小学数学比和比例应用题 知识点全面

合集下载

小学六年级_比和比例知识点梳理(最新整理)

小学六年级_比和比例知识点梳理(最新整理)

复习课:比和比例知识点一: 比和比例的联系与区别比比例意义表示两数相除表示两个比相等的式子各部分名称9:6=1.5↑↑↑↑前项比号后项比值9:6=3:2↑比的前项和后项同时乘或除以相同的数(0除外),比值不变。

在比例里,两个外项的积等于两个内项的积。

基本性质化简比的依据。

解比例的依据。

知识点二:比和分数、除法的联系名称联系比前项:(比号)后项比值分数分子—(分数线)分母分数值除法被除数(除号)÷除数商知识点三:求比值和化简比意义方法结果求比值前项除以后项所得的商用前项除以后项一个数(是整数、分数或小数)化简比把两个数的比化简成最简单的整数比前项和后项同时乘或除以相同的数(0除外),也可以用求比值的方法,用前项除以后项,得出一个分数值。

一个比知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例的关系式:(一定)k xy=2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。

反比例的关系式:(一定)k xy =3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。

(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。

(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例4、正比例、反比例的区别与联系不同点名称意义不相同变化方向不相同关系式不同相同点正比例两种量中相对应的两个数的比值,也就是商一定一种量扩大(或缩小),另一种量也随之扩大(或缩小)。

(一定)k xy =反比例两种量中相对应的两个数的积一定一种量扩大(或缩小),另一种量也随之缩小(或扩大)。

知识点精讲比例应用题

知识点精讲比例应用题

知识点精讲比例应用题一、简单比例关系应用题。

1. 已知甲、乙两数的比是5:3,甲数是25,求乙数。

- 解析:设乙数为x,因为甲、乙两数的比是5:3,即(甲)/(乙)=(5)/(3)。

已知甲数是25,则(25)/(x)=(5)/(3),交叉相乘得5x = 25×3,5x=75,解得x = 15。

2. 一种合金中铜和锌的比是2:3,现在有铜12克,需要多少克锌才能制成这种合金?- 解析:设需要锌x克,因为铜和锌的比是2:3,即(铜)/(锌)=(2)/(3)。

已知铜12克,则(12)/(x)=(2)/(3),交叉相乘得2x=12×3,2x = 36,解得x = 18克。

3. 某班男、女生人数比是4:5,男生有20人,这个班共有多少人?- 解析:设女生有x人,因为男、女生人数比是4:5,(男生人数)/(女生人数)=(4)/(5),已知男生20人,则(20)/(x)=(4)/(5),交叉相乘得4x=20×5,4x = 100,解得x = 25人。

那么这个班共有20 + 25=45人。

二、比例在工程问题中的应用。

4. 一项工程,甲、乙两队的工作效率比是3:4,甲队单独做需要12天完成,乙队单独做需要多少天完成?- 解析:工作总量 = 工作效率×工作时间。

设乙队单独做需要x天完成。

因为甲、乙两队的工作效率比是3:4,设甲队工作效率为3a,乙队工作效率为4a。

甲队单独做需要12天完成,工作总量为3a×12 = 36a。

乙队工作总量也为36a,工作效率为4a,则工作时间x=(36a)/(4a)=9天。

5. 甲、乙两个工程队合修一条路,甲、乙两队的工作效率比是5:3,两队合修6天完成,单独修甲队比乙队少用多少天?- 解析:设甲队工作效率为5a,乙队工作效率为3a,工作总量=(甲队工作效率 + 乙队工作效率)×工作时间=(5a + 3a)×6=48a。

比和比例知识点总结

比和比例知识点总结

比和比例知识点总结
嘿,朋友们!今天咱来好好聊聊比和比例这个超有意思的知识点!
咱先来说说比吧!就像你有 5 个苹果,我有 3 个苹果,那咱俩苹果数量的比就是 5:3 呀。

比就是表示两个数相除的关系呢!比如说,足球队里男生有 10 人,女生有 5 人,那男生和女生的人数比就是 10:5 啦。

再讲讲比例。

假如有个配方,说盐和面粉的比例是 1:4,那就是说每 1 份盐要搭配 4 份面粉哦。

就好像做蛋糕,得按照正确的比例来,不然味道可就不对喽!比如调和油漆的时候,颜色和稀释剂比例要是不对,那颜色可就没法达到想要的效果啦!
比和比例可是紧密相关的呢!比例不就是由两个或多个比组成的嘛。

想象一下,比赛跑步,你的速度和我的速度之比,再和别人的速度之比,如果能放在一起看,不就是个比例关系嘛。

那它们有啥用呢?用处可大啦!盖房子的时候,工人要根据设计图纸上的比例来施工,不然房子不就盖歪啦?还有做衣服,尺寸比例得拿捏得死死的,不然穿起来多别扭呀!
哎呀,比和比例真的超级重要,别小看它们哦!它们就像生活中的小魔法师,在各种地方发挥着神奇的作用。

大家一定要好好掌握呀,这样才能在生活和学习中游刃有余呢!咱可不能小瞧了这些知识点,它们能帮咱们解决好多实际问题呢,不是吗?。

六年级数学《比和比例》知识点

六年级数学《比和比例》知识点

六年级数学《比和比例》知识点一、比的意义和性质1、比的意义两个数相除又叫做两个数的比。

2、比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。

3、比的应用通过比可以应用一些问题。

二、比例的意义和性质1、比例的意义表示两个比相等的式子叫做比例。

2、比例的性质在一个比例中,组成比例的两个数,叫做比例的项。

在一比例里,两外项的积等于两内项的积。

这叫做比例的基本性质。

3、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。

这个求未知项的过程,叫做解比例。

三、正比例和反比例1、成正比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。

2、成反比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。

3、正比例和反比例的判断方法判断两种量是否成正比例或反比例的方法:一是看这两种相关联的量中相对应的两个数的比值是否一定;二是看这两种量中相对应的两个数的积是否一定。

比的意义:两个量的关系可以用比来表示,我们通常称之为“比”。

定义:在两个量的比中,我们把数量放在前面,单位“1”放在后面,我们称之为前项,后项。

比与除法、分数的关系:比的前项相当于被除数或分子,后项相当于除数或分母,比值相当于商或分数值。

比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。

比例的意义:表示两个比相等的式子叫做比例。

组成比例的四个数叫做比例的项。

两外两项叫做内项,中间两项叫做外项。

如果中间的两项是两个相同的数,这样的比例叫做对称比例。

比例尺的意义:我们把图上距离和实际距离的比叫做比例尺。

我们把比例尺分为放大比例尺和缩小比例尺两种。

缩小比例尺的计算方法:已知实际距离求图上距离,根据公式计算即可;已知图上距离求实际距离根据公式计算即可。

(完整版)小学六年级_比和比例知识点梳理

(完整版)小学六年级_比和比例知识点梳理

复习课:比和比例知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例的关系式:〜 k (一定)x2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。

反比例的关系式:xy k (一定)3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。

(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。

(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量, 就不成比例4、正比例、反比例的区别与联系知识点五:用比例知识解决问题1、按比例分配问题(1)按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。

(2)解题方法一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量总份数=平均每份的量(归一)",再用"一份的量各部分量所对应的份数”,求出各部分的量。

用比例知识解答:首先设未知量为。

再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x的比例式,再解比例求出X。

2、用正、反比例知识解答应用题的步骤(1)分析数量关系。

判断成什么比例。

(2)找等量关系。

如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。

(3)解比例式。

设未知数为X,并代入等量关系式,得正比例式或反比例式。

(4)解比例。

(5)检验并写出答语。

精讲典型题例题1填空(1)一项工程,甲单独做要4天,乙单独做要5天完成,甲和乙的工作效率比是(): ()(2)把2米:4厘米化成最简单的整数比是(),比值是()。

六年级比和比例知识点

六年级比和比例知识点

六年级比和比例知识点在六年级的数学学习中,比和比例是一个重要的知识点。

它们可以帮助我们更好地理解和比较数值之间的关系,进而解决实际生活和数学问题。

本文将详细介绍六年级比和比例的相关知识点。

一、比的概念和表示方法比是用来比较两个或多个数值之间的关系的一种数学工具。

当两个数值之间的比例关系可以用分数表示时,我们就可以用比来描述它们之间的关系。

比的表示方法通常为“:”(冒号)或者“/”(斜杠),例如:1:2、3/5。

二、比的基本性质1. 相等比:当两个比的值相等时,它们之间的数值大小关系也是相等的。

例如,1:2和5:10表示的比是相等的。

2. 乘法公式:当一个比的两个数值分别乘以同一个数时,它们之间的关系仍保持不变。

例如,2:5乘以2得到4:10。

3. 除法公式:当一个比的两个数值分别除以同一个非零数时,它们之间的关系仍保持不变。

例如,4:10除以2得到2:5。

三、比的应用1. 比的比较:通过比的大小关系,我们可以判断数值的大小。

例如,比较1:2和3:4,我们可以发现3:4大于1:2,即3:4表示的数值更大。

2. 比的化简:当一个比的两个数值可以约分为最简形式时,我们可以将其化简。

例如,10:30可以化简为1:3。

3. 比的扩大和缩小:通过乘法公式,我们可以将一个比的两个数值同时乘以同一个数,将其扩大或缩小。

例如,2:3可以扩大为4:6,缩小为1:1.5。

四、比例的概念和表示方法比例是用来表示两个或更多相关数值之间的相对关系的一种数学工具。

比例通常以“:”或者“/”表示,例如:1:2或者1/2。

比例中的两个数值分别称为“比例项”。

五、比例的性质和应用1. 比例的基本性质:在一个比例中,四个比例项中的任意三个比例项之间,都可以用第四个比例项来表示它们之间的关系。

例如,在1:2=3:6中,我们可以使用等号将1:2和3:6互相替换。

2. 比例的比较:通过比例的大小关系,我们可以判断相关数值的大小关系。

例如,1:2和3:4,我们可以发现3:4大于1:2。

小学六年级__比和比例知识点梳理.docx

小学六年级__比和比例知识点梳理.docx

复习课 :比和比例知识点一 :比和比例的联系与区别比比例意义表示两数相除表示两个比相等的式子各部分名称9: 6=9:6=3: 2↑↑↑↑↑前项比号后项比值基本性质比的前项和后项同时乘或除在比例里,两个外项的积等于以相同的数(0 除外),比值两个内项的积。

不变。

化简比的依据。

解比例的依据。

知识点二:比和分数、除法的联系名称联系比前项:(比号)后项比值分数分子—(分数线)分母分数值除法被除数(除号)除数商知识点三:求比值和化简比意义方法结果求比值前项除以后项所得的用前项除以后项一个数(是整数、分商数或小数)化简比把两个数的比化简成前项和后项同时乘或一个比最简单的整数比除以相同的数( 0除外),也可以用求比值的方法,用前项除以后项,得出一个分数值。

知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例的关系式:y k(一定)x2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。

反比例的关系式:xy k (一定)3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。

(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。

(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例4、正比例、反比例的区别与联系名称不同点意义不相同正比例两种量中相对应的两个数的比值,也就是商一定反比例两种量中相对应的两个数的积一定变化方向不相同关系式不同一种量扩大(或yk (一定)缩小),另一种量x也随之扩大(或缩小)。

一种量扩大(或xy k (一定)缩小),另一种量也随之缩小(或扩大)。

六年级比和比例应用题

六年级比和比例应用题

六年级比和比例应用题一、比和比例的基础知识1. 比的意义- 两个数相除又叫做两个数的比。

例如:公式,其中公式是前项,公式是后项,公式是比号。

- 比值是比的前项除以后项所得的商,如公式的比值为公式。

2. 比例的意义- 表示两个比相等的式子叫做比例。

例如:公式,其中公式和公式是比例的外项,公式和公式是比例的内项。

- 比例的基本性质:在比例里,两个外项的积等于两个内项的积。

如在公式中,公式。

二、比和比例应用题类型及解析1. 按比例分配问题- 题目:学校把公式本图书按照公式分给四、五、六年级,每个年级各分得多少本图书?- 解析:- 首先求出总份数:公式(份)。

- 然后计算每份的本数:公式(本)。

- 四年级分得的本数:公式(本)。

- 五年级分得的本数:公式(本)。

- 六年级分得的本数:公式(本)。

2. 比例尺问题- 题目:在一幅比例尺为公式的地图上,量得甲、乙两地的距离是公式厘米,那么甲、乙两地的实际距离是多少千米?- 解析:- 根据比例尺的定义,图上距离与实际距离的比等于比例尺。

设甲、乙两地的实际距离是公式厘米。

- 可得公式,根据比例的基本性质公式厘米。

- 因为公式千米公式厘米,所以公式厘米公式千米。

3. 比例关系问题(正比例和反比例)- 正比例题目:一辆汽车公式小时行驶公式千米,照这样的速度,公式小时行驶多少千米?- 解析:- 因为速度一定,路程和时间成正比例关系。

设公式小时行驶公式千米。

- 速度公式路程公式时间,先求出速度为公式(千米/小时)。

- 可列出比例公式,根据比例的基本性质公式,解得公式千米。

- 反比例题目:一间教室,如果用边长为公式分米的方砖铺地,需要公式块。

如果改用边长为公式分米的方砖铺地,需要多少块?- 解析:- 教室地面的面积是一定的,方砖的面积和所需块数成反比例关系。

- 边长为公式分米的方砖面积为公式平方分米,公式块的面积就是公式平方分米。

- 边长为公式分米的方砖面积为公式平方分米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.某班男生有8人,女生有10人,男生与女生人数之比是0.8。

()
2.甲、乙二人同时走同一条路,甲走完需20分钟,乙走完需30分钟,甲和乙的速度比是2∶3。

()
3.在比例尺是8∶1的图纸上,2厘米的线段表示零件的实际长16厘米。

()
4.两个圆的周长比是2∶3,面积之比是4∶9。

()
5、圆柱底面和圆柱的高成正比例关系()
二、选择题
1、固定电话先收座机费24元,以后按一定标准时间加收通话费,则每月应交电话费与通话时间()
A.成正比例
B.成反比例
C. 不成比例
三、解答应用题。

1、在一幅地图上,5厘米的长度表示地面上150千米的距离,求这幅地图的比例尺。

2、在比例尺是1∶6000000的地图上,量得甲地到乙地的距离是25厘米,求两地间的实际距离。

若一架飞机以每小时750千米的速度从北京飞往南京,大约需要多少小时?
3、混凝土的配料是水泥∶黄沙∶石子=1∶2∶3。

现在要浇制混凝土楼板40块,每块重0.3吨,需要水泥、黄沙、石子各多少吨做原料?
4、一艘轮船,从甲港开往乙港,每小时航行25千米,8小时可以到达目的地.从乙港反回甲港,每小时航行20千米,几小时可以到达?
5、某工人要做504个零件,他5天做了120个,照这样的速度,余下的还要做多少天?
6、一间大厅,用边长6分米的方砖铺地,需用324块;若改铺边长4分米的方砖,需要多用几块?
7、一根皮带带动两个轮子,大轮直径30厘米,小轮直径10厘米;小轮每分钟转300转,大轮每分钟转几转?
8、一件工程,如果34人工作需20天完成,若要提前3天完工,现在需要增加几名工人?
9、一本文艺书,每天读6页,20天可以读完,要提前8天看完,每天要比原来多看几页?
10、羊毛衫厂共有工人538人,分三个车间,第一车间比第三车间少12人,已知第二车间与第三车间的人数比是3∶4。

三个车间各有多少人?
11、学校把购进的图书的60%按2∶3∶4分配给四、五、六三个年级。

已知六年级分得56本,学校共购进图书多少本?
12、小明居住的院内有4家,上月付水费39.2元,其中张叔叔家有2人,王奶奶家有4人,李阿姨家有3人,小明家有5人,若按人口计算,他们四家各应付水费多少元?
13、某生产队由15个队员收割一块双季稻,8小时能割完,但割了3小时以后,由于天气突然发生变化,增加了10个社员进行抢收,问还需多少小时才能割完这块双季稻?
%买入价
买入价卖出价赢利百分数100-⨯=1.一个因数不变,积与另一个因数成正比例.( )
2.长方形的长一定,宽和面积成正比例.( )
3.大米的总量一定,吃掉的和剩下的成反比例.( )
4.圆的半径和周长成正比例.( )
5.分数的分子一定,分数值和分母成反比例.( )
6.铺地面积一定,方砖的边长和所需块数成反比例.( )
7.铺地面积一定,方砖面积和所需块数成反比例.( ) 8.除数一定,被除数和商成正比例.( )
9、圆的面积和圆的半径成正比例。

( )
10、圆的面积和圆的半径的平方成正比例。

( )
11、圆的面积和圆的周长的平方成正比例。

( )
12、正方形的面积和边长成正比例。

( )
13、正方形的周长和边长成正比例。

( )
14、长方形的面积一定时,长和宽成反比例。

( )
15、长方形的周长一定时,长和宽成反比例。

( )
16、三角形的面积一定时,底和高成反比例。

( )
17、梯形的面积一定时,上底和下底的和与高成反比例。

( )
18、圆的周长和圆的半径成正比例。

( )
19、路程一定,速度和时间成正比例。

( )
20、一堆煤的总量不变,烧去的煤与剩下的煤成反比例。

( )
21、花生的出油率一定,花生的重量与榨出花生油的重量成正比例。

( )
22、平行四边形的面积不变,它的底与高成反比例。

( )
二、选择.
1.把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.( )
A .成正比例
B .成反比例
C .不成比例
2.和一定,加数和另一个加数.( )
A .成正比例
B .成反比例
C .不成比例
3.在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是( ),成反比例关系是( ).
A .汽车每次运货吨数一定,运货次数和运货总吨数.
B .汽车运货次数一定,每次运货的吨数和运货总吨数.
C .汽车运货总吨数一定,每次运货的吨数和运货的次数. 4、a ÷b=c ,当c 一定时a 和b ( );当a 一定时b 和c ( );当b 一定时a 和c ( )。

A. 成正比例
B. 成反比例
5、长方形的_________________,它的长和面积成正比例。

A.周长一定
B.宽一定
C.面积一定
6、圆柱体体积一定,________________和高成反比例。

A.底面半径
B.底面积
C.表面积
六、应用题
(1)工厂制作一种零件,现在每个零件所用的时间由革新前的8分钟减少到3分钟,原来制造60个的时间现在能生产多少个?(用比例方法解答)
(2)一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)
(3)两个同样容器中各装满盐水。

第一个容器中盐与水的比是2∶3,第二个容器中盐与水的比是3∶4,把这两个容器中的盐水混合起来,则混合溶液中盐与水的比是多少?
(4) 某电子产品去年按定价的80%出售,能获利20%,由于今年买入价降低,按同样定价的75%出售,却能获利25%,那么
是多少?去年买入价今年买入价
(5)甲、乙两包糖的重量比是4∶1,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7∶5 那么两包糖重量的总和是多少克?
(6)甲容器中有纯酒精11升,乙容器中有水15升,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合。

第二次将乙容器中的一部分混合液倒入甲容器。

这样甲容器中纯酒精含量为62.5%,乙容器中纯酒精含量为25%,那么,第二次从乙容器倒入甲容器的混合液是多少_升?
1.在一幅地图上,5厘米的长度表示地面上150千米的距离,求这幅地图的比例尺。

2.在比例尺是1∶6000000的地图上,量得甲地到乙地的距离是25厘米,求两地间的实际距离。

3.混凝土的配料是水泥∶黄沙∶石子=1∶2∶3。

现在要浇制混凝土楼板40块,每块重0.3吨,需要水泥、黄沙、石子各多少吨做原料?
4.一批零件,每天做56个,28天完成,如果提前12天完成,每天应做多少个?
5.某工人要做504个零件,他5天做了120个,照这样的速度,余下的还要做多少天?
6.一间大厅,用边长4分米的方砖铺地,需用324块;若改铺边长3分米的方砖,需要多用几块?
7.一根皮带带动两个轮子,大轮直径30厘米,小轮直径10厘米;小轮每分钟转300转,大轮每分钟转几转?
8.一件工程,如果34人工作需20天完成,若要提前3天完工,现在需要增加几名工人?
9.一本文艺书,每天读6页,20天可以读完,要提前8天看完,每天要比原来多看几页?
10.羊毛衫厂共有工人538人,分三个车间,第一车间比第三车间少12人,已知第二车间与第三车间的人数比是3∶4。

三个车间各有多少人?
11.学校把购进的图书的60%按2∶3∶4分配给四、五、六三个年级。

已知六年级分得56本,学校共购进图书多少本?
12.小明居住的院内有4家,上月付水费9.8元,其中张叔叔家有2人,王奶奶家有4人,李阿姨家有3人,小明家有5人,若按人口计算,他们四家各应付水费多少元?。

相关文档
最新文档