模糊控制原理简介
模糊控制理论及工程应用

模糊控制理论及工程应用模糊控制理论是一种能够处理非线性和模糊问题的控制方法。
它通过建立模糊规则和使用模糊推理来实现对系统的控制。
本文将介绍模糊控制理论的基本原理,以及其在工程应用中的重要性。
一、模糊控制理论的基本原理模糊控制理论是由扬·托东(Lotfi Zadeh)于1965年提出的。
其基本原理是通过建立模糊规则,对系统的输入和输出进行模糊化处理,然后利用模糊推理来确定系统的控制策略。
模糊规则是一种类似于“如果...那么...”的表达式,用于描述输入和输出之间的关系。
模糊推理则是模糊控制系统的核心,它通过将模糊规则应用于模糊化的输入和输出,来确定控制的动作。
二、模糊控制理论的工程应用模糊控制理论在工程应用中具有广泛的应用价值。
下面将分别介绍其在机械控制和电力系统控制中的应用。
1. 机械控制模糊控制理论在机械控制领域有着重要的应用。
其优势在于能处理非线性和模糊问题,使得控制系统更加鲁棒和稳定。
例如,在机器人控制中,模糊控制可实现对复杂环境的适应性和灵活性控制,使机器人能够自主感知和决策。
此外,模糊控制还可以应用于精密仪器的控制,通过建立模糊规则和模糊推理,实现对仪器位置和姿态的精确控制。
2. 电力系统控制模糊控制理论在电力系统控制领域也有着重要的应用。
电力系统是一个复杂的非线性系统,模糊控制通过建立模糊规则和模糊推理,可以实现对电力系统的稳定性和性能进行优化。
例如,在电力系统调度中,模糊控制可以根据不同的负荷需求和发电能力,实现对发电机组的出力控制,保持电力系统的稳定运行。
此外,模糊控制还可以应用于电力系统中的故障诊断和故障恢复,通过模糊推理,快速准确地定位和修复故障。
三、总结模糊控制理论是一种处理非线性和模糊问题的有效方法。
其基本原理是通过建立模糊规则和使用模糊推理来实现对系统的控制。
模糊控制理论在机械控制和电力系统控制等工程领域有着广泛的应用。
它能够提高控制系统的鲁棒性和稳定性,并且能够适应复杂的环境和变化,具有良好的控制效果。
模糊控制理论及应用

模糊控制理论及应用模糊控制是一种基于模糊逻辑的控制方法,它能够应对现实世界的不确定性和模糊性。
本文将介绍模糊控制的基本原理、应用领域以及未来的发展趋势。
一、模糊控制的基本原理模糊控制的基本原理是基于模糊逻辑的推理和模糊集合的运算。
在传统的控制理论中,输入和输出之间的关系是通过精确的数学模型描述的,而在模糊控制中,输入和输出之间的关系是通过模糊规则来描述的。
模糊规则由模糊的IF-THEN语句组成,模糊推理通过模糊规则进行,从而得到输出的模糊集合。
最后,通过去模糊化操作将模糊集合转化为具体的输出值。
二、模糊控制的应用领域模糊控制具有广泛的应用领域,包括自动化控制、机器人控制、交通控制、电力系统、工业过程控制等。
1. 自动化控制:模糊控制在自动化控制领域中起到了重要作用。
它可以处理一些非线性和模糊性较强的系统,使系统更加稳定和鲁棒。
2. 机器人控制:在机器人控制领域,模糊控制可以处理环境的不确定性和模糊性。
通过模糊控制,机器人可以对复杂的环境做出智能响应。
3. 交通控制:模糊控制在交通控制领域中有重要的应用。
通过模糊控制,交通信号可以根据实际情况进行动态调整,提高交通的效率和安全性。
4. 电力系统:在电力系统中,模糊控制可以应对电力系统的不确定性和复杂性。
通过模糊控制,电力系统可以实现优化运行,提高供电的可靠性。
5. 工业过程控制:在工业生产中,许多过程具有非线性和不确定性特点。
模糊控制可以应对这些问题,提高生产过程的稳定性和质量。
三、模糊控制的发展趋势随着人工智能技术的发展,模糊控制也在不断演进和创新。
未来的发展趋势主要体现在以下几个方面:1. 混合控制:将模糊控制与其他控制方法相结合,形成混合控制方法。
通过混合控制,可以充分发挥各种控制方法的优势,提高系统的性能。
2. 智能化:利用人工智能技术,使模糊控制系统更加智能化。
例如,引入神经网络等技术,提高模糊控制系统的学习和适应能力。
3. 自适应控制:模糊控制可以根据系统的变化自适应地调整模糊规则和参数。
模糊控制的基本原理

模糊控制的基本原理模糊控制是一种基于模糊逻辑的控制方法,它模仿人类的思维方式,通过模糊化、模糊推理和解模糊化来实现对系统的控制。
模糊控制的基本原理可以概括为以下几个方面。
模糊控制通过将输入和输出与一组模糊集相对应,来模拟人类的模糊推理过程。
在传统的控制方法中,输入和输出通常是精确的数值,而在模糊控制中,输入和输出可以是模糊的、不确定的。
通过将输入和输出模糊化,可以将问题从精确的数学计算转化为模糊的逻辑推理,使得控制系统更加灵活和适应性强。
模糊控制通过定义一组模糊规则来描述系统的行为。
模糊规则是一种类似于人类思维的规则,它由若干模糊条件和模糊结论组成。
模糊条件和模糊结论通过模糊集来表示,并通过模糊推理来确定系统的控制策略。
模糊推理是基于模糊规则和模糊集的逻辑推理过程,它通过对模糊条件的匹配和模糊结论的合成,来确定系统的输出。
然后,模糊控制通过解模糊化将模糊输出转化为精确的控制信号。
解模糊化是将模糊输出映射到一个确定的值域上的过程,它可以通过取模糊输出的平均值、加权平均值或者其他方式来实现。
解模糊化的目的是将模糊的控制信号转化为精确的控制动作,以实现对系统的精确控制。
模糊控制通过反馈机制来实现对系统的自适应调节。
反馈机制是模糊控制系统中的重要组成部分,它通过不断测量系统的输出,并与期望输出进行比较,来调节系统的控制策略。
通过反馈机制,模糊控制系统可以根据系统的实际情况进行调节,以适应不同的工作环境和工作条件。
模糊控制的基本原理包括模糊化、模糊推理、解模糊化和反馈机制。
通过模糊化和模糊推理,模糊控制可以将问题从精确的数学计算转化为模糊的逻辑推理,使得控制系统更加灵活和适应性强。
通过解模糊化,模糊控制可以将模糊的控制信号转化为精确的控制动作,以实现对系统的精确控制。
通过反馈机制,模糊控制可以根据系统的实际情况进行调节,以适应不同的工作环境和工作条件。
模糊控制的基本原理为工程领域提供了一种灵活、适应性强的控制方法,可以应用于各种复杂的控制问题中。
模糊控制原理

模糊控制原理
模糊控制原理是一种基于模糊逻辑理论的控制方法。
模糊控制通过模糊化输入变量和输出变量,建立模糊规则库,并通过模糊推理得到模糊控制输出。
模糊控制的主要目标是实现对非线性、模糊、不确定或不精确系统的控制。
通过引入模糊因素,模糊控制可以在不准确或不确定的情况下,对系统进行稳定、鲁棒的控制。
模糊控制的核心思想是将控制问题转化为一系列的模糊规则,其中每个规则都包含了一组模糊化的输入和输出。
模糊规则的编写通常需要基于领域专家的经验和知识。
通过对输入变量和输出变量的模糊化,可以将问题的精确描述转化为模糊集合。
模糊推理使用了一系列的逻辑规则来描述输入模糊集合与输出模糊集合之间的关系,以得到模糊控制输出。
最后,通过解模糊过程将模糊输出转化为具体的控制信号,以实现对系统的控制。
模糊控制具有很强的鲁棒性和适应性,能够处理非线性、时变和多变量的系统。
它还可以处理模糊和不准确的信息,适用于实际系统中存在的各种不确定性和复杂性。
此外,模糊控制还具有良好的可解释性,可以用于解释控制决策的原因和依据。
总之,模糊控制原理是一种基于模糊逻辑理论的控制方法,通过模糊化变量、建立模糊规则库和进行模糊推理,实现对非线性、模糊、不确定或不精确系统的稳定控制。
模糊控制具有鲁棒性、适应性和可解释性等特点,在实际系统中有广泛的应用。
模糊控制算法原理

模糊控制算法原理
模糊控制是一种基于经验的控制方法,它可以处理不确定性、模糊性和复杂性等问题,因此在工业控制、自动化、机器人等领域得到了广泛应用。
模糊控制算法的基本原理是将输入变量和输出变量映射成模糊集合,通过模糊推理来得到控制输出。
在这个过程中,需要使用模糊逻辑运算和模糊推理规则进行计算,最终得到模糊输出,再通过去模糊化转换为实际控制信号。
模糊控制算法的关键是如何构建模糊规则库。
规则库是由一系列模糊规则组成的,每个模糊规则包括一个前提和一个结论。
前提是由输入变量的模糊集合组成的,结论是由输出变量的模糊集合组成的。
在构建规则库时,需要依据专家经验或实验数据来确定模糊集合和模糊规则。
模糊控制算法的实现过程包括模糊化、模糊推理和去模糊化三个步骤。
模糊化是将输入变量映射成模糊集合的过程,它可以通过隶属度函数将输入变量的值转换为对应的隶属度值,表示它属于各个模糊集合的程度。
模糊推理是根据模糊规则库进行推理的过程,它可以通过模糊逻辑运算来计算各个规则的置信度,进而得到模糊输出。
去模糊化是将模糊输出转换为实际控制信号的过程,它可以通过一些去模糊化方法来实现,比如最大隶属度法、平均值法等。
模糊控制算法的优点是可以处理不确定性和模糊性,适用于复杂系统的控制;缺点是需要依赖专家经验或实验数据来构建规则库,而且计算复杂度较高,运算速度较慢。
因此,在实际应用中需要根据具体情况来选择控制算法。
模糊控制算法是一种基于经验的控制方法,可以处理不确定性、模糊性和复杂性等问题,在工业控制、自动化、机器人等领域得到了广泛应用。
在实际应用中,需要根据具体情况来选择控制算法,以保证控制效果和运算速度的平衡。
模糊控制系统的工作原理

模糊控制系统的工作原理模糊控制系统是一种常用于处理复杂控制问题的方法,其原理是通过模糊化输入变量和输出变量,建立模糊规则库,从而实现对非精确系统的控制。
本文将详细介绍模糊控制系统的工作原理。
一、模糊化输入变量模糊化输入变量是模糊控制系统的第一步,其目的是将非精确的输入变量转化为可处理的模糊语言变量。
这一步骤一般包括两个主要的过程:隶属函数的选择和输入变量的模糊化。
对于每一个输入变量,需要选择合适的隶属函数来表示其模糊化程度。
常用的隶属函数包括三角形隶属函数、梯形隶属函数、高斯隶属函数等。
通过调整隶属函数的参数,可以控制输入变量的隶属度,进而确定输入变量的模糊程度。
在选择隶属函数之后,需要对输入变量进行模糊化处理。
这是通过将输入变量与相应的隶属函数进行匹配,确定输入变量在每个隶属函数上的隶属度。
通常采用的方法是使用模糊集合表示输入变量的模糊程度,例如“高度模糊”、“中度模糊”等。
二、建立模糊规则库建立模糊规则库是模糊控制系统的核心部分,其目的是将模糊化后的输入变量与模糊化后的输出变量之间的关系进行建模。
模糊规则库一般由若干个模糊规则组成,每个模糊规则由一个或多个模糊条件和一个模糊结论组成。
模糊条件是对输入变量进行约束的条件,而模糊结论则是对输出变量进行控制的结果。
在建立模糊规则库时,需要根据具体控制问题的特点和实际需求,确定合适的模糊规则。
一般情况下,通过专家经验或者实验数据来确定模糊规则,以得到最佳的控制效果。
三、推理机制推理机制是模糊控制系统的关键环节,其目的是通过将输入变量的模糊程度与模糊规则库进行匹配,得到对输出变量的模糊控制。
推理机制一般包括模糊匹配和模糊推理两个步骤。
在模糊匹配的过程中,根据输入变量的模糊程度和模糊规则的条件,计算每个模糊规则的激活度。
激活度是输入变量满足模糊规则条件的程度,可以通过模糊逻辑运算进行计算。
在模糊推理的过程中,根据模糊匹配的结果和模糊规则库中的模糊结论,使用模糊逻辑运算得到对输出变量的模糊控制。
模糊控制基本原理

第四章模糊控制基本原理模糊控制是以模糊集合论、模糊语言变量及模糊逻辑为基础的计算机智能控制。
模糊控制从其诞生至今也不过30年的时间,1974年马达尼(Maindani)教授在他的博士论文中首次论述了如何将模糊逻辑应用于过程控制,从而开创了模糊控制的先河。
在这之后的30年间的发展中,模糊控制在理论和应用研究方面均取得了重大的成功。
传统的控制方法在执行控制时,往往需要取得对象的数学模型,比如PID 控制。
但是一些学者发现人类在处理复杂对象的过程,并不是首先建立被控对象的数学模型,然后根据这一模型去精确地计算出系统所需要的控制量,而是完全在模糊概念的基础上利用模糊的量完成对系统的合理控制。
人们正是因为从中得到了启示,最终导致了模糊控制的诞生。
可以看到,经验和知识将扮演重要的角色,通过对经验和知识进行推理进而产生相应的控制策略。
模糊控制从1974年到现在,模糊控制的发展经历了两个阶段,即简单模糊控制阶段和自我完善模糊控制阶段。
简单模糊控制阶段指在计算机系统上把控制器上的推理过程处理成控制表,这种模糊控制器结构简单但不灵活,自适应能力和鲁棒性有限,控制精度不高;自我完善模糊控制阶段指具有参数自调整、自组织和自学习功能的模糊控制器,这样使模糊控制系统的性能得到了很大的提高。
20世纪80年代末,日本首先将模糊控制技术应用于家用电器领域,之后相继推出了模糊洗衣机、电冰箱、空调器、电饭锅等,显示了模糊控制强大的生命力。
最初的模糊电冰箱是在变频冰箱系统中得到尝试的,首先通过A/D采样读入冷藏室及冷冻室的温度值和温度变化的速度,并将其模糊化后,然后根据原先计算的模糊规则,调节压缩机的转速。
4.1清晰集合的基本知识集合指具有同一本质属性的全体事物的总和汇集成一个确定的整体论域由被考虑对象的所有元素的全体组成的基本集合称为论域,又称为全域或空间,用大写英文字母E表示。
4.1.1序偶在人们所接触的许多事物中,往往可以发现它们是成对地出现的,而且具有一定的顺序。
模糊控制原理

模糊控制原理模糊控制是一种基于模糊集合理论的控制方法,它利用模糊集合的概念来描述系统的输入、输出和控制规则,以实现对系统的精确控制。
模糊控制原理的核心是模糊推理和模糊逻辑运算,通过对模糊集合的模糊化、规则的模糊化和解模糊化等操作,实现对系统的控制。
本文将介绍模糊控制原理的基本概念、模糊集合的表示和运算、模糊推理方法以及模糊控制系统的设计与应用。
首先,模糊控制原理是建立在模糊集合理论的基础上的。
模糊集合是一种介于传统集合和随机集合之间的数学概念,它用来描述那些难以用精确的数学语言来描述的事物。
模糊集合的表示采用隶属度函数来描述元素与集合之间的隶属关系,而模糊集合的运算则采用模糊交和模糊并运算来实现。
通过模糊集合的表示和运算,可以更加灵活地描述系统的输入、输出和控制规则。
其次,模糊推理是模糊控制原理的核心。
模糊推理是指根据模糊规则和模糊事实进行推理,得出模糊结论的过程。
在模糊推理过程中,需要进行模糊化、规则的模糊化、模糊推理和解模糊化等步骤,以得出系统的控制策略。
模糊推理方法有基于规则的模糊推理、基于模糊关系的模糊推理和基于模糊逻辑的模糊推理等多种形式,可以根据具体的系统需求进行选择。
最后,模糊控制系统的设计与应用是模糊控制原理的重要内容。
模糊控制系统的设计包括模糊控制器的设计、模糊规则的确定和模糊集合的选择等内容,而模糊控制系统的应用涉及到各个领域,如工业控制、机器人控制、交通控制、电力系统控制等。
模糊控制系统的设计与应用需要充分考虑系统的动态特性、非线性特性和不确定性,以实现对系统的精确控制。
总之,模糊控制原理是一种基于模糊集合理论的控制方法,它利用模糊推理和模糊逻辑运算来实现对系统的精确控制。
模糊控制原理的核心是模糊推理和模糊逻辑运算,通过对模糊集合的模糊化、规则的模糊化和解模糊化等操作,实现对系统的控制。
模糊控制系统的设计与应用涉及到各个领域,需要充分考虑系统的动态特性、非线性特性和不确定性,以实现对系统的精确控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6 模糊控制原理简介§6.1 模糊控制系统现代控制理论已经在工业、国防、航天等许多领域获得了成功。
一般情况下,传统的闭环控制系统如图6.1所示,其原理是建立在精确的数学模型上。
但对于一些强藕合、多参数、非线性、时变性、大惯性、纯滞后的复杂系统,建立它们的精确数学模型是很困难的,有些甚至是不可能的。
然而,在实际工作当中,一些有经验的操作人员却可以通过观察、推理和决策,用人工控制的方法较好地控制那些复杂的对象。
模糊控制系统就是将人的经验总结成语言控制规则,运用模糊理论模拟人的推理与决策,从而实现自动控制的控制系统。
模糊控制系统与传统的闭环控制系统不同之处,就是用模糊控制器代替了模拟式控制器,其硬件结构框图如图6.2所示.y(t)输出y(t)图6.1 图6.2输出图6.3§6。
2 模糊控制器的设计模糊控制器本质上就是一个采用了模糊控制算法的计算机或芯片,其一般结构如图6。
3所示。
它由三个基本部分构成:(1)将输入的确切值“模糊化”,成为可用模糊集合描述的变量;(2)应用语言规则进行模糊推理;(3)对推理结果进行决策并反模糊化(也称为清晰化、解模糊),使之转化为确切的控制量。
有m个输入一个输出的模糊控制器称为m维模糊控制器。
由于一维模糊控制器所能获得的系统动态性能往往不能令人满意,三维及三维以上的模糊控制器结构复杂,推理运算时间长,因此典型的模糊控制器是二维模糊控制器。
一般地,设计一个二维的模糊控制器,通常需要五个步骤:1. 确定输入变量与输出变量及其模糊状态;2. 输入变量的模糊化;3. 建立模糊控制规则;4. 进行模糊推理;5. 输出变量的反模糊化。
6.2.1 确定输入变量与输出变量及其模糊状态根据问题的背景,确定出输入变量E 1、E 2和输出变量u .输入、输出变量的模糊状态按照控制品质的要求可分为三类:控制品质要求较高的场合,变量的模糊状态取为负大(NB )、负中(NM)、负小(NS )、零(ZO)、正小(PS )、正中(PM )、正大(PB )或负大(NB )、负中(NM )、负小(NS)、负零(NZ)、正零(PZ )、正小(PS)、正中(PM)、正大(PB );控制品质要求一般的场合,变量的模糊状态取为负大(NB )、负小(NS )、零(ZO )、正小(PS)、正大(PB )或负大(NB )、负小(NS )、负零(NZ)、正零(PZ)、正小(PS )、正大(PB );控制品质要求较低的场合,变量的模糊状态取为负大(NB )、零(ZO )、正大(PB )或负大(NB )、负零(NZ)、正零(PZ)、正大(PB )。
6。
2.2 输入变量的模糊化方法输入变量的模糊化就是将输入的确切值变量转化为可用模糊集合描述的模糊变量,一般分为两步。
第一步,确定输入变量的论域及输入变量实际确切值对应的论域确切值。
将输入变量的实际变化范围 [a ,b ] 划分成若干等级,把这些等级的上下界作为端点构成输入变量的论域U .一般来讲,控制品质要求较高的场合,可划分成13或15级,通常表示为{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}或{-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7},相应的论域分别为U = [-6,6]或U = [-7,7];控制品质要求一般的场合,可划分成9或11级,通常表示为{-4,-3,-2,-1,0,1,2,3,4}或{-5,-4,-3,-2,-1,0,1,2,3,4,5},相应的论域分别为U = [-4,4]或U = [-5,5];控制品质要求较低的场合,可划分成5或7级,通常表示为{-2,-1,0,1,2}或{-3,-2,-1,0,1,2,3},相应的论域分别为U = [-2,2]或U = [-3,3]。
设输入变量x 的实际变化范围为 [a ,b ],分为m 级,则相应的论域为U = [-(m -1)/2,(m -1)/2];如果x 的实际确切值为x 0,则相应的论域确切值为)(1210a x ab m m x ---+--='。
第二步,定义各模糊状态的隶属函数。
各模糊状态的隶属函数一般选择对称三角形、对称梯形、正态型隶属函数。
以对称三角形隶属函数为例,控制品质要求较高的场合,相应的隶属函数如图6。
4;控制品质要求一般的场合,相应的隶属函数如图6.5;控制品质要求较低的场合,相应的隶属函数如图6.6。
’图6.4—(a )图6。
4-(b )’ 图6。
5—(a ) 图6。
6—(a )图6。
5—(a ) 图6。
6-(a )6.2。
3 建立模糊控制规则控制规则是模糊控制器的核心.根据经验和知觉推理,将人的大量成功的控制策略经整理、加工和提炼后,用输入、输出变量的模糊状态给以描述,就得到了控制规则.对于二维模糊控制器,控制规则通常用如下形式的语句描述:R k :if A k and B k then C k k = 1, 2, …, n 。
在设计过程中,一般将所有控制规则汇总成控制状态表。
表6.1是某一模糊控制器的控制状态表.6.2.4 模糊推理如前所述,二维模糊控制器的模糊控制规则形式为规则k :if A k and B k then C k k = 1, 2, …, n ,于是模糊控制器的运算就转化为如下我们熟知的二维多重模糊推理问题:模糊推理格式为规则1 if A 1 and B 1 then C 1规则2 if A 2 and B 2 then C 2………………………规则n if A n and B n then C n前提 A' and B’结论 C '其中,A i ,A ’∈F (X ),B i ,B ’∈F(Y ),C i 、C ' ∈F(Z ).再转化成一维多重模糊推理为:规则1 if A 1∩B 1 then C 1规则2 if A 2∩B 2 then C 2………………………规则n if A n ∩B n then C n前提 A' and B’结论 C '根据多重模糊推理先合成再取并的方法有:()[][]{})()()()()(sup )(])[()()(),(z C y B x A y B x A z C B A B A z C i i i YX y x i i i ∧∧∧'∧'=→''='⨯∈ ,∀ z ∈Z 。
如果模糊推理前提为确定的数值(x 0, y 0),则有ni i i i i i C B A y B x A z C 100]})[()]()({[)(=→∧=',∀ z ∈Z 。
令])[()]()([00i i i i i i C B A y B x A C →∧=' ,h i = A i (x 0)∧B i (y 0)(称h i 为“x 0 and y 0”与各推理规则前件部“A i and B i ”的适合度),则])[(i i i i i C B A h C →=' ,从而)(max )(1z C z C i ni '='≤≤,∀ z ∈Z . 在模糊控制中常用的三类推理方式为:1.马丹尼(Mamdani)极小运算法模糊蕴涵算子取R c :a → b = a ∧b ,模糊关系合成算子取◎:“max −min ”合成,C i ' (z ) = [A i (x 0)∧B i (y 0)]∧C i (z ) = h i ∧C i (z ),∀ z ∈Zn i z C ≤≤='1max )({ h i ∧C i (z )} = ni ≤≤1max {[A i (x 0)∧B i (y 0)]∧C i (z )},∀ z ∈Z 利用Mamdani 推理方式计算C ' (z ) 的示意图见图6。
7和图6.8,其中推理规则为R k :if A k and B k then C k k = 1, 2。
2.拉森(Lason )乘积运算法模糊蕴涵算子取R c :a → b = a •b ,模糊关系合成算子取◎:“max −min ”合成,C i ' (z ) = [A i (x 0)∧B i (y 0)]•C i (z ) = h i •C i (z ),∀ z ∈Zn i z C ≤≤='1max )({ h i •C i (z )} = ni ≤≤1max {[A i (x 0)∧B i (y 0)]•C i (z )},∀ z ∈Z 利用Lason 乘积运算法计算C ' (z ) 的示意图如图6。
9和图6.10,其中推理规则为R k :if A k and B k then C k k = 1, 2。
⇒C ' = C 1' ⋃C 2'00图6.7μ1图6。
8⇒C ' = C 1' ⋃C 2'00图6.9μ0 1图6。
103.(Tsukamoto )法当隶属函数为单调的情况时,对于给定的x 0和y 0,有∑∑===n i i n i i ihz h z 11*其中,z i = C i -1 (h i )。
利用Tsukamoto 法计算C ' (z ) 的示意图如图6。
11:1A 1B 1C 1h 11 A2 B 2 C 2h 20 x 0 0 y 0 0 z 2图6.96。
2。
5 输出变量的反模糊化上述的模糊推理结果,即模糊控制器的输出变量,一般情况下是一个模糊集(如马丹尼法和拉森法得到 z 1的都是模糊集),不能直接用于控制被控对象,需要先转化成执行器可以执行的精确量。
此过程一般称为反模糊化,或称为清晰化,也称为解模糊.反模糊化目前尚无系统的方法。
目前常用的方法有三种.1.最大隶属度法这种方法非常简单,直接选择模糊子集中隶属度最大的元素作为模糊控制器输出的精确值。
如果有两个以上的元素均为最大(一般依此相邻),则可取它们的平均值。
最大隶属度法能够突出主要信息,而且计算简单,但很多次要信息都被丢失了,因此显得比较粗糙,只能用于控制品质要求较低的系统中。
2.中位数法论域U 上把隶属函数曲线与横坐标围成的面积平分为两部分的元素z *称为模糊集的中位数。
中位数法就是把模糊集的中位数作为模糊控制器输出。
假设U ⊆R ,则z *可用下列公式求取:⎰⎰=bz z a dz x C dz x C **)()(,当U = [a , b ,]; 与第一种方法比较,中位数法概括了更多的信息,但没有突出主要信息,且需求解积分方程,计算比较复杂,因此应用场合要比下面的加权平均法来的少。
3.加权平均法(重心法)这是模糊控制系统中应用比较广泛的一种非模糊化方法。