NGW行星齿轮减速器轴的设计
NGW型行星齿轮减速器——行星轮的设计 (1).

目录一.绪论 (3)1.引言 (3)2.本文的主要内容 (3)二.拟定传动方案及相关参数 (4)1.机构简图的确定 (4)2.齿形与精度 (4)3.齿轮材料及其性能 (5)三.设计计算 (5)1.配齿数 (5)2.初步计算齿轮主要参数 (6)(1)按齿面接触强度计算太阳轮分度圆直径 (6)(2)按弯曲强度初算模数 (7)3.几何尺寸计算 (8)4.重合度计算 (9)5.啮合效率计算 (10)四.行星轮的的强度计算及强度校核 (11)1.强度计算 (11)2.疲劳强度校核 (15)1.外啮合 (15)2.内啮合 (19)3.安全系数校核 (20)五.零件图及装配图 (24)六.参考文献 (25)一.绪论1.引言渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。
渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。
渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。
NGW型行星齿轮传动机构的主要特点有:重量轻、体积小。
在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3;传动效率高;传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高;装配型式多样,适用性广,运转平稳,噪音小;外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。
因此NGW型渐开线行星齿轮传动已成为传动中应用最多、传递功率最大的一种行星齿轮传动。
2.本文的主要内容NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。
NGW型行星齿轮减速器设计

本科毕业论文(设计)题目 NGW型行星齿轮减速器设计学院工程技术学院专业机械设计制造及其自动化年级 2011级学号姓名指导教师(副教授)成绩 ____________________年月日目录摘要 (1)ABSTRACT. (2)0文献综述 (3)0.1行星轮的特点 (3)0.2发展概况 (4)1 传动方案的确定 (6)1.2行星机构的类型选择 (6)1.2.1行星机构的类型及特点 (6)1.1.2确定行星齿轮传动类型 (9)2 齿轮的设计计算 (10)2.1 配齿计算 (10)2.1.1确定各齿轮的齿数 (10)2.1.2初算中心距和模数 (11)2.2几何尺寸计算 (12)2.3 装配条件验算 (14)2.3.1 邻接条件 (14)2.3.2同心条件 (15)2.3.3安装条件 (15)2.4 齿轮强度校核 (16)2.4.1 a-c传动强度校核 (16)2.4.2 c-b传动强度校核 (20)3 轴的设计计算 (24)3.1行星轴设计 (24)3.2 转轴的设计 (26)3.2.1 输入轴设计 (26)3.2.2 输出轴设计 (27)4 行星架及相关部件 (29)4.1 行星架的设计与行星轮的支撑 (29)4.2行星架变形的计算和校核 (30)4.3浮动齿式联轴器的设计与计算 (30)4.4减速器的润滑 (31)4.4.1减速器润滑方式的选择 (31)4.4.2行星齿轮减速器润滑油的选择 (32)附录 (35)参考文献 (36)致谢 (38)NGW型行星齿轮减速器设计摘要:本文介绍了NGW型行星齿轮减速器的设计过程。
它具有行星齿轮传动的通用的优点,比如:质量小、体积小、传动比大、承载能力大以及传动平稳和传动效率高等优点。
因此,行星齿轮传动在起重运输、工程机械、冶金矿山、石油化工、建筑机械、轻工纺织等工业部门均获得了广泛的应用。
首先介绍了行星齿轮减速器的应用背景及发展趋势。
接下来是选定型号的行星齿轮减速器的具体设计过程,包括行星机构的类型选择,齿轮齿数的确定,齿轮强度的校核,轴和键的尺寸及强度校核,行星齿轮减速器的结构设计等组成部分。
NGW型行星齿轮减速器-行星轮设计要点

目录一.绪论 (3)1.引言 (3)2.本文的主要内容 (3)二.拟定传动方案及相关参数 (4)1.机构简图的确定 (4)2.齿形与精度 (4)3.齿轮材料及其性能 (5)三.设计计算 (5)1.配齿数 (5)2.初步计算齿轮主要参数 (6)(1)按齿面接触强度计算太阳轮分度圆直径 (6)(2)按弯曲强度初算模数 (7)3.几何尺寸计算 (8)4.重合度计算 (9)5.啮合效率计算 (10)四.行星轮的的强度计算及强度校核 (11)1.强度计算 (11)2.疲劳强度校核 (15)1.外啮合 (15)2.内啮合 (19)3.安全系数校核 (20)五.零件图及装配图 (24)六.参考文献 (25)一.绪论1.引言渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。
渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。
渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。
NGW型行星齿轮传动机构的主要特点有:重量轻、体积小。
在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3;传动效率高;传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高;装配型式多样,适用性广,运转平稳,噪音小;外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。
因此NGW型渐开线行星齿轮传动已成为传动中应用最多、传递功率最大的一种行星齿轮传动。
2.本文的主要内容NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。
NGW型行星齿轮减速器——行星轮的设计要点

目录一.绪论 (3)1.引言 (3)2.本文的主要内容 (3)二.拟定传动方案及相关参数 (4)1.机构简图的确定 (4)2.齿形与精度 (4)3.齿轮材料及其性能 (5)三.设计计算 (5)1.配齿数 (5)2.初步计算齿轮主要参数 (6)(1)按齿面接触强度计算太阳轮分度圆直径 (6)(2)按弯曲强度初算模数 (7)3.几何尺寸计算 (8)4.重合度计算 (9)5.啮合效率计算 (10)四.行星轮的的强度计算及强度校核 (11)1.强度计算 (11)2.疲劳强度校核 (15)1.外啮合 (15)2.内啮合 (19)3.安全系数校核 (20)五.零件图及装配图 (24)六.参考文献 (25)一.绪论1.引言渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。
渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。
渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。
NGW型行星齿轮传动机构的主要特点有:重量轻、体积小。
在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3;传动效率高;传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高;装配型式多样,适用性广,运转平稳,噪音小;外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。
因此NGW型渐开线行星齿轮传动已成为传动中应用最多、传递功率最大的一种行星齿轮传动。
2.本文的主要内容NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。
NGWN(III)型行星轮减速器设计

NGWN(III)型行星轮减速器设计1 前言随着现代化工业的发展,机械化和自动化水平不断地提高,各工业部门需要大量的减速器,并要求减速器的体积小、重量轻、传动比大、效率高、承载能力大、运转可靠和寿命长等。
而行星齿轮传动具有减速比大、传动效率高、结构小巧、承载能力强等优点,在许多情况下可代替二级、三级的普通齿轮减速器和涡轮减速器,因此行星轮减速器被广泛应用于各个方面。
行星传动不仅适用于高转速、大功率,而且在低速大转矩的传动装置上也已获得广泛的应用,所以目前行星传动技术已成为世界各国机械传动重点之一。
目前国外的减速器,以德国、丹麦和日本处于领先地位,在结构优化、传动性能,传动功率、转矩和速度等方面均处于领先地位,并出现一些新型的行星传动技术,如封闭行星齿轮传动、行星齿轮变速传动和微型行星齿轮传动等早已在现代化的机械传动设备中获得了成功的应用。
行星轮减速装置经过一个多世纪的发展设计理论及制造技术有了很大的进步,而且与新技术革命的发展紧密结合。
当今世界行星轮减速装置总的发展趋势是向着大功率、大传动比、小体积、高机械效率、高的承载能力以及利用寿命长的目标发展,而且其重量更轻,噪声更低,效率更高,可靠性也更高。
目前世界各国由工业化信息化时代正在进入知识化时代,行星轮在设计上的研究也趋于完善,制造技术也不断改进。
行星齿轮传动类型很多,行星齿轮传动根据基本够件的组成情况可分为:2K—H、3K、及K—H—V三种。
若按各对齿轮的啮合方式,又可分为:NGW型、NN型、WW型、WGW 型、NGWN型和N型等。
我所研究的NGWN(III)行星齿轮属于3Z型行星齿轮传动的一种。
本文主要对NGWN(III)齿轮减速器设计方法进行了探讨,主要内容包括齿轮传动比的分配计算,主要零部件参数设计,标准零部件的选用,以及减速器中零件三维模型的设计。
2 选题背景2.1 题目来源生产实际2.2 研究的目的与意义由于行星轮齿轮减速器具有质量小、体积小、传动比大以及效率高等优点,因此行星轮减速器被广泛应用于工程机械、矿山机械、冶金机械、起重运输机械、飞机、轮船等各个方面。
NGWN型行星减速器的优化设计

3.1.2 建立配齿目标函数 行星轮系配齿优化设计应在满足同心条件、
邻接条件、装配条件下, 求出各轮齿数和传动比误 差, 使传动比误差满足传动精度要求, 则目标函数 可表示为:
第一步根据行星轮系传动比的取值范围, 在
满足同心条件、邻接条件、装配条件下, 进行配齿
优化设计, 求出各轮齿数和传动比误差, 使传动比
4.2.2 齿宽约束
4.2.3 轮齿弯曲强度约束
对 NGWN 行星减速器, 当齿面硬度 HB>350
时, 只计算齿轮的齿弯曲强度。根据对直齿圆柱齿
轮的齿弯曲强度要求
得[1]:
然 后 计 算 齿 宽 系 数 Φd=bmin/d, (d 为 齿 轮 的 分 度圆直径)。齿宽系数在许用范围内就行, 否则应加 大模数。根据式( 5) 计算出行星轮最小齿宽 b1、b2, 然后计算出齿宽系数 Φd, 齿宽系数在 0.3- 0.6 的范 围内即满足要求。整个计算过程可用 C++语言编 成了计算程序, 在计算机上可顺利运行。经强度优 化计算后, 模数必须为标准值, 齿宽也应圆整为整 数, 故需将最优解圆整到符合工程要求的值。最后 得到符合工程要求的值。
误差满足传动精度要求作为目标函数。
第二步调用第一步可行的齿数组合方案, 对
行星齿轮减速器各齿轮进行强度优化设计, 使行
星齿轮减速器体积最小作为目标函数。
图 1 NGWN 型行星齿轮减速器传动简图
3.2 确定配齿计算约束条件 3.2.1 同心条件
根据行星齿轮传动中, 各对相互啮合齿轮的中 心距应相等的同心条件, 即由行星减速器三个啮合 齿轮副 a- g、g- b、f- e 的中心距: 关系可换为:
- 49 -
《机 电 技 术 》2007 年 第 3 期
行星齿轮减速器的优化设计

图1.1 为2K-H 型行星轮系机构简图。
已知:作用于中心轮的转矩T1=1140N ·m ,传动比u =4.64,齿轮材料均为38SiMnMo ,表面淬火45—55HRC ,行星轮个数c=3,要求以重量最轻为目标,对其进行优化设计。
1、目标函数和设计变量的确定行星齿轮减速器的重量可取太阳轮和c 个行星轮重量之和来代替,因此目标函数可简化为:()()⎡⎤⎣⎦2221f x =0.19635m z b 4+u -2c式中:1z — 中心轮1的齿数;m — 模数,单位为(mm); b — 齿宽,单位为(mm); c — 行星轮2的个数; u — 轮系的传动比。
影响目标函数的独立参数应列为设计变量,即[]1TT⎡⎤=⎣⎦x z b m c 1234=x x x x在通常情况下,行星轮个数可以根据机构类型事先选定,这样,设计变量为:[]1TT⎡⎤=⎣⎦x z b m123=x x x目标函数为:()()⎡⎤⎣⎦x 222312f x =0.19635x x 4+u -2c 2.约束条件的建立1)小齿轮1z 不根切,得:()≤11gx =17-x 02)限制齿宽最小值,得:()≤22g x =10-x 03)限制模数最小值,得:()-≤33gx =2x 04)限制齿宽系数b/m 的范围:≤≤5b/m 17,得:()-≤432g x =5x x 0()17-≤523g x =x x 05)满足接触强度要求,得:()[]H σ-≤61g x =750937.3/(x x 0式中:[]Hσ — 许用接触应力。
6)满足弯曲强度要求,得:())[]F σ-≤27F S 123g x =1482000y y /(x x x 0式中:Fy 、Sy — 齿轮的齿形系数和应力校正系数;[]F σ — 许用弯曲应力。
,案。
1.目标函数和设计变量在大批量生产压力容器时,以螺栓总成本最小作为追求的设计目标很有意义,一台压力容器的螺栓总成本W n 取决于螺栓的个数n 和单价W ,即W n =n WW=0.0205d-0.1518 于是,可对这种螺栓组写出如下目标函数f(x)=n(0.0205d-0.1518)显然,可取设计变量为X=[x1,x2]T=[d,n]T则目标函数f(x)= x2 (0.0205 x1-0.1518)2.约束函数设计压力容器螺栓组时,螺栓数量的确定既要考虑密封性要求,又要兼顾装拆工具的工作空间。
NGW二级行星齿轮减速器设计图纸

42CrMo 技术要求1、装配前应用煤油将各零部件清洗干净,机体内不得有杂质。
2、装配验收按YZB100.9-88规定。
3、齿轮接触斑点:沿齿长不少于80%,沿齿高不少于60%。
4、啮合侧隙jmin=0.14。
5、在工作转数下空负荷试车正反各一小时,运行应平稳不得有冲击、振动现象,各密封处不得漏油。
6、装配时在油标上划最高、最低油位两条红线。
7、各机盖、端盖在装配时涂以密封胶。
8、外表面涂苹果绿.Ø60r 6300130228170337.5443.5811163630050653.5137750Ø65k 6Ø220H 7r 6Ø300k 6Ø100k 6Ø60k 62222Ø260k 6Ø400H 7Ø120H 7Ø900H 7Ø560H 7Ø845H 7Ø800H 7400-0.0622000-0.2R321H7/m65200-0.52058084010804-Ø4660540.01035.5R51028620油位刻度线R432.5H7/m6序号名称代号数量材料单件总计重量备注43444546474849505152535455565758键40×280145输出轴1输出轴透盖1HT200GB/T1096-2003键40×180145轴承60521Ø260ר400×65GB/T 276-1994GB/T 1096-2003后机盖1HT200键50×160145GB/T1096-2003低速级行星架1ZG40CrMn 低速级内齿轮1后机体1HT200轴承160601Ø300ר460×50GB/T 276-1994前机体1HT200键16×80145GB/T1096-2003高速级内齿轮11ZG40CrMn 高速级行星架1HT200前机盖轴承6213245Ø65ר120×23GB/T 276-19941HT200输入轴透盖序号代号名称数量材料重量单件总计备注123456789101112131415161718192021222324252627282930313233343536373839404142毡圈1201JB12Q 4606-1986键16×100145GB/T1096-2003142CrMo 输入轴挡圈65165Mn GB/T 894.1-1986轴套65×74×1001铜合金GB/T 2509-1981高速级行星轮轴142CrMo 套筒6铜合金轴承NF2126454545Ø60ר110×22GB/T 283-1994套筒铜合金3高速级行星轮3GB/T 119.1-2000圆柱销Ø8×503奥氏体不锈钢通气器M27×1.5145齿轮联轴器1球顶445太阳轮142CrMo 42CrMo 42CrMo 42CrMo 42CrMo 套筒3铜合金吊环145645轴承NF220Ø100ר180×34GB/T 283-1994低速级行星轮342CrMo 套筒铜合金6GB/T 119.1-2000奥氏体不锈钢3圆柱销Ø12×60142CrMo 低速级行星轮轴顶块445螺栓M24×100123565Mn 1212Q235平垫圈24弹簧垫圈24GB/T 97.1-2002GB/T 93-1987GB/T 5780-2000GB/T 5780-200035GB/T 93-1987GB/T 97.1-2002Q23565Mn 888平垫圈20弹簧垫圈20螺栓M20×80油塞1Q235-A M42×2GB/T 5780-2000GB/T 93-1987GB/T 97.1-2002Q23565Mn 35GB/T 5780-2000GB/T 93-1987GB/T 97.1-2002Q23565Mn 35平垫圈20弹簧垫圈20螺栓M20×80GB/T 5780-2000GB/T 93-1987GB/T 97.1-2002Q23565Mn 35平垫圈20弹簧垫圈20681266881212螺栓M16×65弹簧垫圈16平垫圈16螺栓M20×120DDCCD-DAABBA-AB-B160-0.043530-0.2C-C润滑方式啮合特性参数太阳轮行星轮内齿轮太阳轮行星轮级别高速级低速级a i zmα精度等级啮合轴承油池飞溅8-7-7FH 8-7-7FH 油池飞溅3720°16212.517891992228164620°110内齿轮标记设计处数分区更改文件号签名年、月、日阶段标记重量比例共张第张标准化批准审核工艺斗轮减速器总装图1:51156575853545550515249464748434445424140393837363534333231302928272625242322212019181716151413121110987654321405808401080712572AA4ר46(锪平Ø70)C-C5200-0.51035201080882.5+0.12R 475R 510R 470M 148612015°15°3.23.250+0.0453.232C12-M24R25R20R20C60305.560112.5100367.5622-M19R35134.51506.37210405072×4=288R3120020026820443.5Ø845+0.046601429160151403×45°3×45°Ø865+0.052Ø880Ø901+0.0523.23.23.23.23.2H3.20.06H3.20.06HBBA-AR10R20R20R20R20R16R16Ø0.06H其余ⅡⅠ301072R5221022Ⅱ2:1M3012Ø50R82:1ⅠDDB-B50500305.5143.520020035540R20R20R20R203.26.3D-D1、铸件不得有夹砂,裂纹和缩孔等影响强度的铸造缺陷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第一章绪论 (2)1.1 行星齿轮传动的特点 (2)1.2 本文的主要内容 (3)第二章NGW行星齿轮减速器结构设计 (3)2.1 设计技术参数 (3)2.2 机构简图确定 (3)2.3 齿形与精度 (4)2.4 齿轮材料及其性能 (4)第三章齿轮的优化设计 (4)3.1 齿轮的设计 (4)3.11配齿数 (4)3.12初步计算齿轮主要参数 (5)3.13几何尺寸计算 (6)3.2 重合度计算 (7)3.2 齿轮啮合效率计算 (7)3.4 疲劳强度校核 (8)3.41外啮合 (8)3.42内啮合 (13)第四章其他零件的设计 (14)4.1 轴承的设计 (14)4.2 行星架的设计 (15)第五章输入轴的优化设计 (15)5.1 装配方案的选择 (15)5.2 尺寸设计 (16)5.21初步确定轴的最小直径 (16)5.22根据轴向定位要求确定轴的各段直径和长度 (17)5.23轴上零件轴向定位 (17)5.24确定轴上圆角和倒角尺寸 (18)5.3 输入轴的受力分析 (18)5.31求输入轴上的功率P、转速n和转矩T (18)5.32求作用在太阳轮上的力 (18)5.33求轴上的载荷 (19)5.4按弯扭合成应力校核轴的强度 (21)5.5精确校核轴的疲劳强度 (22)5.6 按静强度条件进行校核 (28)第六章Solidworks出图 (30)参考文献 (34)第一章绪论渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。
渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。
渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。
1.1 行星齿轮传动的特点行星齿轮传动与其他形式的齿轮传动相比有如下几个特点:(1)体积小、重量轻、结构紧凑、传递功率大、承载能力高,这个特点是由行星齿轮传动的结构等内在因素决定的。
(2)传动比大只要适当的选择行星传动的类型及配齿方案,就可以利用很少的几个齿轮而得到很大的传动比。
在不作为动力传动而主要用以传递运动的行星机构中,其传动比可达到几千。
此外,行星齿轮传动由于它的三个基本构件都可以传动,故可以实现运动的合成与分解,以及有级和无级变速传动等复杂的运动。
(3)传动效率高由于行星齿轮传动采用了对称的分流传动结构,即它具有数个均匀分布的行星齿轮,使作用于中心轮和转臂轴承中的反作用力相互平衡,有利于提高传动效率。
在传动类型选择恰当、结构布置合理的情况下,其效率可达0.97~0.99。
(4)运动平稳、抗冲击和振动的能力较强由于采用数个相同的行星轮,均匀分布于中心轮周围,从而可使行星轮与转臂的惯性力相互平衡。
同时,也使参与啮合的齿数增多,故行星齿轮传动的运动平稳,抗冲击和振动的能力较强,工作较可靠。
在具有上述特点和优越性的同时,行星齿轮传动也存在一些缺点,如结构形式比定轴齿轮传动复杂;对制造质量要求较高;由于体积较小、散热面积小导致油温升高,故要求严格的润滑与冷却装置等。
行星齿轮传动的设计进行研究,对促进技术进步和国民经济的发展具有重要的理论和实用意义。
1.2 本文的主要内容NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。
NGW型行星齿轮传动机构主要由太阳轮、行星轮、内齿圈及行星架所组成,以基本构件命名,又称为ZK-H型行星齿轮传动机构。
本设计的主要内容是单级NGW型行星减速器的设计。
第二章 NGW行星齿轮减速器结构设计2.1 设计技术参数已知输入功率30KW,输入转速100r/min,传动比6,每天工作16小时,使用寿命10年2.2 机构简图确定减速器传动比i=6,故属于1级NGW型行星传动系统(如图2-1)。
图2-1n=2或3,从提高传动装查书《渐开线行星齿轮传动设计》书表4-1确定p置承载力,减小尺寸和重量出发,取p n =3。
计算系统自由度 W=3*3-2*3-2=1 2.3 齿形与精度因属于低速传动,以及方便加工,故采用齿形角为20º,直齿传动,精度定位6级。
2.4 齿轮材料及其性能太阳轮和行星轮采用硬齿面,内齿轮采用软齿面,以提高承载能力,减小尺寸。
材料选择见表2-1。
第三章 齿轮的优化设计3.1 齿轮的设计 3.11配齿数采用比例法:::::(2)2:(1):()a c b a a a a p Z Z Z M Z Z i i Z Z i n =--:2:5:2a a a a Z Z Z Z =按齿面硬度HRC=60,()c a uZ /Z 62/22==-=查 《渐开线行星齿轮传动设计》 书图4-7a 的max 20a Z =,又1320a Z <<,取17a Z =。
由传动比条件知 Y i 17*6102a Z ===M Y /3102/334===计算内齿轮和行星齿轮齿数:Y 1021785b a Z Z =-=-=234c a Z Z =*=3.12初步计算齿轮主要参数(1)按齿面接触强度计算太阳轮分度圆直径 用式()32limA p d Ha H atdT K K K ud K ϕσ=进行计算,相关系数取值如表3-1。
其中:u=34172c a Z Z == 太阳轮传递的扭矩:()a p a T 9549P /n n 954930/3100954.9 N m ==**=⋅则太阳轮分度圆直径为:()32lim768103.76 mmA p d Ha H a tdT K K K ud K ϕσ===(2)按弯曲强度初算模数 用式1321A Fp tmd T K K mK Z ϕσ=进行计算。
式中相关系数同表3-1,其余系数取值如表3-2。
因为2lim 212lim1245 3.182.54306.73350 F Fa Fa F Y Y Nmm σσ=⨯=<=,所以应按行星轮计算模数:3212.15.64a A Fp tmd a T K K m K Z ϕσ===6m =,则太阳轮直径:()176102 mm a a d Z m ==⨯=接触强度初算结果()103.76 mm a d =接近,故初定按()108.5 mm a d =6m =进行接触和弯曲疲劳强度校核计算。
3.13几何尺寸计算将分度圆直径、节圆直径、齿顶圆直径的计算值列于表3-3。
3.2 重合度计算外啮合:()()a a a m Z 2617251 ()26342102()114257 ()2162108()(r)cos ())51cos 2057(r)=arccos(arccos()32.78()arccos((r)ccos ())arccos(102cos 20108)27.441c c a a a a a c a c a a a a r m Z r d r d r a c ra c ααεαα︒︒︒︒=⨯===⨯=============[](tan()tan )(tan()tan )=17(tan 32.78tan 20)34(tan 27.441tan 20(2)=1.598>1.2Za a a Zc a c αααααππ︒︒︒︒=-+-⎡⎤-+-⎣⎦内啮合:()()b b b c m Z 26852255 ()26342102()24952247.5 ()22162108()(r)cos ())255cos 20247.5()(r)cos ())102cos 20108(r)=arccos(arccos()14.50arccos(arccos()27.c c a b a b a c a c a b a b a c a c r m Z r d r d r r αααα︒︒︒=⨯===⨯=============[](tan()tan )(tan()tan (2)=34(tan 27.441tan 20)85(tan14.50tan 20)(2)=2.266>1.2441c a c b a b Z Z αεααααππ︒︒︒︒︒=---⎡⎤---⎣⎦3.2 齿轮啮合效率计算按公式11X Xb ab aXXabi i ηηη-==-进行计算。
式中Xη为转化机构的效率,可用Kyдpявпев计算法确定。
查《渐开线行星齿轮传动设计》中图3-3a 、b (取µ=0.06,因齿轮精度高)得各啮合副的效率为0.978X ac η=,0.997X cb η=,转化机构效率为:0.9870.9970.984X Xac cb X ηηη==⨯=转化机构传动比:85517b a XabZ Z i=-=-=-则 1150.9840.987115X X b ab aXXab i i ηηη-+⨯====-+. 3.4 疲劳强度校核 3.41外啮合(1)齿面接触疲劳强度用式HH σσ=,0H H E Z Z Z Z b uεσ=计算接触应力H σ,用式lim minH NHP L v R W X H Z Z Z Z Z Z S σσ=计算其许用应力HP σ。
三式中的参数和系数取值如表3-4。
基本值0Hσ:02=2.5189.80.891 =825.85 N/mm H H E Z Z Z Z b uεσ=⨯⨯⨯接触应力H σ:2=825.85 =1001.98 N/mm H H σσ=许用接触应力HP σ:lim min21400 1.03 1.050.88 1.03111.25=1097.9 N/mm H NHP L v R W XH Z Z Z Z Z Z S σσ=⨯=⨯⨯⨯⨯⨯因H HP σσ<,故接触强度通过。
(2)齿根弯曲疲劳强度齿根弯曲疲劳应力F σ及其许用应力FP σ,用式0,F F A v F F Fp K K K K K βασσ=lim R minF ST NTFP relT relT X F Y Y Y Y Y S δσσ=和0tF F S nF Y Y Y Y bm ααεβσ=计算。
并分别对太阳轮和行星轮进行校核。
对于表3-4中未出现的参数和系数取值如表3-5。
太阳轮:弯曲应力基本值0F a σ:0 218723.53= 2.95 1.550.7191726=142.5 N/mm tF a F a S a nF Y Y Y Y bm ααεβσ=⨯⨯⨯⨯⨯弯曲应力F a σ:2=142.5 1.25 1.005 1.0761 1.075 =207.67 N/mm F a F a A v F F FpK K K K K βασσ=⨯⨯⨯⨯⨯许用弯曲应力FP a σ:lim R min235021=0.95 1.0451=434.33 N/mm1.6F a ST NTFP a relT a relT a XF Y Y Y Y Y S δσσ=⨯⨯⨯⨯⨯ 因F a FP a σσ<,故太阳轮弯曲强度通过。