n =.…………………………7分答:这个多边形的边数为7.……………………8分 20.略21.(1)(2)9,42P ⎛⎫ ⎪⎝⎭;()2,M a b '- (3)237a b +=; (4)7,02⎛⎫⎪⎝⎭22.(1)证明;AD Q 平分BAC ∠,BAD CAD ∴∠=∠,CE AD ⊥Q 于F ,90AFC CFD ∴∠=∠=︒,90DAC ACF ∴∠+∠=︒, 90ACB =︒∠Q ,90BCE ACF ∴∠+∠=︒,BCE DAC ∴∠=∠,在AD 上取点G ,使AG CE =,连CQ ,如图.在CAG △与BCE △中,AC BC CAG BCE AG CE =⎧⎪∠=∠⎨⎪=⎩()SAS CAG BCE ∴△≌△,…………………………3分 B ACG ∴∠=∠.,ADC B BAD FGC ADC ACG ∠=∠+∠∠=∠+∠Q .FDC FGC ∴∠=∠.在Rt CFG △与Rt CFD △中,FGC FDC CFG CFD CF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩CFG CFD ∴△≌△,…………………………6分FG FD ∴=.2AD DF CE ∴=+…………………………7分(2)45°或135°.……………………10分. 23.问题的提出:证明:取BC 中点D ,连AD ,BD CD ∴=,在ABD △和ACD △中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩ABD ACD ∴△≌△,B C ∴∠=∠.……………………3分其他如作AD BC ⊥,或作BAC 的角平分线交BC 于D 点,对照给分. 特别的,只写ABC ACB Q △≌△,B C ∴∠=∠,只给1分. 知识的运用:证明:90AEF =︒∠Q ,90AEB FEC ∴∠+∠=︒,90ABC =︒∠Q ,90BAE AEB ∴∠+∠=︒,BAE FEC ∴∠=∠在AB 上取一点P ,使AP EC =,连PE ,如图.AB BC =Q ,AB AP BC EC ∴-=-,BP BE ∴=,∴由问题的提出知:BPE BEP ∠=∠.…………………………5分 90ABC =︒∠Q ,45BPE BEP ∴∠=∠=︒,135APE ∴∠=︒.在APE △和ECF △中,AP EC PAE CEF AE EF =⎧⎪∠=∠⎨⎪=⎩APE ECF ∴△≌△,135APE ECF ∴∠=∠=︒……………………7分. 拓展与延伸:3902α-︒…………………………10分. 24.数学问题:解:2AP PD =,理由如下:……………………1分 延长PD 到Q ,使DQ PD =,连PC ,如图.AD Q 为ABC △中线,BD CD ∴=.在BDQ △和CDP △中,PD DQ PDC QDB CD BD =⎧⎪∠=∠⎨⎪=⎩CDP BDQ ∴△≌△PC BQ ∴=,PCD QBD ∠=∠.PC BQ ∴∥.延长PE 到H ,使EH PE =,如图,同理可证:AH PC =,AH PC ∥.BQ AH ∴∥,BQ AH =.H PBQ ∴∠=∠.在APH △和QPB △中,H PBQ APH QPB AH BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩AP PQ ∴=2AP PD ∴=,…………………………4分数学思考;证明:延长ED 到M ,使DM DE =,连BM ,如图.AD Q 为ABC △中线,BD CD ∴=.在EDC △和MDB △中,ED DM EDC MDB DC BD =⎧⎪∠=∠⎨⎪=⎩EDC MDB ∴△≌△,EC BM ∴=,M DEC ∠=∠.BM AC ∴∥.MBE AEB ∴∠=∠.BE Q 是ABC △中线,AE EC ∴=,AE BM ∴=.在AEB △和MBE △中,AE BM AEB MBE EB BE =⎧⎪∠=∠⎨⎪=⎩()SAS AEB MBE ∴△≌△ME AB ∴=,BEM ABE ∠=∠.12DE AB ∴=,DE AB ∥ ABC EDC ∴∠=∠.…………………………8分数学运用:①2AB CD EF +=;…………………………10分 ②()12EFNM S m n h =+四边形.……………………12分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉市八年级上学期数学期中考试试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共10分)
1. (1分) (2019八上·黄陂期末) 下列手机APP图案中,属于轴对称的是()
A .
B .
C .
D .
2. (1分)以下不能构成三角形三边长的数组是()
A . (1,, 2)
B . (,,)
C . (3,4,5)
D . (32 , 42 , 52)
3. (1分) (2017八上·三明期末) 如图是一副三角尺叠放的示意图,则∠α的度数为()
A . 75°
B . 45°
C . 30°
D . 15°
4. (1分) (2018八上·江干期末) 如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()
A . ②③④
B . ①②
C . ①④
D . ①②③④
5. (1分) (2019八下·海港期末) 点P(-2,3)关于y轴的对称点的坐标是()
A . (2,3)
B . (-2,3)
C . (2,-3)
D . (-2,-3)
6. (1分) (2019八上·富阳月考) 如图,△ABC≌△AED,点 E 在线段 BC 上,∠1=48º,则∠AED 的度数是()
A . 66°
B . 65°
C . 62°
D . 60°
7. (1分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()
A . 三角形的稳定性
B . 两点之间钱段最短
C . 两点确定一条直线
D . 垂线段最短
8. (1分) (2017八上·宜春期末) 如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC 于,且OD=4,△ABC的面积是()
A . 25
B . 84
C . 42
D . 21
9. (1分)已知≌ ,,,若的周长为偶数,则的取值为()
A .
B .
C .
D . 或或
10. (1分)如图,OA=OB,OC=OD,∠O=50°,∠D=30°,则∠AE C等于()
A . 70°
B . 50°
C . 45°
D . 60°
二、填空题 (共6题;共6分)
11. (1分)如图,点A、B在直线L的同侧,AB=8,点C是点B关于直线L的对称点,AC交直线L于点D ,AC=12,则△ABD的周长为________
12. (1分)正八边形的每个外角为________度.
13. (1分)如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是________(只需写一个,不添加辅助线).
14. (1分) (2018八下·龙岩期中) 一个平行四边形的一条对角线的长度为5,一条边为7,则它的另一条对角线α的取值范围是________.
15. (1分)把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为________ 厘米
16. (1分)如图, ,点分别在上,且,点分别在
上运动,则的最小值为________。

三、解答题(一) (共3题;共4分)
17. (1分)如图所示,在△ABC中,∠C=900 ,∠CAB,∠CBA的平分线相交于点D,BD的延长线交AC于E,求∠ADE的度数.
18. (1分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求作图.
(1)利用尺规作图在AC边上找一点D,使点D到AB、BC的距离相等.(不写作法,保留作图痕迹)
(2)在网格中,△ABC的下方,直接画出△EBC,使△EBC与△ABC全等.
19. (2分) (2019八下·厦门期末) 已知▱ABCD的对角线AC,BD交于点O,点E在AB边上.
(1)尺规作图:在图中作出点E,使得OE=;(保留作图痕迹,不写作法)
(2)在(1)的条件下,若AB=OE,AO=,求证:四边形ABCD是矩形.
四、解答题(二) (共3题;共4分)
20. (1分) (2018八上·柘城期末) 如图,在中,,是的平分线,
于点,点在上,,求证: .
21. (1分) (2015七下·西安期中) △ABC中,AD、AE分别为角平分线和高,若∠B=60°,∠C=70°,求∠DAE.
22. (2分) (2019八下·洛龙期中) 如图,E,F分别是▱ABCD的AD,BC边上的点,且AE=CF.
(1)求证:△ABE≌△CDF;
(2)若M,N分别是BE,DF的中点,连接MF,EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.
五、解答题(三) (共3题;共8分)
23. (3分)如图,正方形的对角线上有一个小孔,经过小孔剪一刀(不剪曲线和折线)可以将剪下的两片拼成一个三角形,拼成的三角形内部没有小孔,如图1;图2中的正方形中也有一个小孔,但它不在对角线上,将它剪成三片,用剪成的三片拼成一个三角形,要求拼成的三角形内部没有小孔.仿照图1把剪切线和拼成的三角形画出来.
24. (2分) (2019七下·广安期中) 如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.
25. (3分)(2019·亳州模拟) 如图,四边形ABCD是正方形,E为BC上的任意一点或BC延长线上一点(除B点以外),∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证AE=EF.
参考答案
一、选择题 (共10题;共10分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共6分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题(一) (共3题;共4分)
17-1、
18-1、
19-1、
19-2、
四、解答题(二) (共3题;共4分)
20-1、
21-1、
22-1、
22-2、
五、解答题(三) (共3题;共8分)
23-1、24-1、
25-1、
第11 页共11 页。

相关文档
最新文档