初一:代数式的求值专题

合集下载

七年级数学代数式求值——整体代入(二)(人教版)(专题)(含答案)

七年级数学代数式求值——整体代入(二)(人教版)(专题)(含答案)
答案:C
解题思路:
解:由题意,当x=-1时,


当x=1时,
故选C.
试题难度:三颗星知识点:整式的加减的应用——整体代入
6.若 ,则 的值为( )
A.1 B.-1
C.5 D.-5
答案:D
解题思路:
解:
故选D.
试题难度:三颗星知识点:整式的加减的应用——整体代入
7.若 , ,则代数式 的值为( )
A.11 B.4
2.当x=-3时,代数式 的值为7,则当x=3时,这个代数式的值为( )
A.-3 B.-7
C.7 D.-17
答案:D
解题思路:
解:由题意,当 时,


当 时,
故选D.
试题难度:三颗星知识点:整式的加减的应用——整体代入
3.当x=2时,代数式 的值为3,则当x=-2时,代数式 的值为( )
A.-5 B.0
4.当x=1时,代数式 的值为3,则当x=-1时,代数式 的值为( )
A.2 B.1
C.9 D.7
答案:C
解题思路:
解:由题意,当 时,

当 时,
故选C.
试题难度:三颗星知识点:整式的加减的应用——整体代入
5.当x=-1时,代数式 的值为5,则当x=1时,代数式 的值为( )
A.2 B.-2
C.10 D.-10
代数式求值——整体代入(二)(人教版)(专题)
一、单选题(共10道,每道10分)
1.当x=1时,代数式 的值为100,则当x=-1时,这个代数式的值为( )
A.-98 B.-99
C.-100 D.98
答案:A
解题思路:
解:由题意,当x=1时,

初一数学代数式求值

初一数学代数式求值

初一数学代数式求值题的详细解析:1. 题目:已知x = 1 ,求2x + 3 的值。

解析:把x = 1 代入式子,得到2×1 + 3 = 5 。

2. 题目:若y = -2 ,求3y²- 4 的值。

解析:将y = -2 代入,3×(-2)²- 4 = 8 。

3. 题目:当a = 5 时,求6a - 1 的值。

解析:把a = 5 代入,6×5 - 1 = 29 。

4. 题目:已知b = 4 ,求7b + 2 的值。

解析:因为b = 4 ,所以7×4 + 2 = 30 。

5. 题目:若c = 0 ,求8c - 5 的值。

解析:由于c = 0 ,所以8×0 - 5 = -5 。

6. 题目:当d = -3 时,求5d + 7 的值。

解析:把d = -3 代入,5×(-3) + 7 = -8 。

7. 题目:已知e = 2 ,求9e - 6 的值。

解析:将e = 2 代入,9×2 - 6 = 12 。

8. 题目:若f = -1 ,求10f + 8 的值。

解析:把f = -1 代入,10×(-1) + 8 = -2 。

9. 题目:当g = 3 时,求4g - 9 的值。

解析:把g = 3 代入,4×3 - 9 = 3 。

10. 题目:已知h = 5 ,求6h - 10 的值。

解析:因为h = 5 ,所以6×5 - 10 = 20 。

11. 题目:若i = 0 ,求7i - 3 的值。

解析:由于i = 0 ,所以7×0 - 3 = -3 。

12. 题目:当j = -2 时,求8j + 5 的值。

解析:把j = -2 代入,8×(-2) + 5 = -11 。

13. 题目:已知k = 1 ,求5k - 7 的值。

解析:将k = 1 代入,5×1 - 7 = -2 。

14. 题目:若l = -3 ,求6l + 4 的值。

七年级数学《代数式求值》专项练习

七年级数学《代数式求值》专项练习

七年级数学代数式求值一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为()A.﹣1 B.1 C.﹣2 D.22.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为()A.54 B.6 C.﹣10 D.﹣183.已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0 B.1 C.﹣1 D.﹣24.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,15.当x=1时,代数式4﹣3x的值是()A.1 B.2 C.3 D.46.已知x=1,y=2,则代数式x﹣y的值为()A.1 B.﹣1 C.2 D.﹣37.已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或308.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣99.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是()A.3 B.0 C.1 D.210.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0 B.﹣1 C.﹣3 D.311.当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣712.如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为()A.3 B.27 C.9 D.1二、填空题(共18小题)13.若4a﹣2b=2π,则2a﹣b+π= .14.若2m﹣n2=4,则代数式10+4m﹣2n2的值为.15.若a﹣2b=3,则9﹣2a+4b的值为.16.已知3a﹣2b=2,则9a﹣6b= .17.若a2﹣3b=5,则6b﹣2a2+2015= .18.按照如图所示的操作步骤,若输入的值为3,则输出的值为.19.若a﹣2b=3,则2a﹣4b﹣5= .20.已知m2﹣m=6,则1﹣2m2+2m= .21.当x=1时,代数式x2+1= .22.若m+n=0,则2m+2n+1= .23.按如图所示的程序计算.若输入x的值为3,则输出的值为.24.按照如图所示的操作步骤,若输入x的值为2,则输出的值为.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是.26.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是.27.若x2﹣2x=3,则代数式2x2﹣4x+3的值为.28.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为.29.已知x(x+3)=1,则代数式2x2+6x﹣5的值为.30.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为.参考答案与试题解析一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为()A.﹣1 B.1 C.﹣2 D.2【考点】代数式求值.【分析】把m、n的值代入代数式进行计算即可得解.【解答】解:当m=1,n=0时,m+n=1+0=1.故选B.【点评】本题考查了代数式求值,把m、n的值代入即可,比较简单.2.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为()A.54 B.6 C.﹣10 D.﹣18【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.故选B.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3.已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0 B.1 C.﹣1 D.﹣2【考点】代数式求值.【专题】计算题.【分析】原式前两项提取变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.4.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;B、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;D、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.5.当x=1时,代数式4﹣3x的值是()A.1 B.2 C.3 D.4【考点】代数式求值.【专题】计算题.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=1时,原式=4﹣3=1,故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.已知x=1,y=2,则代数式x﹣y的值为()A.1 B.﹣1 C.2 D.﹣3【考点】代数式求值.【分析】根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x﹣y的值为多少即可.【解答】解:当x=1,y=2时,x﹣y=1﹣2=﹣1,即代数式x﹣y的值为﹣1.故选:B.【点评】此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.7.已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或30【专题】整体思想.【分析】方程两边同时乘以2,再化出2x2﹣4x求值.【解答】解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣9【考点】代数式求值;二元一次方程的解.【专题】计算题.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【解答】解:由题意得,2x﹣y=3,A、x=5时,y=7,故A选项错误;B、x=3时,y=3,故B选项错误;C、x=﹣4时,y=﹣11,故C选项错误;D、x=﹣3时,y=﹣9,故D选项正确.故选:D.【点评】本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.9.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是()A.3 B.0 C.1 D.2【专题】整体思想.【分析】把(m+n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵m+n=﹣1,∴(m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣1)2﹣2×(﹣1)=1+2=3.故选:A.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.10.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0 B.﹣1 C.﹣3 D.3【考点】代数式求值.【分析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.【解答】解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.【点评】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.11.当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣7【考点】代数式求值.【专题】整体思想.【分析】把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.【解答】解:x=1时, ax3﹣3bx+4=a﹣3b+4=7,解得a﹣3b=3,当x=﹣1时, ax3﹣3bx+4=﹣a+3b+4=﹣3+4=1.故选:C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为()A.3 B.27 C.9 D.1【考点】代数式求值.【专题】图表型.【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【解答】解:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2014是偶数,∴第2014次输出的结果为1.故选:D.【点评】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.二、填空题(共18小题)13.若4a﹣2b=2π,则2a﹣b+π= 2π.【考点】代数式求值.【分析】根据整体代入法解答即可.【解答】解:因为4a﹣2b=2π,所以可得2a﹣b=π,把2a﹣b=π代入2a﹣b+π=2π.【点评】此题考查代数式求值,关键是根据整体代入法计算.14.若2m﹣n2=4,则代数式10+4m﹣2n2的值为18 .【考点】代数式求值.【分析】观察发现4m﹣2n2是2m﹣n2的2倍,进而可得4m﹣2n2=8,然后再求代数式10+4m﹣2n2的值.【解答】解:∵2m﹣n2=4,∴4m﹣2n2=8,∴10+4m﹣2n2=18,故答案为:18.【点评】此题主要考查了求代数式的值,关键是找出代数式之间的关系.15.若a﹣2b=3,则9﹣2a+4b的值为 3 .【考点】代数式求值.【专题】计算题.【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.已知3a﹣2b=2,则9a﹣6b= 6 .【考点】代数式求值.【分析】把3a﹣2b整体代入进行计算即可得解.【解答】解:∵3a﹣2b=2,∴9a﹣6b=3(3a﹣2b)=3×2=6,故答案为;6.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.17.若a2﹣3b=5,则6b﹣2a2+2015= 2005 .【考点】代数式求值.【分析】首先根据a2﹣3b=5,求出6b﹣2a2的值是多少,然后用所得的结果加上2015,求出算式6b﹣2a2+2015的值是多少即可.【解答】解:6b﹣2a2+2015=﹣2(a2﹣3b)+2015=﹣2×5+2015=﹣10+2015=2005.故答案为:2005.【点评】此题主要考查了代数式的求值问题,采用代入法即可,要熟练掌握,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.按照如图所示的操作步骤,若输入的值为3,则输出的值为55 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序列式计算即可得解.【解答】解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.【点评】本题考查了代数式求值,读懂题目运算程序是解题的关键.19.若a﹣2b=3,则2a﹣4b﹣5= 1 .【考点】代数式求值.【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.【解答】解:2a﹣4b﹣5=2(a﹣2b)﹣5=2×3﹣5=1.故答案是:1.【点评】本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a﹣2b)的值,然后利用“整体代入法”求代数式的值.20.已知m2﹣m=6,则1﹣2m2+2m= ﹣11 .【考点】代数式求值.【专题】整体思想.【分析】把m2﹣m看作一个整体,代入代数式进行计算即可得解.【解答】解:∵m2﹣m=6,∴1﹣2m2+2m=1﹣2(m2﹣m)=1﹣2×6=﹣11.故答案为:﹣11.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.21.当x=1时,代数式x2+1= 2 .【考点】代数式求值.【分析】把x的值代入代数式进行计算即可得解.【解答】解:x=1时,x2+1=12+1=1+1=2.故答案为:2.【点评】本题考查了代数式求值,是基础题,准确计算是解题的关键.22.若m+n=0,则2m+2n+1= 1 .【考点】代数式求值.【分析】把所求代数式转化成已知条件的形式,然后整体代入进行计算即可得解.【解答】解:∵m+n=0,∴2m+2n+1=2(m+n)+1,=2×0+1,=0+1,=1.故答案为:1.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.23.按如图所示的程序计算.若输入x的值为3,则输出的值为﹣3 .【考点】代数式求值.【专题】图表型.【分析】根据x的值是奇数,代入下边的关系式进行计算即可得解.【解答】解:x=3时,输出的值为﹣x=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,准确选择关系式是解题的关键.24.按照如图所示的操作步骤,若输入x的值为2,则输出的值为20 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序写出算式,然后代入数据进行计算即可得解.【解答】解:由图可知,运算程序为(x+3)2﹣5,当x=2时,(x+3)2﹣5=(2+3)2﹣5=25﹣5=20.故答案为:20.【点评】本题考查了代数式求值,是基础题,根据图表准确写出运算程序是解题的关键.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是9 .【考点】代数式求值.【专题】应用题.【分析】观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.【解答】解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.【点评】依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.26.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是 3 .【考点】代数式求值.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.27.若x2﹣2x=3,则代数式2x2﹣4x+3的值为9 .【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵x2﹣2x=3,∴2x2﹣4x+3=2(x2﹣2x)+3=6+3=9.故答案为:9【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.28.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为 5 .【考点】代数式求值.【专题】整体思想.【分析】先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.【解答】解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=5.故答案为:5.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.29.已知x(x+3)=1,则代数式2x2+6x﹣5的值为﹣3 .【考点】代数式求值;单项式乘多项式.【专题】整体思想.【分析】把所求代数式整理出已知条件的形式,然后代入数据进行计算即可得解.【解答】解:∵x(x+3)=1,∴2x2+6x﹣5=2x(x+3)﹣5=2×1﹣5=2﹣5=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.30.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为9 .【考点】代数式求值.【专题】整体思想.【分析】把所求代数式整理成已知条件的形式,然后代入进行计算即可得解.【解答】解:∵x2﹣2x=5,∴2x2﹣4x﹣1=2(x2﹣2x)﹣1,=2×5﹣1,=10﹣1,=9.故答案为:9.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.。

代数式求值经典题型(含详细答案)

代数式求值经典题型(含详细答案)

代数式求值经典题型【编著】黄勇权经典题型:1、x+x 1=3,求代数式x2-2x 1的值。

2、已知a+b=3ab ,求代数式b 1a 1+的值。

3、已知x 2-5x+1=0,求代数式x 1x +的值。

4、已知x-y=3,求代数式(x+1)2-2x+y(y-2x )的值。

5、已知x-y=2,xy=3,求代数式x 2-x y6+y2的值。

6、已知y x =2,则x y-x 的值是多少?7、若2y 1x 1=+,求代数式:3y x y -3x y 3x y -x ++的值。

8、已知5-x =4y-4-y 2,则代数式2x-3+4y的值是多少?9、化简求值,12x x 1-x 2++÷)(1x 21+-,其中x=13-10、x 2-4x+1=0,求代数式:x 2+2x 1的值。

【答案】1、x+x 1 =3,求代数式:x 2-2x 1的值。

解:x2-2x 1=(x+x 1)(x-x 1)=(x+x 1)2x1-x )( =(x+x 1)22x 12x +-=(x+x 1)4x12x 22-++ =(x+x 1)4x 1x 2-+)(将x+x 1=3代入式中=3×432-=352、已知a+b=3ab ,求代数式:b 1a 1+的值。

解:b 1a 1+=ab b a +将a+b=3ab 代入式中=3 3、已知x2-5x+1=0,求代数式:x1x +的值。

解:因x 2-5x+1=0,等式两边同时除以x则有:x 0x 1x x 5x x 2=+-化简得:x-5+x 1=0把-5移到等号的右边,得:x1x +=54、已知x-y=3,求代数式:(x+1)2-2x+y (y-2x)的值。

解:(x+1)2-2x+y(y-2x)去括号,展开得=x2+2x+1-2x+y2-2xy合并同类项,+2x与-2x抵消=x2+1+y2-2xy把+1移到最后,22此三项结合=(x2-2xy+y2)+1=(x-y)2+1将x-y=3合代入式中=(3)2+1=3+1=45、已知x-y=2,xy=3,求代数式x 2-x y6+y2的值。

代数式求值经典题型(含详细答案)

代数式求值经典题型(含详细答案)

代数式求值经典题型(含详细答案)1、已知x+y=3,求代数式x²-xy的值。

解:将x+y=3代入式中,得x²-xy=x²-(3-x)x=2x²-3x,再将x+y=3代入式中,得x=3-y,代入原式中,得2(3-y)²-3(3-y),化简得-6y+15,所以代数式x²-xy的值为15-6y。

2、已知a+b=3ab,求代数式a+b的值。

解:将a+b=3ab代入式中,得a+b=3(a+b)ab,移项得3ab(a+b)-a-b=0,因式分解得(3ab-1)(a+b)=0,因为a+b≠0,所以3ab=1,代入a+b=3ab中,得a+b=3/3=1.4、已知2x-y=6,x²+y²=13,求代数式x-y的值。

解:将2x-y=6代入式中,得y=2x-6,代入x²+y²=13中,得x²+(2x-6)²=13,化简得5x²-24x+25=0,解得x=1或5,代入y=2x-6中,得y=-4或4,所以x-y的值为5或-3.6、已知y/x=2,则x的值是多少?解:将y/x=2代入式中,得y=2x,代入x-y=6中,得x-2x=6,解得x=-6,所x的值是-6.7、已知x-3xy+y/xy=27,求代数式3x-xy+3y的值。

解:将x-3xy+y/xy=27代入式中,得xy²-3xy+y=27xy,移项得xy²-3xy+y-27xy=0,化简得y(x-3)(y-9)=0,因为y≠0,所以x=3或y=9,代入3x-xy+3y中,得3(3)-3(3)(2)+3(9)=12,所以代数式3x-xy+3y的值为12.8、已知x-5=4y-4-y,则代数式2+4的值是多少?解:将x-5=4y-4-y代入式中,得x=3y-1,代入2+4中,得2+4=2+(3y-1)+4=3y+5,所以代数式2+4的值为3y+5.9、化简求值:(2x+2)/(2x+1)÷(x-3)/(x+1),其中x≠-1,-1/2.解:将(2x+2)/(2x+1)÷(x-3)/(x+1)化简得(2x+2)/(2x+1)×(x+1)/(x-3),分子分母同时约分,得(x+1)/(2x-3),将x=-1/2代入式中,得-1,所以代数式的值为-1.10、x-4x²+1=0,求代数式x的值。

初中数学代数式求值精选练习题及答案

初中数学代数式求值精选练习题及答案

初中数学代数式求值精选练习题及答案1、已知3a-b+2c=7,5a+4b-3c=6,求代数式a+11b-12c的值;2、已知2m6+ m4= 3,求m的值;3、已知x2 −3x−27=0,求代数式1(x+4)2+(x+4)2的值;4、已知x,y,z为正数,且xy=28,yz=48,xz=84,求代数式x+2y+3z值;5、已知a= 2b−3,求代数式6ab+3a(2-3b)+3a+7的值;6、已知m a=2,m a+b=14,求代数式√m a + m b的值;7、已知x,y,z为整数,若x+y+z=3,x2+ y2+z2=5,求代数式x3+y3+ z3-10的值;8、已知m2-n2=12,(m+n)2= 16,求代数式8mn+9的值;9、已知x=√2+√3,求代数式x2−2√3x-4的值;10、已知m +n =-5,求代数式m2- 10n- n2的值。

参考答案1、已知3a-b+2c=7,5a+4b-3c=6,求代数式a+11b-12c的值;解:已知3a-b+2c=7将上式变换一下,得b=3a+2c-7---------------①将①代入5a+4b-3c=6,得5a+4(3a+2c-7)-3c =6整理,得17a+5c=34---------------②代数式a+11b-12c将①代入=a+11(3a+2c-7)-12c=34a+10c-77=2(17a+5c)-77将②代入=2×34-77=-92、已知2m6+ m4= 3,求m的值;解:2m6+ m4= 32(m2)3+ (m2)2= 3令m2=t,原式则为2t3 + t2 =32t3 + t2 -3 =02t3 + t2 -2-1 =0(2t3 - 2)+(t2 -1)=02(t3 -1)+(t2 -1)=02(t-1)(t2 +t+1)+(t+1)(t-1)=0 (t-1)〔2(t2 +t+1)+(t+1)〕=0(t-1)(2t2 +3t+3)=0因为2t2 +3t+3 =2(t+34)2+ 158>0所以2t2 +3t+3≠0故:只有t-1=0即t=1又m2=t所以m2=1,得m=±1故:m的值为±13、已知x2 −3x−27=0,求代数式1(x+4)2+(x+4)2解:x2 −3x−27=0x2 −3x−27−1= -1x2 −3x−28= -1(x+4)(x-7)= -1等号两边同时除以(x+4),得X -7= −1x+4等号两边同时乘以-1,得7-x = 1x+4-----------------①代数式1(x+4)2+(x+4)2=(1x+4)2+2×1x+4×(x+4)+(x+4)2-2=〔1x+4+(x+4)〕2-2将①带入,用7-x替换1x+4=〔(7−x)+(x+4)〕2-2 =(11)2-2=1094、已知x,y,z为正数,且xy=28,yz=48,xz=84,求代数式x+2y+3z值;解:xy=28-------------------①yz=48-------------------②xz=84-------------------③三个等式相乘,得(xyz)2= 28*48*84=(4*7)*(4*12)*(7*12)(xyz)2=(4∗7∗12)2因为x,y,z为正数所以xyz =4∗7∗12 -----④④÷①,得:z=12④÷②,得:x=7④÷③,得:y=4代数式x+2y+3z将x=7,y=4,z=12代入=7+2*4+3*12=515、已知a= 2b−3,求代数式6ab+3a(2-3b)+3a+7的值;解:a= 2b−3等式两边同时乘以b-3,得ab-3a=2上式变换一下,得ab=3a+2--------------①代数式6ab+3a(2-3b)+3a+7=6ab+6a-9ab+3a+7=-3ab+9a+7将①代入=-3(3a+2)+9a+7=-9a-6+9a+7=16、已知m a=2,m a+b=14,求代数式√m a + m b的值;解:m a+b=14m a×m b=14已知m a=2--------------①即:2 ×m b=14m b= 7-------------②代数式√m a + m b将①②代入=√2+7=37、已知x,y,z为整数,若x+y+z=3,x2+ y2+z2=5,求代数式x3+y3+ z3-10的值;解:因为x,y,z为整数且x2+ y2+z2=5若其中一个数为±3,它的平方为9,显然大于5所以:x,y,z只能取±2,±1, 0 -------------------①(A)设x= -2,因为x+y+z=3,所以y+z=5,这时y或z必定有一个取±3或±4或±5,不符合①,所以舍去;(B)设x= 2因为x+y+z=3,所以y+z=1即:y=1-z--------------------------②又x2+ y2+z2=5,所以y2+z2=1-------③将②代入③(1−z)2+z2=12z2-2z=0解得:z=0,或z=1对应的y=1或0整理得:{x=2y=0x=1或{x=2y=1z=0求代数式(x3+y3+ z3)-10=(23+03+ 13)-10=-1(C)设x= -1因为x+y+z=3,所以y+z=4,因为x,y,z只能取±2,±1, 0所以,这时只能是:y=z=2整理得:{x=−1 y=2 x=2求代数式(x3+y3+ z3)-10=(−13+23+ 23)-10=5(D)设x= 1因为x+y+z=3,所以y+z=2,即y=2- z又x2+ y2+z2=5,所以y2+z2=4将y=2- z代入(2−z)2+z2=4化简,得2z2-4z=0解得:z=0,或z=2对应y=2或y=0整理得:{x=1y=0x=2或{x=1y=2z=0求代数式(x3+y3+ z3)-10=(13+23+ 03)-10= -1(E)设x= 0因为x+y+z=3,所以y+z=3,即y=3- z又x2+ y2+z2=5,所以y2+z2=5将y=3- z代入(3−z)2+z2=5化简,得2z2-6z+4=0,即z2-3z+2=0即(z-2)(z-1)=0解得:z=2或z=1对应:y=1或y=2整理得:{x=0y=2x=1或{x=0y=1z=2求代数式(x3+y3+ z3)-10=(03+23+ 13)-10= -18、已知m2-n2=12,(m+n)2= 16,求代数式8mn+9的值;解:m2-n2=12(m +n)(m -n)=12两边同时平方,得(m + n)2(m−n)2=144将(m+n)2= 16代入16*(m−n)2=144(m−n)2=9等号左边展开:m2-2mn + n2=9------------①又(m+n)2= 16等号左边展开:m2+2mn + n2=16-----------②②-①,得4mn=7代数式8mn+9=2*4mn+9=2*7+9=239、已知x=√2+√3,求代数式x2−2√3x-4的值;解:x=√2+√3x= √2−√3(√2+√3)(√2−√3)= √2−√32−3=√2−√3−1=√3-√2--------------①x2 = (√3 − √2)2 =3+2-2√6=5-2√6---------------------②代数式x2−2√3x−4将①②代入=(5-2√6)-2√3(√3-√2)+4=5-2√6-6+2√6+4=310、已知m +n =-5,求代数式m2- 10n- n2的值。

七年级上册数学《代数式的求值专题》

七年级上册数学《代数式的求值专题》

一、代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.例2、若abc=1,求2.利用乘法公式求值例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.求x2+6xy+y2的值.3.换元法求值4.利用非负数的性质求值若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x2-4x+|3x-y|=—4,求y x的值.例9 未知数x,y满足(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.5.利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.例10 已知xyzt=1,求下面代数式的值:练习:1、解下列方程:(1)213101122141x x x--+=+-(2)56003001005815020102--=--......x x2、解下列关于x的方程(1)a xbx baa b+=-+≠2()(2)x x k x k2221101-+--=≠()().3、解下列方程:(1)1131222----=xx xx;(2)x xxxx x2417272418+-+-+=()4、解下列方程:(1)230x x++=;(2)235239322x x x x+-++=-5、解下列方程:(1)x x x32430-+=(2)()x x x x2221244-=+-6、已知:x+y+z=3a(a≠0,且x,y,z不全相等),求7、计算:。

【常考压轴题】专题05 代数式求值的四种考法(原卷版)2023-2024学年七年级数学上册压轴题攻略

【常考压轴题】专题05 代数式求值的四种考法(原卷版)2023-2024学年七年级数学上册压轴题攻略
5.若 a、b 互为相反数,c、d 互为倒数, | m | 2 ,求 a b m2 5cd 6m 的值. 3m

【变式训练 1】若实数 x 满足 x2 x 1 0 ,则 2x2 2x 2021

【变式训练 2】若 a 2b 3c 3, 5a 6b 7c 5 ,则 a 6b 8c 的值是( )
A. 2
B.2
C.0
D. 1
类型二、降幂思想求值
例 1.已知 2x2 x 5 0 ,则 4x4 4x3 x2 的值为
专题 05 代数式求值的四种考法
类型一、整体思想求值
例 1.当 x 2 时,代数式 ax3 bx 1的值为 45 ,则当 x 2 时,代数式 ax3 bx 1的值


例 2.已知 x2 - x - 4 = 0 ,则 2 3x2 3x 的值
例 3.已知 m n 2 ,则 m n2 m n 的值为
例.已知 x 1 2021 a0 a1x a2 x2 a3 x3 a2021x2021 ,则 a1 a2 a2021

【变式训练 1】设 x 13 ax3 bx2 cx d ,则 a b c d 的值为(

A.2
B.8
C. 2
D. 8
【变式训练 2】 (2x 1)5 a5x5 a4x4 ... a1x a0 ,则 a2 a4 ___________.
课后训练
1.已知代数式 5 y x 的值是 4 ,则代数式 2x 10 y 10 的值是

2.已知 2m 3n2 7 0 ,则代数式 12n2 8m 4 的值等于
.ቤተ መጻሕፍቲ ባይዱ
3.若 a 与 b 互为相反数,c 与d 互为倒数,e 是绝对值最小的数,则 2 a b 3cd 4e .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理
——代数式的求值
类型一、利用分类讨论方法
【例1】 已知x =7,y =12,求代数式x +y 的值.
变式练习:
1、
2、2y +的值;1、
2、
【例2】若实数a 、b 满足a 2b 2+a 2+b 2-4ab+1=0,求b
a
a b +之值。

变式练习:
1、已知:│3x-5│+│2y+8│=0求x+y
2、若205×│2x-7│与30×│2y-8│互为相反数,求xy+x
题型四、利用新定义
【例1】 用“★”定义新运算:对于任意实数a ,b ,都有a ★b =b 2+1.例如,7★4=42+1=17,那么5★3=___;当m 为实数时,m ★(m ★2)=___.
变式练习:
1、定义新运算为a △b =(a +1)÷b ,求的值。

6△(3△4)
2、假定m ◇n 表示m 的3倍减去n 的2倍,即 m ◇n=3m-2n 。

(2
3、 设2m 【例(2【例【例1、已知114a b -=,则2227a ab b
a b ab
---+的值等于().
A .6
B .-6
C .215
D .2
7
-
2、若1233215,7x y z x y z ++=++=,则111
x y z
++=.
3、已知
7=-+b
a b a ,求
)(3)(2b a b a b a b a +---+的值;4、已知211=+y x ,求代数式y xy x y
xy x 535323+++-的值;
精心整理
5、若0=++c b a ,则)11(11()11(a b c c
a b c b a +++++的值为;
6、已知5,3,2=--=-=-d c c b b a ,则d
a d
b
c a ---)
)((的值为;
题型七、参数代入
【例1】、已知
234a b c ==求523a b c
a b c +--+的值. 【例2】、若22237y y ++的值为1
4
,则21461y y +-的值为().
【例1、2、3、A 4-1、2、已知2,1=-=-a c b a ,则________)()()(33=-+-+-a c b c b a ;
3、已知20012000,20002000,19992000+=+=+=x c x b x a ,那么22)()(c b b a -+-
2)(a c -+的值等于()
A4B6C8D10
5、已知89413121(
218
1=+++z y x ,求)12346(284xyz
xy
xz yz ++⨯+的值; 题型九、特殊值法
【例1】、已知-1<b <0,0<a <1,那么在代数式a -b 、a+b 、a+b 2、a 2+b 中,对任意的a 、b ,对应的代数式的值最大的是() (A)a+b (B)a -b (C)a+b 2(D)a 2+b 【例
【例1、,
1+a a 2、1、若一、选择题(每小题3分,共30分)
1.在5-,0,2-,4这四个数中,最大的数是( )
A .4
B .5-
C .0
D .2-
2.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高铁车从“中国制造”到“中国创造”的飞跃,将数300000用科学记数法表示
精心整理
16
1514131211109
8
765
4
321
为( )
A .6310⨯
B .60.310⨯
C .5310⨯
D .43010⨯
3.用一个平面去截一个正方体,截面的形状不可能...
为( ) A .三角形 B .五边形
C .六边形
D .七边形
4.下列各组式子,不是..
同类项的是( ) A .22与33 B .23c b 与25b c - C .1
2
xy 与4xy D .24m n 与22nm 5.已知a ,b 所表示的数如图所示,下列结论正确的是
( )
A .0a >
B .b >0
C .a b <
D .a-b <0
6.用代数式表示“a 的3倍与b 的差的平方”,正确的是()
A .2(3)a b -
B .23()a b -
C .23a b -
D .2(3)a b -
7.如图所示的是()的表面展开图
A .三棱锥
B .三棱柱
C .四棱柱
D .四棱锥
8.某种品牌彩电原价a 元,降价20%后,则该品牌彩电每台售价为( )
A .
0.8
a
元 B .0.8a 元 C .0.2a 元 D .
0.2
a
元 9.下列运算正确的是()
A .()33a a -=
B .()22a a -= C.22a a -=-D .33a a =
10.观察下图中正方形四个顶点所标的数字规律,可知数2015应标在( ) 第1个正方形第2个正方形第3个正方形第4个正方形 A .第502个正方形的左下角
B .第503个正方形的右上角
C .第504个正方形的左上角
D .第504个正方形的右上角
二、填空题(每空2分,共20分)
11.3的相反数是,4
13-的绝对值是.
12.如果全班某次数学成绩的平均分是84分,某同学得了85分,记作+1分,那么5
-分表示的是分.
13.单项式3
53
ab π-的系数是,次数是.
14.若01)2(2=-++b a ,则2015)(b a +的值是.
15.16. 17.18.19.()
(5-⨯(520.(121.(6分)如图为7个大小一样的小正方体组成的几何体,请画出此几何体的三视图.
22.(10分)某办公用品销售商店推出两种优惠方法:①每购买2个书包,赠送1支水性笔;②购书包和水性笔一律9折优惠.书包每个定价40元,水性笔每支10元.小颖和同学需购买8个书包,水性笔若干支(不少于4支).
(1)用优惠方法①购买水性笔x 支,总费用为1y 元,用含x 的代数式表示1y ;用优惠
精心整理
方法②购买水性笔x 支,总费用为2y 元,用含x 的代数式表示2y .
(2)小颖和同学需购买这种书包8个和水性笔16支,请分别计算1y ,2y 的值.请设计出费用最少的方案,求出最少费用.
B 卷(共50分)
一、填空题(每小题4分,共20分)
2324252627.28.29.30.1(1)用含n (其中n 为正整数)的代数式表达上式规律为:1
(1)
n n =+; (2)利用规律计算:
2016
20151
103102110210111011001⨯++⨯+⨯+⨯
(3)利用规律先化简再求值:
)2015)(2014(1)3)(2(1)2)(1(1)1(1++++++++++x x x x x x x x ,其中x
x x x 20152015
2015112
+=+-,且满足03604532=-+x x .
(4)探究并计算:
11151010151520+++⨯⨯⨯ (1)
20102015
+
⨯ 31.(本小题满分8分)
学校去超市采购大米,他看中了A 、B 两家超市的大米,这两家超市大米的品质一样,零售价都为6元/千克,批发价各不相同.A 家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量超过1000千克但不超过2000千克,按零售价的90%优惠;批发数量超过2000千克,按零售价的88%优惠.
=6⨯。

相关文档
最新文档