lmm俄歇光谱
俄歇电子能谱

1920
1987
2006
俄歇电子能谱(AES)
一、方法原理 二、仪器结构 三、数据分析与表征 CO N TA N T S
四、AES的应用
历史与现状
1925年,法国科学家俄歇在威尔逊云室中首次观察到了俄歇电子的轨
迹,并且他正确的解释了俄歇电子产生的过程,为了纪念他,就用他的
名字命名了这种物理现象。 1953年,兰德从二次电子能量分布曲线中第一次辨识出这种电子的电
2.激发源
样品原子的激发可以用不同的方式完成。作为常规分析 用的激发源都为具有一定能量的电子束,其原因是电子 束易实现聚焦和偏转,另外它不破坏真空度。 某些特殊场合也可使用光子束作为激发源。其优点是二 次电子背景可大大减少,辐射损伤小于电子束。 另外,离子轰击也可以激发俄歇电子。
(1)电子源
电子源目前有两种:热电子发射源和场发射电子源。 热电子发射源,是通过对发射体(阴极)加热,使垫子 获得足够能量以克服表面势垒(称功函数或逸出功)而 逸出,电子流密度与发射体的功函数和温度有关。 场发射电子源,其原理是发射体外施加一强电场,是发 射体的表面势垒降低,宽度变窄,从而电子得以逸出。
俄歇电子从入口位置进入两圆 筒夹层,因外筒加有偏转电压 ,最后使电子从出口进入检测 器。若连续的改变外筒上的偏 转电压,就可在检测器上依次 接收到具有不同能量的俄歇电 子。 从能量分析器输出的电子经电 子倍增器、前置放大器后进入 脉冲计数器,最后由x-y记录 仪或荧光屏显示俄歇谱。
不同能量的电子通过分析器后最大限度的被分离,以便 选出某种能量的电子(色散特性——获得高分辨率) 具有相同能量、不同发射角的电子尽可能会聚于一点( 聚焦特性——获得高灵敏度) 上述两方面要求相互矛盾,应根据具体问题,做折中选 择。
俄歇电子能谱

通过俄歇电子能谱的深度剖析,可以研究离子注入元素 沿深度方向的分布,还可以研究注入元素的化学状态。
注入Sb元素后,Sn元素 MNN俄歇动能发生变化, 介于Sn和SnO2之间。说 明Sn外层获得部分电子。
由于俄歇电子能 谱具有很高的表 面灵敏度,采样 深度为1-3nm, 因此非常适用于 研究固体表面的 化学吸附和化学 反应。
二、基础知识
1 . 俄歇效应 (1925年, 法国人 Pierre Auger) 用某种方法使原子内层电子(如K层)电离出去,内
层出现空位。电离原子去激发可采用如下两种形式:
Δ 辐射跃迁:
一外层电子填充空位后,发射出特征X射线
(例L3上电子填充K能级上空位,发出X射线Kα 1)
Δ 无辐射过程(即Auger过程): 一外层电子填充空位,使 另一个电子脱离原子发
俄歇电子能量与激发源的种类和数量无关,与元素的存在量有关,还与原子的电 离截面、俄歇电子产率以及逃逸深度有关。
特点: Δ一种原子可能产生几组不同
能级组合的俄歇跃迁,因而 可以有若干不同特征能量的 俄歇电子。 Δ可能出现的俄歇跃迁数随原 子序数增大(壳层数增多)而 迅速增加。 Δ 俄歇电子的能量大多在502000eV (不随入射电子能量改变) Δ主峰
在低氧分压的情况下,只有部分Zn被 氧化为ZnO,而其他的Zn只与氧形成 吸附状态。
俄歇电子能谱在研究固体化学反应上也有着重要的作用。
金刚石耐磨颗粒通 常在表面进行预金 属化,以提高与基 底金属的结合强度。 图中看出界面层有 两层。结合其他方 法分析得出,分别 为CrC和Cr3C4。
• 4 表面元素的化学价态分析
射 出去 (例L1上电子填充K能级空位,同时L3上的电 子发射出去, 称KL1L3俄歇跃迁)。 标记: WXY来标记
材料分析方法 第十六章 光电子谱与俄歇电子能谱

所研究人员成功地通过STM 在硅单晶表面上提走硅原子, 形成平均宽度为2nm (3~4 个原子)的线条。从获得照片 上可清晰地看到由这些线条 形成的"100"字样和硅原子晶 格整齐排列的背景。
2021/3/5
23
这是中科院化学所的科技人员用自制STM,在石墨表面 上刻蚀出的图象都十分清晰逼真,图形的线宽实际上只有 10nm。
可见,Fe原子吸附在Cu表面,该环中铜表面电子只能在其"围 栏"内运动,圈内的圆形波纹就是这些电子的波动图景形成" 驻波"。这是世界上首次观察到的电子驻波直观图形。
2021/3/5
21
用STM针尖 将48个铁原 子排列成了 一个称之为 “量子围栏” 的圆环的制 作过程。
2021/3/5
22
STM问世后,实现了当今最微小的操作,可按照自己的意 愿操纵原子,实现原子级操纵和加工,是目前国际科学界 公认的21世纪高新技术。
28
电子动能检测
球静电式偏转型,由两个同心半球组成。改变电压可测试不 同能量的电子的数量。
2021/3/5
29
三、光电子能谱的接收
宽谱/预扫描:
✓ EB扫描范围0–1000 eV,能量分析器的通过能量约100 eV 。
✓
确窄定谱可:能元素的最强峰。
✓ 用于鉴别化学态、定量分析和峰的解迭。
✓ EB扫描范围小于25eV。
“中国”字样; 中科院的英文缩写字
"CAS“; 中国地图; 奥运会五环旗图
2021/3/5
24
原子力显微镜(AFM)
原子力显微镜:利用原子间的范德华力作用来呈现样品的 表面特性。 测量表面形貌,测量表面原子间力,测量表面 的弹性、塑性、硬度、粘着力、摩擦力等性质。
俄歇电子能谱AES解读

粉末样品的处理
一是用导电胶带直接把粉体固定在样品台上 ,一是把粉体 样品压成薄片,然后再固定在样品台上
四、俄歇电子谱实验技术
1 样品制备技术
挥发性样品的处理 对于含有挥发性物质的样品,在样品进入真空系统前必须清除 挥发性物质。一般可以对样品进行加热或用溶剂清洗。对含 有油性物质的样品,一般依次用正己烷、丙酮和乙醇超声清洗 , 然后红外烘干,才可以进入真空系统。 表面污染样品的处理 对于表面有油等有机物污染的样品,在进入真空系统前,必须用 油溶性溶剂,如环己烷,丙酮等清洗样品表面的油污,最后再用乙 醇洗去有机溶剂。为了保证样品表面不被氧化, 一般采用自然 干燥
三、俄歇电子谱分析技术
2、俄歇谱分析技术-III表面元素的化学价态分析
由于谱图解析的困难和能量 分辨率低的缘故,一直未能 获得广泛的应用
SiO2 72.5 eV 纯 Si 88.5 eV Si 基底
界面 B
近年俄歇电子能谱的化学位移 分析在薄膜材料的研究上获得 了重要的应用,取得了很好的 效果
计数 / 任意单位
C KLL
Ti KLL
AES谱图的横坐标为俄歇 电子动能,纵坐标为俄歇 电子计数的一次微分
俄歇峰主要集中在20~ 1200eV
278.0
415 385 510
0
100
200
300
400
500
600
俄歇电子动能 / eV
金刚石表面的Ti薄膜 的俄歇定性分析谱
如图中的C KLL表示碳原 子的K层轨道的一个电子 被激发,在退激发过程中, L层轨道的一个电子填充 到K轨道,同时激发出L 层上的另一个电子。这个 电子就是被标记为C KLL 的俄歇电子。
子因最外层只有一个电子,也不能产生俄歇电子,
现代分析测试技术 俄歇电子谱

式中:w、x、y ━ 分别代表俄歇电子发射所涉及的三个电子能级 EZwxy━ 原子序数为Z的原子发射的俄歇电子的能量 E ━ 原子中的电子结合能。
11
例:已知EKNi=8.333 KeV,EL1Ni=1.008 KeV,EL2Ni=0.872 KeV,EL1Cu=1.096 KeV, EL2Cu=0.951 KeV,求Ni的KL1L2 俄歇电子的能量。
17
Mg的KLL系列俄歇电子能谱
Z = 14
(《材料物理现代研究方法》P183图7-2)
18
为什么说俄歇电子能谱分析是一种表面分析方法且 空间分辨率高?
大多数元素在50~1000eV能量范围内都有产额较高的俄歇电子,
它们的有效激发体积(空间分辨率)取决于入射电子束的束
斑直径和俄歇电子的发射深度。
俄歇电子能谱(Auger Electron Spectroscopy, AES),
离子散射谱(Ion Scattering Spectroscopy,ISS), 电子能量损失谱(Electron Energy Loss Spectroscopy,EELS)
等。
2
电子能谱分析 光电子能谱 Auger电子能谱
12
注意:
俄歇过程至少有两个能级和三个电子参与,所以氢原子和氦
原子不能产生俄歇电子。(Z3)孤立的锂原子因最外层只有一 个电子,也不能产生俄歇电子,但固体中因价电子是共用的, 所以金属锂可以发生KVV 型的俄歇跃迁。
13
显然,俄歇电子与特征X射线一样,其能量与入射粒子无关, 而仅仅取决于受激原子核外能级,所以,根据莫塞莱定律,可
用前景
23
俄歇化学效应
俄歇化学效应有三类;
表面分析(四)俄歇电子能谱的应用

计数 / 任意单位
线扫描分析
Ag -Au/Si(111) Ag
Au 0 100 200 300 400 500 600 700
距离 / m
典型的俄歇线扫面分布图
面扫描分布图
俄歇电子能谱的面分布分析也可称为俄歇电子 能谱的元素分布的图像分析。它可以把某个元 素在某一区域内的分布以图像的方式表示出来, 就象电镜照片一样。只不过电镜照片提供的是 样品表面的形貌像,而俄歇电子能谱提供的是 元素的分布像。结合俄歇化学位移分析,还可 以获得特定化学价态元素的化学分布像。适合表面扩散等领域的研究。在常 规分析中,由于该分析方法耗时非常长,一般 很少使用。当我们把面扫描与俄歇化学效应相 结合,还可以获得元素的化学价态分布图。
从图上可见,当暴氧量 达到50 L时,Zn LVV 的线形就发生了明显的
变化。俄歇动能为 54.6eV的峰增强,而俄 歇动能为57.6eV的峰则 降低。表明有少量的 ZnO物种生成。随着暴 氧量的继续增加,Zn LVV线形的变化更加明 显,并在低能端出现新
的俄歇峰。表明有大量 的ZnO表面反应产物生 成。
原子摩尔百分数浓度
100
Si
80
SiO2 界面层
60 O
O
40
Si 20 PZT
O 0 0 0.5 1 1.5 2 2.5 3 3.5 4
溅射时间 / min
PZT/Si薄膜界面反应后的俄歇深度分析谱
微区分析
微区分析也是俄歇电子能谱分析的一个重 要功能,可以分为选点分析,线扫描分析 和面扫描分析三个方面。
离子束与固体表面发生相互作用,从而引起表 面粒子的发射,即离子溅射。对于常规的俄歇 深度剖析,一般采用能量为500 eV到5keV的 离子束作为溅射源。溅射产额与离子束的能量、 种类、入射方向、被溅射固体材料的性质以及 元素种类有关。多组分材料由于其中各元素的 溅射产额不同,使得溅射产率高的元素被大量 溅射掉,而溅射产率低的元素在表面富集,使 得测量的成分变化,该现象就称为“择优溅 射”。在一些情况下,择优溅射的影响很大。
俄歇电子能谱分析原理及方法

俄歇电子能谱分析原理及方法XXX【摘要】近年来,俄歇电子能谱(AES)分析方法发展迅速,它具有很多的优点,比如分析速度快、精度高、需要样品少等等,也因此在很多研究领域的表面分析中都得到了广泛的应用。
可以不夸张的说,这个技术为表面物理和化学定量分析奠定了基础。
本文主要是介绍俄歇电子能谱分析的主要原理及其在科学研究中的主要应用,旨在让读者对俄歇电子能谱有一个初步的了解。
关键词:俄歇电子能谱;表面物理;化学分析。
前言近些年来,俄歇电子能谱分析发展如火如荼,在各个领域都有很抢眼的表现。
目前有很多的人在研究,将俄歇电子分析技术应用到电子碰撞以及微纳尺度加工等高技术领域,俄歇电子能谱分析方法表现出强大的生命力,同目前已为很人熟悉和赞赏的强有力的分析仪器电子探针相比俄歇电子能仪可能有几个独到之处:( 1 )能分析固体表面薄到只有几分之一原子层内的化学元素组成,这里说的“表面”指的不只是固体的自然表面,也指固体内颗粒的分界面,(2)俄歇电子谱的精细结构中包含有许多化学信自,借此可以推断原子的价态;( 3 )除氢和氦外所有元素都可以分析,特别是分析轻元素最为有利;(4)利用低能电子衍射装置和俄歇能谱分析器相结合的仪器(“LEED一Au-ger”装置),有可能从得到的数据资料中分晶体表面的结构,推断原子在晶胞中的位置。
因此,俄歇电子能谱仪作为固体材料分析的一个重要工具,近年来发展很快,研究成果不断出现于最新的文献中。
本文主要是想要综合论述俄歇电子能谱的分析方法,以及概述它在各方面的应用。
[1][1]《俄歇电子能谱仪及其应用》许自图正文一、俄歇电子能谱分析的原理1.1俄歇电子能谱发现的历史1925年法国科学家俄歇在威尔逊云室中首次观察到了俄歇电子的轨迹,并且他正确的解释了俄歇电子产生的过程,为了纪念他,就用他的名字命名了这种物理现象。
到了1953年,兰德才从二次电子能量分布曲线中第一次辨识出这种电子的电子谱线,但是由于俄歇电子谱线强度较低,所以当时检测还比较困难。
第六章俄歇电子能谱

PPT文档演模板
第六章俄歇电子能谱
微区分析
•图为Si3N4薄膜经850℃快 速热退火处理后表面不同
点的俄歇定性分析图。从
表面定性分析图上可见,
在正常样品区,表面主要
有Si, N以及C和O元素存在。
而在损伤点,表面的C,O含
量很高,而Si, N元素的含
量却比较低。 这结果说明
在损伤区发生了Si3N4薄膜 的分解。
PPT文档演模板
第六章俄歇电子能谱
俄歇电子能谱的应用举例
n
俄歇电子能谱可以用来研究固体表面的能
带结构、态密度等。俄歇电子能谱还常用来研
究表面的物理化学性质的变化。如表面吸附、
脱附以及表面化学反应。在材料科学领域,俄
歇电子能谱主要应用于材料组分的确定,纯度
的检测,材料特别是薄膜材料的生长。俄歇电
子能谱可以研究表面化学吸附以及表面化学反
n 在这样浅的表层内逸出俄歇电子时,入射X射线或 电子束的侧向扩展几乎尚未开始,故其空间分辨 率直接由入射电子束的直径决定。
PPT文档演模板
第六章俄歇电子能谱
直接谱与微分谱
直接谱:俄歇电子强度[密 度(电子数)]N(E)对其能量E 的分布[N(E)-E]。
微分谱:由直接谱微分而 来,是dN(E)/dE对E的分布 [dN(E)/dE-E]。
PPT文档演模板
第六章俄歇电子能谱
俄歇电子能谱法的应用
n 优点: n ①作为固体表面分析法,其信息深度取决于俄歇电子逸
出深度(电子平均自由程)。对于能量为50eV~2keV范围内 的俄歇电子,逸出深度为0.4~2nm。深度分辨率约为1nm, 横向分辨率取决于入射束斑大小。 n ②可分析除H、He以外的各种元素。 n ③对于轻元素C、O、N、S、P等有较高的分析灵敏度。 n ④可进行成分的深度剖析或薄膜及界面分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
lmm俄歇光谱
LMM(Luminescence Multiplexing Microscopy)俄歇光谱是一种利用多光子激发和光谱分析的显微镜技术。
该技术主要包括以下步骤:
1. 激发:使用短脉冲的激光器对样品进行激发。
多光子激发可以实现更高的激发能量和更低的背景荧光,从而提高样品的信噪比。
2. 发生俄歇效应:样品中的电子在激发后通过发生俄歇效应返回基态。
俄歇效应是指在外部激发下,分子中的电子跃迁到更低能级上。
3. 收集发射光谱:通过收集样品发射的光谱,可以得到俄歇光谱。
俄歇光谱提供了有关样品分子的能级结构和动力学信息。
4. 数据分析:通过对俄歇光谱进行分析,可以得到样品的荧光寿命和激发态寿命等信息。
这些信息可以用于研究分子的内在性质和相互作用。
LMM俄歇光谱在生物学、材料科学和化学等领域具有广泛的应用。
它可以用于研究生物分子的构象变化、酶活性、蛋白质结构等。
此外,LMM俄歇光谱还可以用于材料的光物理性质研究和化学反应动力学等方面。