聚合物驱油技术机理及应用的综述

合集下载

聚合物驱提高采收率的技术及应用

聚合物驱提高采收率的技术及应用

聚合物驱提高采收率的技术及其应用聚合物驱是一种比较有效的提高原油采收率的三次采油方法。

综述了聚合物驱技术在国内外的应用和研究进展,分析了聚合物驱的驱油机理。

介绍聚合物驱油的的方法以及在现实生产过程中的应用。

石油是重要的能源化工原料,有“工业血液”之称,随着国民经济的高速发展,要求石油工业提供越来越多的石油产品。

世界各国为了满足国民经济发展对石油产量的需求,一方面加强勘探寻找新储量,一方面努力提高已开发油田的采收率,积极进行3次采油的探索与应用。

通过注入驱油剂来开采油层的残余油为强化采油(Enhanced oilRecovery,简称EOR或Improved oilRecovery,简称IOR),又称3次采油(Tertiary oil Recovery),可使采收率提高到80% ~85%。

聚合物驱就是一种比较有效的提高原油采收率的3次采油方法,它能在常规水驱开采后期,使油藏采收率再提高8%左右,相当于增加四分之一的石油可采储量。

我国对聚合物驱提高油田采收率技术极为重视,投入了大量的人力、物力进行理论技术攻关和现场试验,并取得了丰硕的成果。

特别是“七五”“八五”“九五”科技攻关及国家973项目的研究,大大促进了聚合物驱油技术的发展。

自1996年聚合物在大庆、胜利、大港等油田大规模推广应用以来,形成了1000×104t的生产规模,为国家原油产量保持稳中有升发挥了关键的作用。

以大庆油田为例,截止到2003年12月,已投入聚合物驱工业化区块27个,面积321.36km2,动用地质储量5.367×108t,投入聚合物的油水井5603口,累积注入聚合物干粉46.89×104t,累积产油6771.89×104t,累积增油2709.67×104t。

2003年,工业化聚合物驱全年产油1044.4×104t。

大庆油田聚合物驱提高采收率以其规模之大,技术含量高,居世界领先地位,创造了巨大的经济效益。

油田聚合物驱油原理

油田聚合物驱油原理

油田聚合物驱油原理
油田聚合物驱油是一种常用的增油技术,其原理是通过注入聚合物溶液,增加油层中的黏度,形成较大的剪切应力和流动阻力,促使原油顺着聚合物流动,从而增加采油效果。

聚合物驱油机理主要包括以下几个方面:首先,聚合物分子与原油分子之间存在吸附作用,这种吸附作用可以提高原油的黏度,增加流动阻力,防止原油的快速流出,从而实现增油效果;其次,聚合物本身的分子结构可以形成一定的弹性和黏性,使其在油层井道中能够形成较大的剪切应力,进一步促进原油的流动;最后,聚合物的分子结构还可以吸附油层中的金属离子和其他杂质,从而减少沉积和堵塞,保持油层的通畅性和稳定性。

聚合物驱油技术具有很多优点,如增油效果好、操作简单、节约成本等。

但同时也存在一些不足之处,如聚合物的稳定性不高、溶液粘度过高等问题,需要不断进行优化和改进。

- 1 -。

聚合物驱油技术探究

聚合物驱油技术探究

1 聚合物驱油机理聚合物驱油的重要机理之一就是聚合物溶液的流度控制作用,对于均质油层,一方面,聚合物驱油可以改善水油流度比,扩大波及体积。

当在用水驱油时,若M>1,说明水比原油的流动能力强,但是当指进现象发生时,由于波及系数降低大部分的油就不能被水驱替出来,而在聚合物中加入水后,就可以使容易的粘度发生变化,使其不易渗入地层之中,这样产生的结果就是溶液再也不会像以前那样随意流动了。

而且,如果在使用中使得原油的流动性大大增强,也可以使水驱油的效果得到十分明显的提高。

除此之外,聚合物中加入水后,除了能够使水的渗透能力大大降低,还可以使原油的流动能力大打折扣,这样就可以使得机械剪切作用减少,提高了聚合物的利用率。

其次,当聚合物中加入水后,还能使聚合物分子在地层孔隙中的流动能力降低,使其更易停留在孔隙中,而在低渗透部位,由于聚合物分子的剧烈降解,还能使其更容易的通过孔隙,而不会因为聚合物分子的停留堵塞小孔。

再者,当聚合物中加入水后,水就不再是不能扩大体积的液体了,而变成了可胀可缩的“海绵”,而溶液就可以在这样的水的孔隙中流动,拖拉并携带出孔隙中细长的油滴,并且可以变薄通道内的油,另外,溶液还能将这些油拉成有原油特有的“通道”,增大原油的驱替效率。

2 建立合理的配套工艺2.1 改善聚合物配制站和注入站的布局聚合物的配置中对于各方面服务有着特殊的要求,它需要几个区块提供可以共同利用的资源服务。

因此,这就产生了配制站、注入站选址布局的问题。

在此基础上,可以利用数学建模和系统规划等学科技术进行研究,以投资最少为目标,应用网络流规划方法优化布局模型,优化选择出配制站位置、个数和规模。

2.2 利用计算机对整个过程进行全程动态监控分析针对聚合物驱具有明显阶段性这一特点,可以把整个注聚区调整管理分为几个具有明显差异的工作阶段,利用计算机对注入井和油井进行全程的监控和动态分析,根据数据研究发现各个不同阶段中存在的主要问题,利用现有的技术和工艺,集合工作人员的经验和意见,逐一解决并落实问题。

聚合物与采油综述

聚合物与采油综述

2.

驱油用聚合物产品
①部分水解聚丙烯酰胺(HPAM)由丙烯酰胺 单体引发聚合而成的水溶性链状聚合物 ②黄原胶,由淀粉经黄单孢杆菌发酵代谢而 成的多糖 ③部分水解聚丙烯腈(HPAN) ④羧甲基纤维素及羟乙基纤维素 ⑤ 阴阳非离子三元共聚物 ⑥疏水缔合聚合物
3.作用机理

聚丙烯酰胺在碱性条件下会水解生成部分水 解聚丙烯酰胺。由于其链节间的静电斥力, 可使蜷曲的高分子变得松散起来,具有更好 的增粘能力。

⑥良好的注入性——在保证具有良好的流度 控制能力的前提下,聚合物溶液的注入压力 不应过大。 ⑦良好的环保特性——不会造成对油藏和环 境的污染。 ⑧来源广、价格低——这是聚合物驱能够实 现大规模工业化应用的必要条件。

聚合物与采油
石工11-11 刘磊
1聚合物驱油机理 2驱油常用的几种聚合物 3聚合物作用机理 4聚合物本身因素对采收率的影响 5影响聚合物粘度的因素 6提高采收率对聚合物性能的要求

1、聚合物驱油的机理 聚合物溶液的流度控制作用是其驱油的重要机 理之一,对于均质油层,在通常水驱油条件下, 由于注入水的粘度往往低于原油粘度,驱油过程 中油水流度比不合理,导致采出液中含水率上升 很快,过早地达到采油经济所允许的极限含水率 的结果,使得实际获得的驱油效率远远小于极限 驱油效率。向油层注入聚合物的结果,可使驱油 过程中的油水流度比大大改善,从而延缓了采出 液中的含水上升速度,使实际驱油效率更接近极 限驱油效率,甚至达到极限驱油效率
4.影响采收率的因素
ห้องสมุดไป่ตู้
5、影响聚合物溶液粘度的主要因素 1 温度 2 酸碱度 3 压力 4 矿化度 4 搅拌速度和搅拌时间 5 其他因素

聚合物驱

聚合物驱

三、部分聚丙烯酰胺的结构和性质
聚丙烯酰胺的分子式: 聚丙烯酰胺的油水选择性和堵水机理
四、部分聚丙烯酰胺的优点
1 .部分水解聚丙烯酰胺增粘性好 其分子量高,有很好的稠化能力。部分水解聚丙烯酰胺分子量一般为一千万
到几千万,分子链长,分子直径与内摩擦大,溶液具有较大的水动力体积,黏度 大,减小水油流度比,提高驱油波及系数,有利于驱油
处理措施:一对于易降解通过除氧(加入还原型抗氧化剂,抗自由基型抗氧 剂)和加入稳定剂(例如HPAM弱凝胶用稳定剂RL-1 )来减小降解的影响。二对 于易水解高温油藏要使用低水解度的HPAM溶液。
五、应用中的问题
3 . HPAM抗剪切降解能力差
由于HPAM的分子构造,它的抗剪切能力相对较差。HPAM易因剪切而降解, 当HPAM溶液通过闸门、流量计孔板和低渗透地层时,都会引起HPAM的降解, 使增粘效果降低。
二、驱油用聚合物的性能要求
❖ 粘弹性:聚合物驱替液通过多孔介质时,希望具有一定的粘弹性,分子链 可以拉伸 收缩带出一部分未波及到区域(如盲端)的残余油,提高驱油效率。
❖ 稳定性:由于聚合物溶液需要长期处于地层环境中,一般见效期在半年以 上。因此聚合物溶液在地层应具有长期稳定性,包括聚合物溶液与地层水、 岩石及粘土矿物的配伍性,以及剪切稳定性,化学稳定性,热稳定性和生物 稳定性。
四、部分聚丙烯酰胺的优点
5 .部分水解聚丙烯酰胺具有良好的稳定性 (1) 热稳定性:HPAM分子中氧桥,对热比较稳定,在小于93 ºC能稳定存在无明显 降解。 (2) 生物稳定性:HPAM具有较好的生物稳定性,虽然油田有使HPAM降解的细菌 存在,但对其稳定性不构成威胁。 (3) 化学稳定性:HPAM中有一定数量的非离子亲水基团—CONH2,不与钙 镁离 子反应。 6 .HPAM来源广,价格低。

聚合物驱油机理.pptx

聚合物驱油机理.pptx

石表面润湿性和毛细管液阻效应的存在,水驱后还存在着大量的残余油。这些残
余油以簇状、柱状、孤岛状、膜(环)状、盲状的形态滞留在孔隙介质中。那么
, 聚合物驱能否把这些残余油驱动呢?研究表明:聚合物溶液存在着粘弹性,在
水 驱过程中,表现了三种粘度,即本体粘度、界面粘度、拉伸粘度。在这三种粘
度 的共同作用下,聚合物驱不仅可以提高波及系数,而且还可以提高水波及域内
段原油不能得到有效的开采。
在不考虑重力影响的前提下,我们可以给出高渗透率层段水突破之前任一注
水阶段时两层段间吸水量之比:
q1 1
K1Krw1 K1Kro1
w
o
o Krw1 Kro1 K1 • w
q2 2 K 2Krw2 K 2Kro2 K2 o Krw2 Kro2
w
o
w
K1>K2
2
一 寸 光 阴 不 可轻
在水驱油条件下,水突破油层后采出液中油的分流量为:
KKro
fo
λo λw λo
μo KKrw KKro
μw μo
该式经简化得出:
fo
1
1
o •
Krw
w Kro
100
经济极限含水 90
含水率,
80
70
60
50 0.4
μo/μw=15 μo/μw=1
0.5
0.6
0.7
0.8
含水饱和度,Sw
不同油、水粘度比时采出液含水率随水饱和度变化关系曲线
残余油与流过其表面的驱替液之间的粘滞力可用下式表示: τ=dv/dz·μr
式中: τ——两相流体间的粘滞力; dv/dz——两相流体的界面速度梯度; μr——两相流体间的界面粘度。 聚合物溶液与残余油之间的界面粘度远远高于注入水与残余油间的界 面粘度值。

高浓度聚合物驱油机理及影响因素分析

高浓度聚合物驱油机理及影响因素分析

一、引言聚合物驱油可在水驱基础上提高采收率l0%左右。

聚合物浓度越高,采收率越大;越早转注高浓聚合物,采收率越大。

因此,尽可能采用最高浓度的聚合物,尽可能早地转注高浓聚合物,不仅采收率可大幅提高,而且经济效果越好。

二、聚合物驱油机理聚合物驱油是60年代初发展起来的一项三次采油技术,其特点是向水中加入高分子量的聚合物,从而使其粘度增加,改善驱替相与被驱替相间的流度比,扩大波及体积,进而提高原油采收率。

深入进行聚合物驱的研究,对改善油田开发效果,保持原油稳产,提高原油最终采收率具有重要意义。

1.提高宏观波及系数(Ev)。

聚合物注入地层后,会提高注入水的粘度,降低水相渗透率,使得油层吸水剖面得到调整,平面非均质性得到改善,水洗厚度增加,扩大了水相的波及体积,从而提高宏观波及系数。

2.提高微观驱油效率(Ep)。

只要选择合适的油藏,有正确的注入体系设计,聚合物驱可提高采收率l0%以上。

国内外专家认为,这是由于聚合物在一定注入速度下具有粘弹效应,从而提高了微观驱油效率。

聚合物驱替机理主要有:(1)粘弹性聚合物溶液对孔隙盲端中残余油的拖拉携带。

(2)聚合物溶液对连续油膜的携带机理。

(3)粘弹性聚合物溶液对孔喉处的残余油的携带机理。

(4)聚合物溶液的粘弹性对圈闭残余油的携带机理。

三、聚合物驱油影响因素由于聚合物驱主要是利用聚合物提高注入水的粘度,降低水油流度比,因此,聚合物水溶液的粘度大小,直接影响聚合物驱的效果,是聚合物驱油的主要影响因素。

1.聚合物的结构及浓度的影响。

聚合物分子越大,聚合物相互缠绕的程度越大,聚合物溶液的粘度越大。

水解度是影响聚物溶液粘度的重要因素,一般水解的聚烯酰胺要比相应未水解的聚丙烯酰胺的况粘度高,这主要是由于已水解分子上的电荷能使聚合物分子的链最大限度展开,并由此提高了溶液的视粘度。

聚合物的浓度也是影响聚合物溶液粘度的一个重要因素。

因为聚合物的浓度越大,被溶解在水中的聚合物分子越多,分子相互缠绕的机会明显增多,聚合物溶液的粘度增加。

聚合物驱油机理

聚合物驱油机理

1、聚合物溶液的流度控制作用聚合物溶液的流度控制作用是聚合物驱油的重要机理之一,对于均质油层,在通常水驱油条件下,由于注入水的粘度往往低于原油粘度,驱油过程中油水流度比不合理,导致采出液中含水率上升很快,过早地达到采油经济所允许的极限含水率的结果,使得实际获得的驱油效率远远小于极限驱油效率。

向油层注入聚合物的结果,可使驱油过程中的油水流度比大大改善,从而延缓了采出液中的含水上升速度,使实际驱油效率更接近极限驱油效率,甚至达到极限驱油效率。

在水驱油条件下,水突破油层后采出液中油的分流量为:该式经简化得出:μoKKroμw KKrw μo KKroλo λw λo fo +=+=KroKrw w o fo •+=μμ11不同油、水粘度比时采出液含水率随水饱和度变化关系曲线50607080901000.40.50.60.70.8含水饱和度,Sw含水率,%2、聚合物溶液的调剖作用调整吸水剖面,扩大波及体积,是聚合物提高采收率的另一项重要机理。

因为在聚合物的调剖作用下,油层水淹体积的扩大,将在油层的未见水层段中采出无水原油。

这就是说,油层水淹孔隙体积扩大多少,采出油的体积也就增加多少。

聚合物的调剖作用只有在油层剖面上存在渗透率的非均质状态时才能发生。

对于这类油层,在通常水驱条件下往往发生注入水沿不同渗透率层段推进不均匀现象。

高渗透率层段注入水推进快,低渗透率层段注入水推进慢。

加上注入水的粘度往往低于原油粘度,水驱油过程中高流度流体取代低流度流体的结果,导致注入水推进不均匀的程度加剧,甚至在很多情况下会出现高渗透率层段早巳被注入水所突破,而低渗透率层段注入水推进距离仍然很小的情况,致使低渗透率层段原油不能得到有效的开采。

在不考虑重力影响的前提下,我们可以给出高渗透率层段水突破之前任一注水阶段时两层段间吸水量之比:K1>K2221121222211112121Kro Krw woKro Krw w oK K oKro K w Krw K o Kro K w Krw K q q ++•=++==μμμμμμμμλλ3、聚合物溶液微观驱油机理传统的聚合物驱油理论认为,聚合物驱只是通过增加注入水的粘度,降低水油流度比,扩大注入水在油层中的波及体积提高原油采收率,聚合物驱并不能增加油藏岩石的微观驱油效率,并认为聚合物驱后残留于孔隙介质中的油的体积与水驱之后相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚合物驱油技术机理及应用文献综述目录聚合物溶液种类及性质 (2)聚合物驱油机理 (3)聚合物驱提高采收率的影响因素 (4)油层条件对提高采收率的影响因素1 (4)聚合物条件对提高采收率的影响4 (5)国内油田形成的聚合物驱主要技术 (7)一类油层聚合物驱油技术 (7)二类油层聚合物驱技术 (9)聚合物驱油技术应用效果 (10)大庆油田北一区断西聚合物驱油工业性矿场试验效果 (10)胜坨油田高温高盐油藏有机交联聚合物驱试注试验12 (12)大港油田港西五区一断块聚合物驱油试验效果 (14)参考文献 (15)聚合物溶液种类及性质驱油用的聚合物有下面几种,黄胞胶(天然),聚丙烯酰胺(PAM),梳形抗盐聚合物,疏水缔合聚合物等等1。

黄胞胶是一种由假黄单胞菌属发酵产生的单胞多糖,具有良好的增粘性、假塑性、颗粒稳定性。

由于其凝胶强度较弱,不耐长期冲刷,以及弹性差、残余阻力系数小,现场试验驱油效果不好,还容易发生生物降解作用,因此调剖和三次采油现在不怎么样用,有待于进一步改善。

聚丙烯酰胺是丙烯酰胺(AM)及其衍生物的均聚和共聚物的统称。

产品有三种形式,水溶液胶体、粉状及胶乳,并可以有阴离子、阳离子和非离子等类型(油田一般用粉状阴离子型产品,再者是非离子,阳离子正在发展)。

具有双键和酰胺基官能团,具有烯烃的聚合性能以及酰胺结构的性能。

具有水解、霍夫曼降解、交联等反应属性。

聚合物溶液应用过程中会发生氧化降解、自发水解、铁离子促进降解等化学反应,以及机械剪切降解和生物降解作用。

经试验证明,粘度对聚合物相对分子质量、水解度、浓度、温度、水质矿化度、流速有很多依赖性,基本上相对分子质量越高,水解度越小,浓度越大,温度越低,水质矿化度越小,流速越小,其粘度就越大。

聚合物溶液在孔隙介质中流动特性有絮凝、粘弹等特性。

聚丙烯酰胺的絮凝作用具有电荷中和和吸附絮凝两大因素,能降低聚合物在水中的有效浓度和粘度。

通过稳态剪切流动和稳态剪切流动实验,证明了聚合物具有粘弹性,一定条件下随流速增加而发展,粘弹效应是聚合物溶液提高微观驱油效率重要机理。

另外聚合物溶液的注入性差会导致注入压力上升,严重时将引起地层破坏,致使聚合物驱油失败。

普通聚丙烯酰胺耐温、抗盐性能差,为此有关专家研制出梳形抗盐聚合物,经过试验,其粘度、黏温性、增稠性、热稳定性都得到大大的提高,此类产品现已经成为普通聚合物的替代品。

另外研制出一种疏水缔合聚合物,增粘及抗温、抗盐、抗剪切性能提高,但是其溶解性、注入性、稳定性不怎么好,因此还需进一步改良。

聚合物驱油机理宏观上看聚合物驱油的基本原理是通过提高注入流体的粘度,调节油藏中油水两相的流度比,达到扩大波及体积的目的。

下面我们从微观上分析一下聚合物的驱油机理。

首先改善了水油流度比(M表示),扩大了波及体积。

水驱油时,当M>1,说明水的流动能力比原油强,水的流动易发生指进现象,波及系数就低,大部分原油将不会被驱替出来。

而聚合物加入水中,溶液渗入地层能力降低,粘度就提高,溶液流动则降低。

如原油的流动能力比溶液强,溶液波及范围就得到提高,水驱油的效果则变好。

其次增加了水在油藏高渗透部位的流动阻力,提高了波及效率。

聚合物的加入水中,一方面增加了水的粘度并减少了水的有效渗透率。

另一方面在渗透高部位流动时所受流动阻力小,机械剪切作用弱,聚合物降解程度低,则聚合物分子就易于缠结在孔隙中,增大高渗透部位的流动阻力。

反之,低渗透率部位,聚合物分子降解作用强,分子回旋半径就低,反而容易通过低孔径孔隙,而不堵塞小孔径。

第三,形成稳定的“油丝”通道。

由于聚合物溶液的粘弹性作用,拖拉携带盲端残余油以及形成稳定的“油丝”通道2。

聚合物加入水中,没有弹性的水变成了具有弹性的溶液。

一方面聚合物溶液可看作可胀可缩的海绵,即“海绵效应”3。

聚合物溶液通过孔隙就像海绵通过一样,可以拖拉携带出孔隙边缘中油滴状的油以及使孔隙壁上的油膜变薄。

另外一方面聚合物溶液将残余油拉伸形成细长的油柱,然后跟下游油柱相遇即形成稳定的“油丝”通道,也可能是由于油水界面的内聚力而形成多个细小油珠,并与下游油珠结合形成稳定的“油丝”通道。

无论是“海绵”效应拖拉携带残余油还是“油丝”机理,都降低了各类水驱残余油量,提高了驱油效率。

聚合物驱提高采收率的影响因素油层条件对提高采收率的影响因素1油藏类型的影响。

如果油层含大量泥岩,那么聚合物就会被泥岩吸附。

如果是气顶油藏,或者油层具有裂缝,那么注入的聚合物会充填到气顶中,或者沿着聚合物前进造成聚合物绕流。

如此就会大大的影响驱油效果,不过对于泥岩含量非常小,我们可以多注些来弥补被吸附的聚合物,对于高孔渗大孔道或微笑裂缝可以通过调剖来改善。

根据国内大量室内试验和现场实施经验,聚合物驱适用的油藏类型是陆相沉积的砂岩油藏,砂体发育连片,不含泥岩或含量非常少。

油层非均质性影响。

当油层比较均匀时,聚合物流体推进就比较均匀,比非均质油藏推进速度慢,被聚合物流体波及到体积越大,驱油效率就越高。

当油层非均质程度严重时,体积扫油效率提高幅度就越大。

体积扫油效率和驱油效率这两个因素基本保持平衡,因而提高采收率值几乎是一样的。

不过油层非均质性较均匀时,水驱开发效果本来很好,聚合物驱提高采收率的幅度就低。

而油层非均质性不好,水驱开发效果差,聚合物驱提高采收率幅度就大。

综合考虑,油层非均质性越强(一般在0.5-0.8之间),越适合实施聚合物驱油。

地层原油粘度的影响。

当原油粘度过低,那么一般水驱后孔隙中的残余油就会很少,实施聚合物驱就没有意义。

当原油粘度过高,要想改变水油流度比,则需要更高粘度的聚合物溶液,那么要求的聚合物浓度和量就高,从而需要更强的注入压力,这就给地面工艺带来了相当大的困难。

根据国内经验,原油粘度一般在20~100mPa.s之间,适合实施聚合物驱。

油层温度的影响。

温度太低,细菌活动加剧,聚合物的生物降解作用就强,不利于聚合物驱。

温度过高,聚合物的氧化降解、水解、絮凝作用就强,粘度明显减小。

根据经验,大于70℃时,过滤因子会明显增大,注入压力则需增强。

这些情况的发生都不利于聚合物驱,因此适合聚合物驱的油层温度不能过高,一般略低于70℃。

地层水矿化度的影响。

前面已经提到配置聚合物溶液所用水质的矿化度能影响聚合物驱油粘度,同样地层水的矿化度也会降低聚合物溶液的粘度,影响聚合物驱油效果。

因此适合油藏地层水的矿化度不能太高,一般在6000mg/L。

聚合物条件对提高采收率的影响4聚合物浓度及用量对原油采收率的影响5、6。

一定程度下,聚合物浓度越大,溶液的粘度越高,驱油效果应该越好。

据李鹏华等人考察聚合物浓度对聚合物驱采收率的试验结果所得图件,如图(),从图中可以看出,原油采收率随着聚合物浓度增加而提高,然后趋于缓慢。

相同浓度原油采收率随聚合物用量增加而提高到一定程度。

从而我们可以得出一般高浓度聚合物驱油效果确实要优于低浓度聚合物浓度。

聚合物相对分子量对原油采收率的影响7。

较高分子量的聚合物具有较强的粘弹性,这样就扩大力量聚合物驱的波及体积和提高聚合物驱油效率,因此在一定范围内聚合物的相对分子量越高,其原油采收率提高值也就越大。

转注时机对原油采收率的影响。

转注时机包括不进行水驱直接进行聚合物驱,由水驱后不同阶段转为聚合物驱。

水驱前、及水驱后不同阶段对应的含水率逐渐升高。

因此根据王德民所绘初始含水率与采收率提高值关系图8,我们可以得出相同浓度的聚合物驱,注入时间越早,原油采收率提高值就越大。

不同井网条件对原油采收率的影响。

由于油藏平面非均质性严重,井距越大,井间非均质性越严重,而聚合物驱可以有效降低井间非均质性,所以在控制范围内,井间距离越大,波及效率越高,原油采收率提高值也就高。

残余阻力系数对原油采收率的影响9。

残余阻力系数是聚合物溶液注入油层前后水的流动度之比,表征吸附和捕集在岩石孔道中的残留聚合物分子对水流动的抑制能力。

根据谢峰1998.9所绘聚合物驱油效率与残余阻力系数的关系曲线,我们可以得出,在聚合物驱时,滞留在岩石孔道中的聚合物能降低渗透率改变水流通道作用,残余阻力系数增加驱油效率也就增加,原油采收率提高值则变大。

综上所述国内油田形成的聚合物驱主要技术一类油层聚合物驱油技术1、高分子量聚合物前置段塞整体调剖技术。

高分子量聚合物具有增粘效果好、渗透率下降系数优点,矿场试验效果表明,高分子量聚合物不仅可以利用现有注入工艺在低于油层破裂压力条件下向主力油层正常注入,而且还会使得油层存聚率更高、油井含水下降幅度更大、采收率提高幅度更高。

室内试验和数值模拟研究表结果还表明,将少部分高分子量聚合物作为前置段塞向油田非均质主力油层注入,可以达到整体调剖、进一步提高聚合物驱开发效益的目的。

2、高浓度大段塞聚合物驱油技术。

高浓度聚合物具有较强粘弹性,驱油效果好。

根据现场试验结果,随着注入量的增加,产油量得到很大提升。

接近700 PV·mg/L时,产油量趋于稳定。

3、交联聚合物深度调剖技术。

胶态分散可动凝胶深度调剖技术形成的凝胶可以增加阻力系数和残余阻力系数。

凝胶体系特征:成胶后的粘度增加不很明显,而阻力系数和残余阻力系数可以得到大幅度的提高;由于胶态分散凝胶具有延缓交联的性能,在实际注入过程中它可以优先进入高渗透层,并在油层深部发生交联,使高渗透层的部分孔道发生堵塞,以达到降低高渗透层渗透率的目的;驱油效果明显好于普通聚合物驱。

4、产出污水配置聚合物技术。

两种方法,一是曝氧法,向产出污水中连续吹气,其次将吹气后的污水混合到聚合物母液中,然后再将稀释后的聚合物溶液注入到油层中,优点在于可以除去污水中的微生物和还原性物质,以达到避免聚合物在油层中的生化降解和还原性物质对聚合物溶液粘度的不利影响,二是污水聚合物驱改性法,总体思路是在化学剂总投入不增加的前提下,向油田产出污水与聚合物溶液中添加适量的改性剂,使得污水配置的聚合物溶液的粘度和残余阻力系数增加,以达到改性后的污水聚合物驱油效果接近或超过清水聚合物驱的目的。

5、“一井一制”注入技术,解决了部分注聚井注入压力迅速上升矛盾,而且低压井高浓度注入有效地封堵了高渗透带,减少了聚合物窜流,提高了驱替效率。

优化工程方案,发展聚合物驱注采工艺技术,有五项配套技术:1、成功研制了高密度、大孔径、深穿透射孔新技术。

优点在于可减少孔径处对聚合物的剪切降解,尽可能地保留聚合物溶液粘度;2、形成了以保留注入聚合物溶液粘度为核心的地面注入工艺技术。

3、初步形成了适应聚合物采出液的处理技术。

包括游离水脱除、电脱水和含油污水处理;4、研究和发展了适合聚合物驱的分层注入、分层测试技术。

解决了层间吸聚差异大的问题;5、建立了一套动态监测技术。

如聚合物注入和采出的浓度、粘度和分子量测试技术等。

二类油层聚合物驱技术在主力油层聚合物驱成熟配套技术基础上进行了二类油层聚合物驱矿场试验及实践,确定了二类油层聚合物驱开发方法11,即以解决平面、层间矛盾为主,以提高聚合物驱控制程度为核心改善聚合物驱效果,弄清聚合物相对分子质量与油层渗透率的匹配关系。

相关文档
最新文档