模糊控制的基本原理

合集下载

模糊控制理论及工程应用

模糊控制理论及工程应用

模糊控制理论及工程应用模糊控制理论是一种能够处理非线性和模糊问题的控制方法。

它通过建立模糊规则和使用模糊推理来实现对系统的控制。

本文将介绍模糊控制理论的基本原理,以及其在工程应用中的重要性。

一、模糊控制理论的基本原理模糊控制理论是由扬·托东(Lotfi Zadeh)于1965年提出的。

其基本原理是通过建立模糊规则,对系统的输入和输出进行模糊化处理,然后利用模糊推理来确定系统的控制策略。

模糊规则是一种类似于“如果...那么...”的表达式,用于描述输入和输出之间的关系。

模糊推理则是模糊控制系统的核心,它通过将模糊规则应用于模糊化的输入和输出,来确定控制的动作。

二、模糊控制理论的工程应用模糊控制理论在工程应用中具有广泛的应用价值。

下面将分别介绍其在机械控制和电力系统控制中的应用。

1. 机械控制模糊控制理论在机械控制领域有着重要的应用。

其优势在于能处理非线性和模糊问题,使得控制系统更加鲁棒和稳定。

例如,在机器人控制中,模糊控制可实现对复杂环境的适应性和灵活性控制,使机器人能够自主感知和决策。

此外,模糊控制还可以应用于精密仪器的控制,通过建立模糊规则和模糊推理,实现对仪器位置和姿态的精确控制。

2. 电力系统控制模糊控制理论在电力系统控制领域也有着重要的应用。

电力系统是一个复杂的非线性系统,模糊控制通过建立模糊规则和模糊推理,可以实现对电力系统的稳定性和性能进行优化。

例如,在电力系统调度中,模糊控制可以根据不同的负荷需求和发电能力,实现对发电机组的出力控制,保持电力系统的稳定运行。

此外,模糊控制还可以应用于电力系统中的故障诊断和故障恢复,通过模糊推理,快速准确地定位和修复故障。

三、总结模糊控制理论是一种处理非线性和模糊问题的有效方法。

其基本原理是通过建立模糊规则和使用模糊推理来实现对系统的控制。

模糊控制理论在机械控制和电力系统控制等工程领域有着广泛的应用。

它能够提高控制系统的鲁棒性和稳定性,并且能够适应复杂的环境和变化,具有良好的控制效果。

模糊控制的基本原理

模糊控制的基本原理

.模糊控制的基本原理模糊控制是以模糊集合理论、模糊语言及模糊逻辑为基础的控制,它是模糊数学在控制系统中的应用,是一种非线性智能控制。

if条模糊控制是利用人的知识对控制对象进行控制的一种方法,通常用“then结果”的形式来表现,所以又通俗地称为语言控制。

一般用于无法以件,的经验和知识来很好熟练专家严密的数学表示的控制对象模型,即可利用人() 地控制。

因此,利用人的智力,模糊地进行系统控制的方法就是模糊控制。

模糊控制的基本原理如图所示:模糊控制系统原理框图它的核心部分为模糊控制器。

模糊控制器的控制规律由计算机的程序实现,然后将此量微机采样获取被控制量的精确值,实现一步模糊控制算法的过程是:作为模糊控制器的一个输入量,E;一般选误差信号E与给定值比较得到误差信号的模糊量可用相应的模糊语言EE的精确量进行模糊量化变成模糊量,误差把); 实际上是一个模糊向量的模糊语言集合的一个子集e(e表示;从而得到误差E再由e和模糊控制规则R(模糊关系)根据推理的合成规则进行模糊决策,得到模糊控制量u为:式中u为一个模糊量;为了对被控对象施加精确的控制,还需要将模糊量u进行非模糊化处理转换为精确量:得到精确数字量后,经数模转换变为精确的模拟量送给执行机构,对被控对象进行一步控制;然后,进行第二次采样,完成第二步控制……。

这样循环下去,就实现了被控对象的模糊控制。

模糊控制(Fuzzy Control)是以模糊集合理论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制。

模糊控制同常规的控制方案相比,主要特点有:(1)模糊控制只要求掌握现场操作人员或有关专家的经验、知识或操作数据,不需要建立过程的数学模型,所以适用于不易获得精确数学模型的被控过程,或结构参数不很清楚等场合。

(2)模糊控制是一种语言变量控制器,其控制规则只用语言变量的形式定性的表达,不用传递函数与状态方程,只要对人们的经验加以总结,进而从中提炼出规则,直接给出语言变量,再应用推理方法进行观察与控制。

模糊控制的基本原理

模糊控制的基本原理

模糊控制的基本原理模糊控制是一种基于模糊逻辑的控制方法,它模仿人类的思维方式,通过模糊化、模糊推理和解模糊化来实现对系统的控制。

模糊控制的基本原理可以概括为以下几个方面。

模糊控制通过将输入和输出与一组模糊集相对应,来模拟人类的模糊推理过程。

在传统的控制方法中,输入和输出通常是精确的数值,而在模糊控制中,输入和输出可以是模糊的、不确定的。

通过将输入和输出模糊化,可以将问题从精确的数学计算转化为模糊的逻辑推理,使得控制系统更加灵活和适应性强。

模糊控制通过定义一组模糊规则来描述系统的行为。

模糊规则是一种类似于人类思维的规则,它由若干模糊条件和模糊结论组成。

模糊条件和模糊结论通过模糊集来表示,并通过模糊推理来确定系统的控制策略。

模糊推理是基于模糊规则和模糊集的逻辑推理过程,它通过对模糊条件的匹配和模糊结论的合成,来确定系统的输出。

然后,模糊控制通过解模糊化将模糊输出转化为精确的控制信号。

解模糊化是将模糊输出映射到一个确定的值域上的过程,它可以通过取模糊输出的平均值、加权平均值或者其他方式来实现。

解模糊化的目的是将模糊的控制信号转化为精确的控制动作,以实现对系统的精确控制。

模糊控制通过反馈机制来实现对系统的自适应调节。

反馈机制是模糊控制系统中的重要组成部分,它通过不断测量系统的输出,并与期望输出进行比较,来调节系统的控制策略。

通过反馈机制,模糊控制系统可以根据系统的实际情况进行调节,以适应不同的工作环境和工作条件。

模糊控制的基本原理包括模糊化、模糊推理、解模糊化和反馈机制。

通过模糊化和模糊推理,模糊控制可以将问题从精确的数学计算转化为模糊的逻辑推理,使得控制系统更加灵活和适应性强。

通过解模糊化,模糊控制可以将模糊的控制信号转化为精确的控制动作,以实现对系统的精确控制。

通过反馈机制,模糊控制可以根据系统的实际情况进行调节,以适应不同的工作环境和工作条件。

模糊控制的基本原理为工程领域提供了一种灵活、适应性强的控制方法,可以应用于各种复杂的控制问题中。

机械控制系统的模糊控制技术

机械控制系统的模糊控制技术

机械控制系统的模糊控制技术在机械控制系统中,为了实现对机器设备的精确控制,模糊控制技术应运而生。

模糊控制技术是一种基于模糊逻辑原理的控制方法,可以在模糊环境下进行控制,使得机械控制系统具有较强的适应性和鲁棒性。

本文将介绍机械控制系统的模糊控制技术及其在实际应用中的优势。

一、模糊控制技术的基本原理模糊控制技术是一种基于模糊逻辑的控制方法,通过模糊推理和模糊集合运算来实现对机械设备的控制。

其基本原理可以归纳为以下几点:1. 模糊化:将输入输出的实际值转化为模糊集合,用语言词汇来描述系统状态。

2. 规则库的建立:根据专家经验和实际观测数据,建立一套模糊规则库,其中包含了输入输出之间的关系。

3. 模糊推理:通过将输入模糊集合与规则库中的规则进行匹配,得到输出的模糊集合。

4. 解模糊化:将输出的模糊集合转化为实际值,供机械设备进行控制。

二、模糊控制技术的优势相比于传统的控制方法,模糊控制技术具有以下几个优势:1. 简化建模过程:传统的控制方法需要建立精确的数学模型,而模糊控制技术可以通过专家经验和模糊规则库来建立控制模型,简化了建模的过程。

2. 适应性强:模糊控制技术可以在模糊环境下进行控制,对于输入参数的模糊性和不确定性具有较好的适应性。

3. 鲁棒性好:模糊控制技术对于机械设备参数的变化和外部干扰具有较好的鲁棒性,可以保持较稳定的控制性能。

4. 知识表示灵活:模糊控制技术使用自然语言词汇描述系统状态和规则,便于人们理解和调整系统。

三、模糊控制技术的应用领域模糊控制技术在机械控制系统中有广泛的应用,以下是一些典型的应用领域:1. 机器人控制:模糊控制技术可以用于机器人的轨迹控制、力控制和路径规划等方面,实现对机器人的精确控制。

2. 电机控制:模糊控制技术可以用于电机的速度调节、力矩控制和位置控制,提高电机系统的稳定性和精度。

3. 汽车控制:模糊控制技术可以应用于汽车的刹车系统、转向系统和巡航控制,提高汽车的安全性和舒适性。

模糊控制算法原理

模糊控制算法原理

模糊控制算法原理
模糊控制是一种基于经验的控制方法,它可以处理不确定性、模糊性和复杂性等问题,因此在工业控制、自动化、机器人等领域得到了广泛应用。

模糊控制算法的基本原理是将输入变量和输出变量映射成模糊集合,通过模糊推理来得到控制输出。

在这个过程中,需要使用模糊逻辑运算和模糊推理规则进行计算,最终得到模糊输出,再通过去模糊化转换为实际控制信号。

模糊控制算法的关键是如何构建模糊规则库。

规则库是由一系列模糊规则组成的,每个模糊规则包括一个前提和一个结论。

前提是由输入变量的模糊集合组成的,结论是由输出变量的模糊集合组成的。

在构建规则库时,需要依据专家经验或实验数据来确定模糊集合和模糊规则。

模糊控制算法的实现过程包括模糊化、模糊推理和去模糊化三个步骤。

模糊化是将输入变量映射成模糊集合的过程,它可以通过隶属度函数将输入变量的值转换为对应的隶属度值,表示它属于各个模糊集合的程度。

模糊推理是根据模糊规则库进行推理的过程,它可以通过模糊逻辑运算来计算各个规则的置信度,进而得到模糊输出。

去模糊化是将模糊输出转换为实际控制信号的过程,它可以通过一些去模糊化方法来实现,比如最大隶属度法、平均值法等。

模糊控制算法的优点是可以处理不确定性和模糊性,适用于复杂系统的控制;缺点是需要依赖专家经验或实验数据来构建规则库,而且计算复杂度较高,运算速度较慢。

因此,在实际应用中需要根据具体情况来选择控制算法。

模糊控制算法是一种基于经验的控制方法,可以处理不确定性、模糊性和复杂性等问题,在工业控制、自动化、机器人等领域得到了广泛应用。

在实际应用中,需要根据具体情况来选择控制算法,以保证控制效果和运算速度的平衡。

模糊逻辑与模糊控制的基本原理

模糊逻辑与模糊控制的基本原理

模糊逻辑与模糊控制的基本原理在现代智能控制领域中,模糊逻辑与模糊控制是研究的热点之一。

模糊逻辑可以应用于形式化描述那些非常复杂,无法准确或完全定义的问题,例如语音识别、图像处理、模式识别等。

而模糊控制可以通过模糊逻辑的方法来设计控制系统,对那些难以表达精确数学模型的问题进行控制,主要用于不确定的、非线性的、运动系统模型的控制。

本文主要介绍模糊逻辑和模糊控制的基本原理。

一、模糊逻辑的基本原理模糊逻辑是对布尔逻辑的延伸,在模糊逻辑中,各种概念之间的相互关系不再是严格的,而是模糊的。

模糊逻辑的基本要素是模糊集合,模糊集合是一个值域在0和1之间的函数,它描述了一个物体属于某个事物的程度。

以温度为例,一般人将15℃以下的温度视为冷,20至30℃为暖,30℃以上为热。

但是在模糊逻辑中,这些概念并不是非黑即白,而可能有一些模糊的层次,如18℃可能既不是冷又不是暖,但是更接近于暖。

因此,设180℃该点的温度为x,则可以用一个图形来描述该温度与“暖”这个概念之间的关系,这个图形称为“隶属函数”或者“成员函数”图。

一个隶属函数是一个可数的、从0到1变化的单峰实函数。

它描述了一个物体与一类对象之间的相似程度。

对于温度为18℃的这个例子,可以用一个隶属函数来表示其与“暖”这一概念之间的关系。

这个隶属函数,可以用三角形或者梯形函数来表示。

模糊逻辑还引入了模糊关系和模糊推理的概念。

模糊关系是对不确定或模糊概念间关系的粗略表示,模糊推理是指通过推理机来对模糊逻辑问题进行判断和决策。

二、模糊控制的基本原理在控制系统中,通常采用PID控制或者其他经典控制方法来控制系统,但对于一些非线性控制系统,这些方法越发显得力不从心。

模糊控制是一种强大的、在处理非线性系统方面表现出色的控制方法。

它通过对遥测信号进行模糊化处理,并将模糊集合控制规则与一系列的控制规则相关联起来以实现控制。

模糊控制的基本组成部分主要包括模糊化、模糊推理、去模糊化等三个步骤。

人工智能控制技术课件:模糊控制

人工智能控制技术课件:模糊控制
直接输出精确控制,不再反模糊化。
模糊集合


模糊控制是以模糊集合论作为数学基础。经典集合一般指具有某种属性的、确定的、
彼此间可以区别的事物的全体。事物的含义是广泛的,可以是具体元素也可以是抽象
概念。在经典集合论中,一个事物要么属于该集合,要么不属于该集合,两者必居其一,
没有模棱两可的情况。这表明经典集合论所表达概念的内涵和外延都必须是明确的。
1000
1000
9992
9820
的隶属度 1 =
= 1,其余为: 2 =
= 0.9992, 3 =
=
1000
1000
1000
9980
9910
0.982, 4 =
= 0.998, 5 =
= 0.991,整体模糊集可表示为:
1000
1000
1
0.9992
0.982
0.998
《人工智能控制技术》
模糊控制
模糊空基本原理
模糊控制是建立在模糊数学的基础上,模糊数学是研究和处理模糊性现
象的一种数学理论和方法。在生产实践、科学实验以及日常生活中,人
们经常会遇到模糊概念(或现象)。例如,大与小、轻与重、快与慢、动与
静、深与浅、美与丑等都包含着一定的模糊概念。随着科学技术的发展,
度是2 ,依此类推,式中“+”不是常规意义的加号,在模糊集中
一般表示“与”的关系。连续模糊集合的表达式为:A =
‫)( ׬‬/其中“‫” ׬‬和“/”符号也不是一般意义的数学符号,
在模糊集中表示“构成”和“隶属”。
模糊集合
假设论域U = {管段1,管段2,管段3,管段4,管段5},传感器采
1+|

控制系统中的模糊控制算法设计与实现

控制系统中的模糊控制算法设计与实现

控制系统中的模糊控制算法设计与实现现代控制系统在实际应用中,往往面临着多变、复杂、非线性的控制问题。

传统的多变量控制方法往往无法有效应对这些问题,因此,模糊控制算法作为一种强大的控制手段逐渐受到广泛关注和应用。

本文将从控制系统中的模糊控制算法的设计和实现两个方面进行介绍,以帮助读者更好地了解和掌握这一领域的知识。

一、模糊控制算法的设计1. 模糊控制系统的基本原理模糊控制系统是一种基于模糊逻辑的控制系统,其基本思想是通过将输入和输出变量模糊化,利用一系列模糊规则来实现对系统的控制。

模糊控制系统主要由模糊化、规则库、模糊推理和解模糊四个基本部分组成,其中规则库是模糊控制系统的核心部分,包含了一系列的模糊规则,用于描述输入和输出变量之间的关系。

2. 模糊控制算法的设计步骤(1)确定输入和输出变量:首先需要明确系统中的输入和输出变量,例如温度、压力等。

(2)模糊化:将确定的输入和输出变量进行模糊化,即将其转换为模糊集合。

(3)建立模糊规则库:根据实际问题和经验知识,建立一系列模糊规则。

模糊规则关联了输入和输出变量的模糊集合之间的关系。

(4)模糊推理:根据当前的输入变量和模糊规则库,利用模糊推理方法求解输出变量的模糊集合。

(5)解模糊:将求解得到的模糊集合转换为实际的输出值,常用的方法包括最大值法、加权平均法等。

3. 模糊控制算法的设计技巧(1)合理选择输入和输出变量的模糊集合:根据系统的实际需求和属性,选择合适的隶属函数,以便更好地描述系统的特性。

(2)精心设计模糊规则库:模糊规则库的设计是模糊控制算法的关键,应根据实际问题与经验知识进行合理的规则构建。

可以利用专家经验、试验数据或者模拟仿真等方法进行规则的获取和优化。

(3)选用合适的解模糊方法:解模糊是模糊控制算法中的一项重要步骤,选择合适的解模糊方法可以提高控制系统的性能。

常用的解模糊方法有最大值法、加权平均法、中心平均法等,应根据系统的需求进行选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模糊控制基本原理模糊控制是以模糊集合理论、模糊语言及模糊逻辑为基础控制,它是 模糊数学在控制系统中应用,是一种非线性智能控制。

模糊控制是利用人知识对控制对象进行控制一种方法,通常用“辻条 件,then 结果”形式来表现,所以又通俗地称为语言控制。

一般用于无法 以严密数学表示控制对象模型,即可利用人(熟练专家)经验和知识来很好 地控制。

因此,利用人智力,模糊地进行系统控制方法就是模糊控制。

模 糊控制基本原理如图所示:模糊控制系统原理框图它核心部分为模糊控制器。

模糊控制器控制规律由计算机程序实现, 实现一步模糊控制算法过程是:微机采样获取被控制量精确值,然后将此 量与给定值比较得到误差信号E ; 一般选误差信号E 作为模糊控制器一个 输入量,把E 精确量进行模糊量化变成模糊量,误差E 模糊量可用相应模 糊语言表示;从而得到误差E 模糊语言集合一个子集e (e 实际上是一个模 糊向量);再由e 和模糊控制规则R (模糊关系)根据推理合成规则进行模糊决策,得 到模糊控制量u 为:u = eoR式中U 为一个模糊量;为了对被控对象施加精确控制,还需要将模糊 量U控制对象进行非模糊化处理转换为精确量:得到精确数字量后,经数模转换变为精确模拟量送给执行机构,对被控对象进行一步控制;然后,进行第二次采样,完成第二步控制……。

这样循环下去,就实现了被控对象模糊控制。

模糊控制(Fuzzy Control)是以模糊集合理论、模糊语言变量和模糊逻辑推理为基础一种计算机数字控制。

模糊控制同常规控制方案相比,主要待点有:(1)模糊控制只要求掌握现场操作人员或有关专家经验、知识或操作数据,不需要建立过程数学模型,所以适用于不易获得精确数学模型被控过程,或结构参数不很清楚等场合。

(2)模糊控制是一种语言变量控制器,其控制规则只用语言变量形式定性表达,不用传递函数与状态方程,只要对人们经验加以总结,进而从中提炼出规则,直接给出语言变量,再应用推理方法进行观察与控制。

(3)系统鲁棒性强,尤其适用于时变、非线性、时延系统控制。

(4)从不同观点出发,可以设计不同目标函数,其语言控制规则分别是独立,但是整个系统设计可得到总体协调控制。

它是处理推理系统和控制系统中不精确和不确定性问题一种有效方法,同时也构成了智能控制重要组成部分。

模糊控制器组成框图主要分为三部分:精确量模糊化,规则库模糊推理,模糊量反模糊化。

图2-1模糊控制器组成(1)精确量模糊化模糊化是一个使清晰量模糊过程,输入量根据各种分类被安排成不同隶属度,例如,温度输入根据其高低被安排成很冷、冷、常温、热和很热等。

一般在实际应用中将精确量离散化,即将连续取值量分成儿档,每一档对应一个模糊集。

控制系统中偏差和偏差变化率实际范围叫做这些变量基本论域,设偏差基本论域为E-x, +x],偏差所取模糊集论域为(-n, 一n+1,…0, n-1, n),即可给出精确量模糊化量化因子k:(2)规则库和推理机模糊控制器规则是基于专家知识或手动操作熟练人员长期积累经验,它是按人直觉推理一种语言表示形式。

模糊规则通常由一系列关系词连接而成,如If-then, else, also, and, or等。

例如,某模糊控制系统输入变量为e (误差)和ec (误差变化率),它们对应语言变量为E和EC, 可给出一组模糊规则。

Rl: If E is NB and EC is NB then U is PBR2: If E is NB and EC is NS then U is PM通常把If...部分称为“前提”,而t hen...部分称为“结论”。

其基本结构可归纳为If A and B then C,其中A为论域U上一个模糊子集,B为论域V上一个模糊子集。

根据人工控制经验,可离线组织其控制决策表R, R是笛卡儿乘积集UXV上一个模糊子集,则某一时刻其控制量C由式(2-2)给出:...........规则库用来存放全部模糊控制规则,在推理时为“推理机”提供控制规则。

由上述可知,规则条数和模糊变量模糊子集划分有关。

划分越细,规则条数越多,但并不代表规则库准确度越高,规则库“准确性”还与专家知识准确度有关。

在设计模糊控制规则时,必须考虑控制规则完备性、交叉性和一致性。

完备性是指对于任意给定输入均有相应控制规则起作用。

要求控制规则完备性是保证系统能被控制必须条件之一。

如果控制器输出值总由数条控制规则来决定,说明控制规则之间相互联系、相互影响。

这是控制规则交叉性。

一致性是指控制规则中不存在相互矛盾规则。

常用模糊控制规则生成方法有:a、根据专家经验或过程控制知识生成控制规则模糊控制规则是基于手动控制策略而建立,而手动控制策略乂是人们通过学习、试验以及长期经验积累而形成。

手动控制过程一般是通过被控对象或过程观测,操作者再根据已有经验和技术知识,进行综合分析并做出控制决策,调整加到被控对象控制作用,从而使系统达到预期目标。

b、根据过程模糊模型生成控制规则如果用语言去描述被控过程动态特性,那么这种语言描述可以看作为过程模糊模型。

根据模糊模型,可以得到模糊控制规则集。

C、根据对手工操作系统观察和测量生成控制规则在实际生产中,操作人员可以很好地操作控制系统,但有时却难以给出用于模糊控制所用控制语句。

为此,可通过对系统输入、输出进行多次测量,再根据这些测量数据去生成模糊控制规则。

推理是模糊控制器中,根据输入模糊量,由模糊控制规则完成模糊推理来求解模糊关系方程,并获得模糊控制量功能部分。

Mamdani推理法,本质上是一种合成推理方法(3)反模糊化通过模糊控制决策得到是模糊量,要执行控制,必须把模糊量转化为精确量,也就是要推导出模糊集合到普通集合映射(也称判决)。

实际上是在一个输出范围内,找到一个被认为最具有代表性、可直接驱动控制装置确切输出控制值。

主要反模糊化判决方法有:最大隶属度法,重心法和加权平均法。

模糊控制器结构根据输入变量和输出变量个数,分为单变量模糊控制和多变量模糊控制。

二维输入-单输出模糊控制器二维模糊控制器如图2-2(b),两个输入变量基本上都采用受控变量偏差e和偏差变化率ec,由于它们能够严格地反映受控过程中输出变量动态特性,因此在控制效果上要比一维模糊控制器好得多,这也是最常用一类模糊控制器。

供暖锅炉控制系统属于过程控制系统,过程控制系统是指把生产过程 温度、压力、流量、液位和浓度作为被控参数控制系统。

因此供暖锅炉控 制系统作为过程控制系统其控制总任务是维持总出水温度恒定,同时燃烧 效率尽可能高、污染尽可能小,保证设备运行安全,满足用户供热要求, 以及对各运行参数和设备状态进行检测,以便进行显示、报警、工况计算 以及制表打印等。

系统输入—> 模糊化—模糊推理 —►非模糊化系统输岀PID 控制1. 比例环节成比例地反映控制系统偏差信号e(t),偏差一旦产生,控制器 立即产生控制作用,以减小偏差。

当仅有比例控制时系统输出存在稳态 误差(Steady-state error)。

P 参数越小比例作用越强,动态响应越快,消除误差能力越强。

但实际系统是有惯性,控制输出变化后,实际y(t)值变化还需等待一段 时间才会缓慢变化。

由于实际系统是有惯性,比例作用不宜太强,比例 作用太强会引起系统振荡不稳定。

P 参数大小应在以上定量计算基础上 根据系统响应情况,现场调试决定,通常将P 参数由大向小调,以能达 到最快响应乂无超调(或无大输入1 A 输入2 B----- ►模糊控制器 输屮-------- ►R超调)为最佳参数。

优点:调整系统开环比例系数,提高系统稳态精度,减低系统情性, 加快响应速度。

缺点:仅用P控制器,过大开环比例系数不仅会使系统超调量增大,而且会使系统稳定裕度变小,英至不稳定。

2.积分环节控制器输出与输入误差信号积分成正比关系。

主要用于消除静差,提高系统无差度。

积分作用强弱取决于积分时间常数T,T越大,积分作用越弱,反之则越强。

为什么要引进积分作用?比例作用输出与误差大小成正比,误差越大,输出越大,误差越小,输出越小,误差为零,输出为零。

由于没有误差时输出为零,因此比例调节不可能完全消除误差,不可能使被控PV值达到给定值。

必须存在一个稳定误差,以维持一个稳定输出,才能使系统PV值保持稳定。

这就是通常所说比例作用是有差调节,是有静差,加强比例作用只能减少静差,不能消除静差(静差:即静态误差,也称稳态误差)。

为了消除静差必须引入积分作用,积分作用可以消除静差,以使被控y(t)值最后与给定值一致。

引进积分作用目也就是为了消除静差,使y(t)值达到给定值,并保持一致。

积分作用消除静差原理是,只要有误差存在,就对误差进行积分,使输出继续增大或减小,一直到误差为零,积分停止,输出不再变化,系统PV值保持稳定,y(t)值等于u(t)值,达到无差调节效果。

但由于实际系统是有惯性,输出变化后,y(t)值不会马上变化, 须等待一段时间才缓慢变化,因此积分快慢必须与实际系统惯性相匹配,惯性大、积分作用就应该弱,积分时间I就应该大些,反之而然。

如果积分作用太强,积分输出变化过快,就会引起积分过头现象,产生积分超调和振荡。

通常I参数也是由大往小调,即积分作用由小往大调, 观察系统响应以能达到快速消除误差,达到给定值,乂不引起振荡为准。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差或简称有差系统(System with Steady-sta te Error) o为了消除稳态误差,在控制器中必须引入“积分项”。

积分项对误差取决于时间积分,随着时间增加,积分项会增大。

这样,即便误差很小,积分项也会随着时间增加而加大,它推动控制器输出增大使稳态误差进一步减小,直到等于零。

因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

PI控制器不但保持了积分控制器消除稳态误差“记忆功能”,而且克服了单独使用积分控制消除误差时反应不灵敏缺点。

优点:消除稳态误差。

缺点:积分控制器加入会影响系统稳定性,使系统稳定裕度减小。

3.微分环节反映偏差信号变化趋势,并能在偏差信号变得太大之前,在系统中引入一个有效早期修正信号,从而加快系统动作速度,减少调节时间。

在微分控制中,控制器输出与输入误差信号微分(即误差变化率)成正比关系。

为什么要引进微分作用?前面已经分析过,不论比例调节作用,还是积分调节作用都是建立在产生误差后才进行调节以消除误差,都是事后调节,因此这种调节对稳态来说是无差,对动态来说肯定是有差,因为对于负载变化或给定值变化所产生扰动,必须等待产生误差以后,然后再來慢慢调节予以消除。

但一般控制系统,不仅对稳定控制有要求,而且对动态指标也有要求,通常都要求负载变化或给定调整等引起扰动后,恢复到稳态速度要快,因此光有比例和积分调节作用还不能完全满足要求,必须引入微分作用。

相关文档
最新文档