葡萄酒的评价数学建模
数学建模葡萄酒的评价 大学毕业设计

葡萄酒的评价摘要葡萄拥有很高的营养价值,本文通过对葡萄酒的评价,以及酿酒葡萄和葡萄酒的理化指标之间的关系进行讨论分析,对不同的酿酒葡萄进行了分类,并更深入讨论两者的理化指标是否影响葡萄酒质量。
针对问题一,我们首先分别计算每类葡萄酒样品在两组组评酒师评价下的综合得分,以此作为每组评酒师的最终评价结果。
再运用统计学中的T 检验进行假设与检验,得出两组评价结果具有显著性差异。
最后通过计算各组评价员的评价结果的标准差,以此推算稳定性指标值P ,P 值较大的可信度较高,得出2p p <红1红与2P P <白1白,进而得出第二组的评价结果更加可信。
针对问题二,我们分别对两组葡萄进行分类。
在这里我们采用聚类分析法和主成分分析法,在matlab 中实现对酿酒葡萄的分类。
针对问题三,根据σμ-=x Z 对附件2中的数据进行标准化处理,排除单位不同的影响。
以酿酒葡萄的30个一级理化指标作为自变量X ,葡萄酒9个一级的理化指标作为因变量y,建立多元线性回归模型εβ+=X y ,得出酿酒葡萄的理化指标与葡萄酒的理化指标之间的联系即回归系数矩阵β。
针对问题四,用灰色关联度分析对两者的关系进行度量,求得理化指标对样品酒的的关联系数。
然后根据葡萄酒综合得分及指标的相关系数得出样品酒的综合指标,通过MATLAB 软件对综合指标与第二问中葡萄酒的分数进行指数拟合,拟合效果不佳,因此不能定量的用葡萄和葡萄酒的理化指标来评价葡萄酒的质量,只能根据图像大致猜测综合指标与葡萄酒的质量负相关。
关键词:T 检验 聚类分析法 主成分分析法 Z 分数 多元线性回归一、问题重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。
每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。
酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。
数学建模葡萄酒评价优秀论文

葡萄酒的评价模型摘要近年来,我国掀起了一场葡萄酒热,对葡萄酒的需求与日俱增。
特别是随着食品科学技术的发展,人们不再满足传统感官评价葡萄酒的水平。
如何运用数据资料定量研究葡萄酒的品质,加快建立葡萄酒市场指标规则成为人们关注的焦点。
本文通过对感官评价分析,结合葡萄酒和酿酒葡萄的理化指标和芳香物质的大量数据,建立了客观可靠的葡萄酒质量综合评价模型。
针对问题一:本题需要检验两组品酒员的评价结果是否存在显著差异,并选出更可靠的一组。
我们将各种葡萄酒的10个二级指标得分,相加得到每种酒的总分。
在判断知每组品酒员的评价总分均服从正态分布后,用t检验分析两组品酒员对各葡萄酒评价的差异性,由此计算得到两组评价的显著性差异率为13.36%,即总体上两组品酒员的评价不存在显著差异。
但由于两组品酒员的评价仍存在部分差异,我们比较两组品酒员对55种葡萄酒评价的方差,发现第二组评分的方差普遍小于第一组,所以第二组的评价结果更可信。
针对问题二:为了对酿酒葡萄进行分级,我们将葡萄的理化指标作为媒介。
先根据国际指标制定适用于本题评分的分级标准,将葡萄酒进行分级,再根据理化指标经标准化之后的数值,利用欧氏距离对酿酒的55种酿酒葡萄进行Q型聚类分析。
聚类得到红白葡萄各六个分类后,再把各类酿酒葡萄对应至相应葡萄酒的等级,将酿酒红葡萄和酿酒白葡萄各分为五级。
针对问题三:由于各种酿酒葡萄的理化指标种类复杂,我们用主成分分析的方法,从酿酒红葡萄和酿酒白葡萄的27个有效指标中各提取出了8个和9个主要成分。
考虑到酿酒葡萄经化学反应酿造成葡萄酒的过程中各项理化指标一般存在线性关系,我们建立多元线性回归模型,得出酿酒葡萄和葡萄酒各项有效理化指标的正负相关关系。
关键词:显著性检验;聚类分析;主成分分析;多元回归。
一、问题的重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。
每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。
MATLAB·设计论文葡萄酒质量评价的数学建模

MATLAB·设计论⽂葡萄酒质量评价的数学建模葡萄酒质量评价的数学建模摘要:关于葡萄酒质量的评价,通常是通过评酒员的打分来确定的。
本论⽂通过对酿酒葡萄与葡萄酒的理化指标之间的相关关系和评酒员打分进⾏了深⼊系统地分析,给出了葡萄酒质量评价的量化研究。
基于相关数据,利⽤配对的t(α=0.05)检验、克隆巴赫系数信度分析、主成分分析、模糊C均值聚类、多元回归等⽅法,对酿酒葡萄质量评级模型,酿酒葡萄与葡萄酒之间的典型性相关分析关系模型等,并通过图像与数据分析研究了酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响。
对于问题⼀,利⽤配对数据的t检验,我们得出两组评酒员的评价结果没有显著性差异,并应⽤克伦巴赫系数信度分析法分别求出两组评酒员评价结果的可信度,通过数据⽐较和分析得到第⼀组评酒员的评价结果更可信,更符合实际。
对于问题⼆,基于数据,本⽂⾸先根据第⼀问中确定的的可信的⼀组(第⼀组评酒员)根据附表⼀对葡萄酒品尝后得出的总分,确定葡萄酒的质量,从⽽相应的给酿酒葡萄进⾏⼀个初步的排名。
然后对附表⼆中的酿酒葡萄的理化指标进⾏标准化处理后,进⾏主成分分析,根据新变量进⾏排名。
最后采⽤模糊C均值聚类⽅法对酿酒葡萄的理化指标进⾏了聚类分析,同时结合葡萄酒的质量得分,我们最终确定了酿酒葡萄的三级评判⽅案。
对于问题三,我们将酿酒葡萄与葡萄酒的理化指标做了多元回归,将酿酒葡萄与葡萄酒的主要指标做了典型相关系数的检验,结果表明:酿酒红葡萄中氨基酸总量、花⾊苷、苹果酸、褐变度、DPPH⾃由基、总酚、单宁、葡萄总黄酮、还原糖、PH值、果⽪颜⾊等对红葡萄酒中主要成分有显著影响;酿酒⽩葡萄中氨基酸总量、单宁、葡萄总黄酮、黄酮醇、⼲物质含量、出汁率,对⽩葡萄酒中主要成分有显著影响。
对于问题四,我们把葡萄的理化参数、葡萄酒的理化参数作为⾃变量,对酒的评价作为因变量,通过⽤MATLAB中plot作图,分析了酿酒葡萄与葡萄的理化指标之间的关系,得出结论:葡萄酒与葡萄酒的理化指数存在关系,但是葡萄酒的质量与其⾊泽、品味、环境以及⼝感有关系,所以并不能⽤葡萄和葡萄酒的理化指数指标来评价葡萄酒的质量。
2012年全国大学生数学建模A题--葡萄酒质量的评价分析

葡萄酒质量的评价分析摘要本文主要讨论了葡萄酒和葡萄的理化指标与葡萄酒质量的关系。
通过品酒员对样品酒的外观,香气,口感的评分数据与所酿葡萄酒的理化指标和对酿酒葡萄的化学分析来确定葡萄酒质量好坏以及它们之间的关系。
根据附录中所给的两组品酒员分别对红葡萄酒和白葡萄酒进行品尝后的评分数据和各种理化指标进行了严谨的分析之后,继而运用适当的数学软件结合数学模型进行大量的拟合数据分析。
在葡萄酒品尝评分表中,由于品酒员对葡萄酒的要求、口感及其他各方面的主观条件存在一定的差异,因此,我们对品酒员给出的评分数据进行了客观的分析,降低品酒员主观造成的误差,客观的反映了样品酒之间的真实差异,同时将酿酒葡萄进行了等级划分。
并通过所给的理化指标数据和芳香物质含量更加准确的描述了酿酒葡萄、葡萄酒、葡萄酒质量之间的联系。
对于问题一,题目中要求我们判断两组品酒员的评价结果有无显著性差异,哪一组结果更可信。
由于题中数据量很大,且杂乱无章,很难直接看出,因此我们将数据在统计图中进行表示,观察了数据的稳定情况,为了更好的表达数据的稳定情况,我们采用了求每组数据方差的方法,通过比较,得出两组品酒员的评价结果存在显著性差异,且第二组品酒员所给的评分更为可信。
对于问题二,题目要求根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级,由问题一所得结果可知,第二组评分更为可信,故直接采用第二组数据进行分析。
将该数据进行数学期望处理,得到了十位评委对每种样品酒的平均打分,我们根据帕克评分系统的标准[1]将样品酒进行了分级。
对于问题三,我们使用了EXCEL中拟合数据分析的功能来探究酿酒葡萄与葡萄酒的各项理化指标之间的联系。
经过对得到的散点图不断的尝试各种函数图像,最终我们找到了最适合它们之间关系的也就是散点落在函数图象外最少的数学函数图像,从而得到该图像的数学表达式。
由于图表中显示酿酒葡萄与葡萄酒对应的各项指标存在多项式函数关系,所以我们得出结论,酿酒葡萄与葡萄酒各项理化指标存在着多项式函数的联系。
数学建模-葡萄酒的品尝

摘要葡萄酒是用新鲜的葡萄或葡萄汁经发酵酿成的酒精饮料。
通常分红葡萄酒和白葡萄酒两种。
前者是红葡萄带皮浸渍发酵而成;后者是葡萄汁发酵而成的。
葡萄酒讲究三分工艺七分原料,而葡萄酒是以鲜葡萄或葡萄汁为原料,葡萄质量好,酒相对就好。
对于问题一,葡萄酒质量的评定是由每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分而确定的。
第一、二两组评酒员分别评定同一批酒品,故为单因素模型,分别求出两组评酒员评定结果的方差,方差较小的说明稳定性较高,波动较小,经过计算分析得出第二组更为精确。
此后均认为第二组结果作为一个评价酒的质量的一个标准。
对于问题二,已知葡萄酒的品质,利用反演法把确定的葡萄酒品质信息流的方向倒转,关注酿酒葡萄的各项理化指标。
然后根据附件一中各种判断指标标准的比例以及通过查找的资料信息对主要理化指标成分进行加权,最终得出了酿酒葡萄的品质结果并进行了降序排列,对酿酒葡萄划分了四个不同的等级。
对于问题三,首先将附件二中葡萄酒和酿酒葡萄中相同的理化指标放在一张表上加以分析,利用matlab软件对所得的数据分别进行曲线拟合,得出了相对应的函数表达式和相关参数,并且做了简要的分析。
对于问题四,假设酿酒葡萄和葡萄酒的理化指标对葡萄酒质量有影响,根据附件中数据得知为无重复试验的双因素问题。
利用双因素方差分析法的数学模型对两种因素求得总偏差平方和及效应平方和,再根据它们对误差的影响程度确定那种影响因素更能决定葡萄酒的质量。
最后根据附件三的芳香物质表验证,得出一个重要的结论:比较好的酒所含的脂类物质远比品质较差的酒高,与此同时我们还得到,品质较好的酒所对应的酿酒葡萄所含的酯类同样也远高于品质较差的酒所对应的酿酒葡萄所含的酯类。
关键词:葡萄酒质量、曲线拟合、反演法、双因素方差分析模型一、 问题重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。
每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。
葡萄酒(数学建模)

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要随着人们生活水平的提高,越来越多的人热衷于葡萄酒,所以对葡萄酒的质量做出客观的评价非常重要。
本文就从以下的四个方面探讨葡萄酒的质量问题。
针对问题一,首先利用求平均数的方法得出每一酒样品的综合评价,建立综合评价模型:1010k 11110ij i j H a ===∑∑1010ij i 1j 11b 10K B ===∑∑接着使用综合评价数据通过相关样本检验中的Wilcoxon 符号秩检验法和边际齐性检验法都得到两组品酒员的评分有显著性差异,比较综合评价数据方差的大小得到第二组品酒员的品分比较可信。
本文还使用了通过分析每组品酒员对每个酒样品打分的方差波动情况,得到两个对比的方差波动图,依然可以得到两组品酒员的评分有显著性差异,第二组评酒员的评分更可信。
针对问题二,根据第二组评酒员对酒样品的评分,从而对第二组酒样品进行聚类分析得到葡萄酒的6个分类,相应地把葡萄分成6类。
对葡萄的理化指标进行聚类分析得到口感等四个因子。
葡萄等级划分数学建模

葡萄酒的评价模型摘要问题背景:现在国际上对葡萄酒的质量评价一般是通过聘请一批有资质的评酒员进行品评。
评酒员通过对葡萄酒的外观分析、香气分析、口感分析和整体评价进行打分。
然而评酒员拼酒时还受个人的感官因数,比如年龄、口味风格等因素的影响。
本模型在忽略一些影响因素的基础上对题目给出的问题进行分析。
问题一:分析两组评酒员评价两种葡萄酒哪一组更合理的问题,我们把附表中两组评酒员评酒时的打分提炼为四组数据,分别为两组评酒员对27种红葡萄酒的评价结果和28种白葡萄酒的评价结果。
然后做评酒员对葡萄酒的评价做配对样本T检验分析,运用spss软件将的到的四组数据求得方差分析方差所得结果,我们得到第二组评酒员评酒的结果更具有合理性。
问题二:对于问题2酿酒葡萄的分级问题,我们可以根第一问分析得出的葡萄酒的品分质量和葡萄的理化指标进行分析,运用排序中求秩和比的进行秩排序,并对葡萄酒的品分排序,利用模糊数学等级划分的方法对酿酒葡萄进行分级。
、问题三:首先,我们利用SPSS计算出酿酒葡萄与葡萄酒的理化指标的相关系数。
由于葡萄的理化指标较多,通过整理数据,在Excel中得到某个葡萄酒的理化指标与若干个酿酒葡萄的理化指标的相关系数,并且规定相关系数大于等于0.6表示两者相关性显著;最后,在SPSS中分别求出回归方程。
问题四,首先利用SPSS分别计算出葡萄酒的理化指标与葡萄酒质量的相关系数、葡萄的理化指标与葡萄酒质量的相关系数。
然后通过分析其相关系数,分析葡萄和葡萄酒的理化指标对葡萄酒质量的影响。
关键词:模糊数据分析原理、偏相关系数、排序问题重秩和比法、主成分分析、配对样本T检验、回归分析原理、相关分析原理问题重述葡萄酒的评价确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。
每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。
酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。
2012数学建模葡萄酒原题

2012数学建模葡萄酒原题摘要:一、背景介绍1.葡萄酒产业现状2.我国葡萄酒市场分析3.葡萄酒品质与价格的关系二、数学建模问题1.建立葡萄酒价格预测模型2.分析影响葡萄酒价格的因素3.提出提高葡萄酒品质的建议三、数据收集与处理1.收集葡萄酒相关数据2.数据清洗与整理3.数据分析与挖掘四、葡萄酒价格预测模型构建1.选择适当的数据分析方法2.建立价格预测模型3.验证模型的准确性和有效性五、结果与讨论1.葡萄酒价格预测结果2.影响葡萄酒价格的因素分析3.提高葡萄酒品质的建议六、结论1.数学建模在葡萄酒产业中的应用2.对葡萄酒产业发展的启示3.对未来葡萄酒产业发展的展望正文:一、背景介绍葡萄酒产业作为我国农业的重要组成部分,近年来得到了迅速发展。
然而,在葡萄酒市场繁荣的背后,也暴露出了许多问题,如葡萄酒品质良莠不齐、价格虚高等。
因此,如何运用数学建模方法对葡萄酒价格进行预测,以及分析影响葡萄酒价格的因素,对于提高葡萄酒品质和规范市场具有重要意义。
二、数学建模问题为了更好地了解葡萄酒市场,我们提出了以下数学建模问题:1.建立葡萄酒价格预测模型:通过收集和分析历史数据,预测未来葡萄酒价格的走势。
2.分析影响葡萄酒价格的因素:研究葡萄酒价格与生产成本、品牌、产区、市场需求等因素之间的关系。
3.提出提高葡萄酒品质的建议:结合分析结果,给出改进葡萄酒生产工艺、优化葡萄品种和提高产区知名度等方面的建议。
三、数据收集与处理为了构建葡萄酒价格预测模型,我们首先需要收集葡萄酒相关的数据。
这些数据包括葡萄酒的历史价格、生产成本、品牌、产区、市场需求等方面的信息。
在收集到数据后,我们进行数据清洗和整理,对缺失值、异常值等进行处理。
接着,我们利用数据分析与挖掘技术,对数据进行深入研究,为后续建立价格预测模型奠定基础。
四、葡萄酒价格预测模型构建在数据收集和处理的基础上,我们选择适当的数据分析方法,如时间序列分析、回归分析等,来构建葡萄酒价格预测模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
葡萄酒的评价数学建模
一、葡萄酒的成分分析
葡萄酒的成分分析是评价葡萄酒质量的重要环节。
葡萄酒的成分包括酒精、糖分、酸度、单宁、色素等,这些成分的含量和比例都会影响葡萄酒的风味和品质。
通过对葡萄酒的成分进行分析,可以了解葡萄酒的基本特征和风格,为后续的质量评估和风格分类提供基础数据。
二、葡萄酒的感官评价
感官评价是评价葡萄酒质量的重要手段。
感官评价主要包括视觉、嗅觉和味觉三个方面的评价。
视觉评价主要是观察葡萄酒的颜色、透明度、沉淀物等;嗅觉评价主要是闻葡萄酒的香气,判断其浓郁度、复杂度和持久度;味觉评价主要是品尝葡萄酒的口感,评价其酸度、甜度、单宁、酒精等成分的口感感受。
通过对葡萄酒的感官评价,可以全面了解其风味特征和品质状况。
三、葡萄酒的质量评估
质量评估是评价葡萄酒的重要环节。
通过对葡萄酒的感官评价和成分分析结果的综合分析,可以对葡萄酒的质量进行评估。
质量评估主要包括以下几个方面:.产地质量:葡萄酒的产地对其品质有着重要影响。
产地环境包括气候、土壤、地理位置等,这些因素都会影响葡萄的生长和葡萄酒的品质。
.酿造工艺:酿造工艺对葡萄酒的品质也有重要影响。
酿造工艺包括葡萄采摘、发酵、陈酿、调配等环节,每个环节都会影响葡萄酒的成分和风味。
.口感质量:口感质量是评价葡萄酒质量的重要指标。
口感质量主要包括酸度、甜度、单宁、酒精等成分的口感感受,以及整体的口感平衡度和口感特点。
.风味质量:风味质量是评价葡萄酒质量的核心指标。
风味质量主要包括葡萄品种的特征、酿造工艺的特点、陈酿时间等,以及整体的复杂度、浓郁度和持久度。
通过对以上几个方面的综合分析,可以对葡萄酒的质量进行评估。
一般来说,优质的葡萄酒应该在以上几个方面都表现出色,而劣质的葡萄酒则会在其中一个或多个方面存在明显缺陷。
四、葡萄酒的风格分类
风格分类是评价葡萄酒的重要手段。
通过对葡萄酒的风味特征进行分析,可以将其分为不同的风格类型。
常见的风格类型包括:
.波尔多风格:以赤霞珠、美乐等葡萄品种为主,口感丰富、复杂,具有浓郁的果香和橡木桶陈酿的香气。
.勃艮第风格:以黑皮诺、霞多丽等葡萄品种为主,口感柔和、优雅,具有丰富的土壤香气和果香。
.意大利风格:以桑娇维塞、内比奥罗等葡萄品种为主,口感浓郁、饱满,具有浓郁的果香和陈酿香气。
.西班牙风格:以添帕尼奥等葡萄品种为主,口感柔和、丰富,具有浓郁的果香和陈酿香气。
.新世界风格:以霞多丽、美乐等葡萄品种为主,口感丰富、平衡,具有浓郁的果香和橡木桶陈酿的香气。
通过对葡萄酒的风格分类,可以更好地了解其风味特征和品质状况,为配餐建议和消费者选择提供参考。
五、葡萄酒的配餐建议
配餐建议是评价葡萄酒的重要环节。
不同风格的葡萄酒适合搭配不同的菜品,以充分展现其风味特征并增强食用体验。
常见的配餐建议包括:
.波尔多风格:适合搭配红肉、烤肉等浓郁型菜品,以充分展现其丰富的果香和橡木桶陈酿的香气。