材料科学基础笔记

合集下载

陶杰《材料科学基础》复习笔记(凝 固)【圣才出品】

陶杰《材料科学基础》复习笔记(凝 固)【圣才出品】

第4章凝固4.1 复习笔记一、液体的性能与结构1.液态金属的结构(1)金属的结晶结晶是指液态金属转变为金属晶体的过程。

(2)液态金属物理性质①金属的熔化潜热远小于其气化潜热;②金属熔化时的体积变化仅为3%~5%左右;③金属的熔化熵S m相对于固态时由室温至T m之间熵变ΔS有较大的增加;④金属液、固两态的热容量差别不大;⑤在熔点T m附近的液态金属中的原子平均间距比固态稍大些;原子配位数比密排结构的晶体稍小些。

(3)液态金属具有与固态金属相近似的结构。

2.高分子溶液(1)高聚物的溶解①溶解的定义溶解是指溶质分子通过分子扩散与溶剂分子均匀混合成为分子分散的均相体系的过程。

②高聚物的溶解的两个阶段为溶胀和溶解。

(2)高聚物溶解的热力学解释高分子溶液是热力学平衡体系,能自发进行的必要条件是混合自由能ΔG m<0,即①ΔH m<0,溶解能自动进行;②ΔH m=0,溶解能自动进行;③ΔH m>0,即溶解时吸热。

T丨ΔS m丨>丨ΔH m丨时,溶解才能自动进行。

(3)溶剂选择①极性相似原则极性大的高分子溶于极性大的溶剂,极性小的高分子溶于极性小的溶剂。

②溶度参数相近原则溶度参数常用内聚能密度(CED)来表示,非极性高分子与溶剂的内聚能密度相近时,高分子能很好地溶解于这一溶剂。

③溶剂化原则溶剂化原则是指溶质和溶剂分子之间的作用力大于溶质分子之间的作用力,以致使溶质分子彼此分离而溶解于溶剂中。

(4)高分子链在溶液中的构象①在溶液中高分子以被溶剂饱和的线团形式存在;②在高分子溶液中,除了线团的移动和转动外,还有线团链段的连续运动。

其结果是线团的构象不断变化着,其最可能的构象是黄豆状的椭圆体。

(5)高分子稀溶液①高分子稀溶液是真溶液,是分子分散体系,处于热力学平衡状态,是能用热力学函数描述的稳定体系。

②在高分子溶液中存在着链段与链段之间的作用力以及链段与溶剂分子之间的作用力。

③链段与链段之间的作用力倾向于使高分子彼此接近而凝聚;链段与溶剂分子之间的作用力使高分子彼此分离而溶解,并使分子链趋于伸展而变刚,显然这种力相当于链段间的斥力。

材料科学基础考研知识点总结

材料科学基础考研知识点总结

材料科学基础考研知识点总结第一章原子结构和键合1.原子键合●金属键●离子键●共价键●氢键●范德华力:静电力诱导力色散力第二章固体结构1.晶体学基础●空间点阵和晶胞●七个晶系14种点阵2.金属的晶体结构●晶体结构和空间点阵的区别3.合金的相结构●晶相指数和晶面指数●晶向指数●晶面指数●六方晶系指数●晶带●晶面间距●晶体的对称性●宏观对称元素●极射投影●金属的晶体结构●三种典型的金属的晶体结构●多晶型性●置换固溶体●间隙固溶体●固溶体的围观不均匀性●影响固溶度的主要因素●固溶体的性质●中间相●正常价化合物●电子化合物●与原子尺寸因素相关的化合物●超结构(有序固溶体)4.常见离子晶体结构●离子晶体配位规则(鲍林规则)●负离子配位多面体规则(引入临界离子半径比值)●电价规则(整体不显电性)●负离子多面体共顶,棱和面规则(由于共用顶,棱和面间距下降,导致库仑力上升,稳定性下降)●不同种类正离子配位多面体规则(能量越高区域越分散)●节约规则(【俄罗斯方块原理】)●典型离子晶体结构●AB型化合物【CsCl结构 NaCl结构 ZnS型结构】●AB2型化合物结构【CaF2 萤石 TiO2金红石型结构】●硅酸盐的晶体结构●孤岛状硅酸盐●组群状硅酸盐●链状硅酸盐●层状硅酸盐●架状硅酸盐5.共价晶体结构第三章晶体中的缺陷1.点缺陷●点缺陷形成●点缺陷的平衡浓度2.位错●刃型位错●螺型位错●混合位错●伯氏矢量●位错运动●位错弹性性质(认识)●位错生成与增值●实际位错中伯氏矢量3.面缺陷●外表面与内表面(了解)●晶界和亚晶界●晶界的特性●孪晶界●相界第四章固体中的扩散1.扩散的表象理论●菲克第一定律●菲克第二定律●扩散方程●置换固溶体扩散(柯肯达尔效应)2.扩散热力学●扩散的热力学分析(上坡扩散)3.扩散的微观理论与机制●扩散机制●晶界扩散及表面扩散●扩散系数4.扩散激活能5.影响扩散的因素●温度●晶体结构●晶体缺陷●化学成分●应力作用6.反应扩散7.离子晶体中的扩散第五章材料的变形1.弹性变形●弹性的不完整性●包申格效应●弹性后效●弹性滞后2.黏弹性变形3.塑性变形●单晶体塑性变形●滑移●孪生●扭折●多晶体的塑性变形●晶粒取向的影响●晶界的影响●合金的塑性变形●单相固溶体塑性变形●影响因素●曲服现象●应变实效●多相合金的塑性变形●弥散分布型合金的塑性变形●塑性变形对组织性能影响●显微组织变化●亚结构变化●性能变化●形变织构●残余应力4.回复与再结晶●冷变形金属在加热时组织与性能的变化●回复●再结晶●晶粒的长大5.热加工●动态回复●动态再结晶●蠕变●超塑性第六章凝固1.相平衡和相率●吉布斯相律2.纯晶体的凝固●液态结构●晶体凝固的热力学条件●形核●晶粒长大●结晶动力学及凝固组织●凝固理论应用3.合金的凝固●正常凝固●区域熔炼●合金成分过冷4.铸锭组织与凝固技术●铸锭的宏观组织●铸锭的缺陷第七章相图1.二元相图基础●2.二元相图●匀晶相图●共晶相图●包晶相图●铁碳相图3.三元相图基●基本特点●表示方法●杠杠定律及重心定律第八章材料的亚稳态1.纳米材料2.准晶3.非晶态4.固态相变形成亚稳相●固体相变形成的亚稳相●固溶体脱溶分解产物●脱熔转变●连续脱溶●不连续脱溶●脱溶过程亚稳相●脱溶分解对性能影响●马氏体转变●特征●形态●贝氏体转变●钢中贝氏体转变特征●贝氏体转变的基本特征。

胡志强无机材料科学基础笔记

胡志强无机材料科学基础笔记

胡志强无机材料科学基础笔记第一章绪论1.1 无机材料科学概述无机材料科学是研究无机材料的组成、结构、性能及其应用的科学,包括金属材料、非金属材料、陶瓷材料、玻璃材料、矿物材料等。

1.2 胡志强无机材料科学的研究背景和意义随着科技的发展,无机材料在各个领域的应用越来越广泛,如建筑、电子、航空、航天、能源、生物医学等。

因此,对无机材料科学的研究具有重要意义。

1.3 笔记内容的目的和方法本笔记的目的在于帮助读者系统地掌握无机材料科学的基础知识,包括无机材料的结构、性质、制备方法、应用等。

笔记采用图文并茂的方式,结合实际案例,使读者能够更好地理解和应用所学知识。

第二章无机材料的结构2.1 晶体结构无机材料的结构包括晶体、非晶体和准晶体。

晶体结构的主要类型有金刚石型、共价型、金属型和离子型。

了解不同类型无机材料的晶体结构是理解其性质的关键。

2.2 无机材料的缺陷无机材料的晶体结构中可能存在缺陷,如点缺陷、线缺陷和面缺陷等。

这些缺陷对材料的性能有重要影响。

第三章无机材料的性质3.1 物理性质物理性质包括密度、熔点、沸点、电导性、热导性等。

这些性质取决于材料的晶体结构、化学键类型等。

3.2 力学性质力学性质包括硬度和强度、塑性和韧性等。

这些性质与材料的晶体结构和缺陷有关。

3.3 化学性质化学性质包括氧化还原性、稳定性等。

无机材料的化学性质取决于其组成元素的化学性质。

第四章无机材料的制备方法4.1 传统的制备方法传统的制备方法包括烧结法、熔融法、电解法等。

这些方法适用于制备具有一定结构和性能的化合物材料。

4.2 先进的制备方法先进的制备方法包括溶胶-凝胶法、微乳液法、喷雾热解法等。

这些方法可以制备具有特殊结构和性能的材料,如纳米材料、生物陶瓷等。

4.3 制备过程中的影响因素和优化策略在制备过程中,温度、压力、时间等因素对材料结构和性能的影响很大。

优化制备过程可以获得具有优异性能的材料。

第五章无机材料的应用领域5.1 建筑领域无机材料在建筑领域的应用广泛,如混凝土、玻璃、陶瓷等。

材料科学基础基础知识点总结

材料科学基础基础知识点总结

第一章材料中的原子排列第一节原子的结合方式2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

图1-5特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷;b 可有无限多种。

2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

材科基_笔记_71页

材科基_笔记_71页

4
IC [1 e 0.25(x A x B)2]100% 式中 xA、xB 分别为 A、B 元素的电负性。 第三节 高分子链☆
构造
高分子结构
链结构
近程结构(一次结构/化学结构) 远程结构(二次结构)
构型
聚集态结构(三次结构)
“构造”:研究分子链中原子的类型和排列,高分子链的化学结构分类,结构单元 的键接顺序,链结构的成分,高分子的支化、交联与端基等内容;
2
b 轨道角动量量子数(l):表示电子在同一壳层内所处的能级,与
电子运动的角动量有关。如 s、p、d、f…;
c 磁量子数(m):给出每个轨道角动量量子数的能级数或轨道数,
为 2l+1,决定电子云的空间取向; d 自旋角动量量子数(s):反映电子不同的自旋方向,其值可取± 1 。
2
核外电子的排布规则:
第一节 晶体学基础
1.空间点阵与晶胞
空间点阵:将理想晶体中的质点抽象为几何点,这些几何点在空间
周期性排列所组成的阵列;
6
晶胞:由空间点阵中选取的基本单元即为晶胞,但必须服从一定的选
取规则;
晶胞选取规则:1.选取的平行六面体应能反映出点阵的最高对称性;
2.平行六面体中棱和角相等的数目应最多;3.当棱边夹角存在直角时,
4. 范德瓦尔斯力
静电力:固有偶极间的相互作用,
F

T
1
*r
7
分子间力
诱导力:固有偶极与诱导偶极间的作用 F ∝ 1
r7
色散力:诱导偶极间的相互作用 F ∝ 1
r7
特点:次价键、无方向性、无饱和性
5.氢键 属于极性分子键,存在于 HF、H2O、NH3 等分子间,有饱和性和方

材料科学基础基础知识点总结

材料科学基础基础知识点总结

第一章材料中的原子排列第一节原子的结合方式2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

图1-5特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷;b 可有无限多种。

2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

材料科学基础基础知识点总结

材料科学基础基础知识点总结

第一章材料中的原子排列第一节原子的结合方式2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

图1-5特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷;b 可有无限多种。

2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

材料科学基础基础知识点总结

材料科学基础基础知识点总结

材料科学基础基础知识点总结Revised as of 23 November 2020第一章材料中的原子排列第一节原子的结合方式2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

图1-5 特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷; b 可有无限多种。

2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

图1-5特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷;b 可有无限多种。

2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

(4)晶胞中点的位置表示(坐标法)。

3 布拉菲点阵图1-714种点阵分属7个晶系。

4 晶向指数与晶面指数晶向:空间点阵中各阵点列的方向。

晶面:通过空间点阵中任意一组阵点的平面。

国际上通用米勒指数标定晶向和晶面。

(1)晶向指数的标定a 建立坐标系。

确定原点(阵点)、坐标轴和度量单位(棱边)。

b 求坐标。

u’,v’,w’。

c 化整数。

u,v,w.d 加[ ]。

[uvw]。

说明:a 指数意义:代表相互平行、方向一致的所有晶向。

b 负值:标于数字上方,表示同一晶向的相反方向。

c 晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。

用<uvw>表示,数字相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。

(2)晶面指数的标定a 建立坐标系:确定原点(非阵点)、坐标轴和度量单位。

b 量截距:x,y,z。

c 取倒数:h’,k’,l’。

d 化整数:h,k,k。

e 加圆括号:(hkl)。

说明:a 指数意义:代表一组平行的晶面;b 0的意义:面与对应的轴平行;c 平行晶面:指数相同,或数字相同但正负号相反;d 晶面族:晶体中具有相同条件(原子排列和晶面间距完全相同),空间位向不同的各组晶面。

用{hkl}表示。

e 若晶面与晶向同面,则hu+kv+lw=0;f 若晶面与晶向垂直,则u=h, k=v, w=l。

(3)六方系晶向指数和晶面指数a 六方系指数标定的特殊性:四轴坐标系(等价晶面不具有等价指数)。

b 晶面指数的标定标法与立方系相同(四个截距);用四个数字(hkil)表示;i=-(h+k)。

c 晶向指数的标定标法与立方系相同(四个坐标);用四个数字(uvtw)表示;t=-(u+w)。

依次平移法:适合于已知指数画晶向(末点)。

坐标换算法:[UVW]~[uvtw]u=(2U-V)/3, v=(2V-U)/3, t=-(U+V)/3, w=W。

(4)晶带a ――:平行于某一晶向直线所有晶面的组合。

晶带轴晶带面b 性质:晶带用晶带轴的晶向指数表示;晶带面//晶带轴;hu+kv+lw=0c 晶带定律凡满足上式的晶面都属于以[uvw]为晶带轴的晶带。

推论:(a)由两晶面(h1k1l1) (h2k2l2)求其晶带轴[uvw]:u=k1l2-k2l1; v=l1h2-l2h1; w=h1k2-h2k1。

(b)由两晶向[u1v1w1][u2v2w2]求其决定的晶面(hkl)。

H=v1w1-v2w2; k=w1u2-w2u1; l=u1v2-u2v1。

(5)晶面间距a ――:一组平行晶面中,相邻两个平行晶面之间的距离。

b 计算公式(简单立方):d=a/(h2+k2+l2)1/2注意:只适用于简单晶胞;对于面心立方hkl不全为偶、奇数、体心立方h+k+l=奇数时,d(hkl)=d/2。

二典型晶体结构及其几何特征1三种常见晶体结构面心立方(A1, FCC)体心立方(A1, BCC)密排六方(A3, HCP)晶胞原子数 4 2 6点阵常数a=2/2r a=4/3/3r a=2r配位数12 8(8+6)12致密度0.74 0.68 0.74堆垛方式ABCABC.. ABABAB.. ABABAB..结构间隙正四面体正八面体四面体扁八面体四面体正八面体(个数)8 4 12 6 12 6(r B/r A)0.225 0.414 0.29 0.15 0.225 0.414配位数(CN):晶体结构中任一原子周围最近且等距离的原子数。

致密度(K):晶体结构中原子体积占总体积的百分数。

K=nv/V。

间隙半径(r B):间隙中所能容纳的最大圆球半径。

2 离子晶体的结构(1)鲍林第一规则(负离子配位多面体规则):在离子晶体中,正离子周围形成一个负离子配位多面体,正负离子间的平衡距离取决于正负离子半径之和,正离子的配位数取决于正负离子的半径比。

(2)鲍林第二规则(电价规则含义):一个负离子必定同时被一定数量的负离子配位多面体所共有。

(3)鲍林第三规则(棱与面规则):在配位结构中,共用棱特别是共用面的存在,会降低这个结构的稳定性。

3 共价键晶体的结构(1)饱和性:一个原子的共价键数为8-N。

(2)方向性:各键之间有确定的方位(配位数小,结构稳定)三多晶型性元素的晶体结构随外界条件的变化而发生转变的性质。

四影响原子半径的因素(1)温度与应力(2)结合键的影响(3)配位数的影响(高配位结构向低配位结构转变时,体积膨胀,原子半径减小减缓体积变化。

(4)核外电子分布的影响(一周期内,随核外电子数增加至填满,原子半径减小至一最小值。

第三节原子的不规则排列原子的不规则排列产生晶体缺陷。

晶体缺陷在材料组织控制(如扩散、相变)和性能控制(如材料强化)中具有重要作用。

晶体缺陷:实际晶体中与理想点阵结构发生偏差的区域。

(晶体缺陷可分为以下三类。

)点缺陷:在三维空间各方向上尺寸都很小的缺陷。

如空位、间隙原子、异类原子等。

线缺陷:在两个方向上尺寸很小,而另一个方向上尺寸较大的缺陷。

主要是位错。

面缺陷:在一个方向上尺寸很小,在另外两个方向上尺寸较大的缺陷。

如晶界、相界、表面等。

一点缺陷1 点缺陷的类型图1-31(1)空位:肖脱基空位-离位原子进入其它空位或迁移至晶界或表面。

弗兰克尔空位-离位原子进入晶体间隙。

(2)间隙原子:位于晶体点阵间隙的原子。

(3)置换原子:位于晶体点阵位置的异类原子。

2 点缺陷的平衡浓度(1)点缺陷是热力学平衡的缺陷-在一定温度下,晶体中总是存在着一定数量的点缺陷(空位),这时体系的能量最低-具有平衡点缺陷的晶体比理想晶体在热力学上更为稳定。

(原因:晶体中形成点缺陷时,体系内能的增加将使自由能升高,但体系熵值也增加了,这一因素又使自由能降低。

其结果是在G-n曲线上出现了最低值,对应的n值即为平衡空位数。

)(2)点缺陷的平衡浓度C=Aexp(-∆Ev/kT)3 点缺陷的产生及其运动(1)点缺陷的产生平衡点缺陷:热振动中的能力起伏。

过饱和点缺陷:外来作用,如高温淬火、辐照、冷加工等。

(2)点缺陷的运动(迁移、复合-浓度降低;聚集-浓度升高-塌陷)4 点缺陷与材料行为(1)结构变化:晶格畸变(如空位引起晶格收缩,间隙原子引起晶格膨胀,置换原子可引起收缩或膨胀。

)(2)性能变化:物理性能(如电阻率增大,密度减小。

)力学性能(屈服强度提高。

)二线缺陷(位错)位错:晶体中某处一列或若干列原子有规律的错排。

意义:(对材料的力学行为如塑性变形、强度、断裂等起着决定性的作用,对材料的扩散、相变过程有较大影响。

)位错的提出:1926年,弗兰克尔发现理论晶体模型刚性切变强度与与实测临界切应力的巨大差异(2~4个数量级)。

1934年,泰勒、波朗依、奥罗万几乎同时提出位错的概念。

1939年,柏格斯提出用柏氏矢量表征位错。

1947年,柯垂耳提出溶质原子与位错的交互作用。

1950年,弗兰克和瑞德同时提出位错增殖机制。

之后,用TEM直接观察到了晶体中的位错。

1 位错的基本类型(1)刃型位错模型:滑移面/半原子面/位错线(位错线┻晶体滑移方向,位错线┻位错运动方向,晶体滑移方向//位错运动方向。

)分类:正刃型位错(┻);负刃型位错(┳)。

(2)螺型位错模型:滑移面/位错线。

(位错线//晶体滑移方向,位错线┻位错运动方向,晶体滑移方向┻位错运动方向。

)分类:左螺型位错;右螺型位错。

(3)混合位错模型:滑移面/位错线。

2 位错的性质(1)形状:不一定是直线,位错及其畸变区是一条管道。

(2)是已滑移区和未滑移区的边界。

(3)不能中断于晶体内部。

可在表面露头,或终止于晶界和相界,或与其它位错相交,或自行封闭成环。

3 柏氏矢量(1)确定方法 (避开严重畸变区)a 在位错周围沿着点阵结点形成封闭回路。

b 在理想晶体中按同样顺序作同样大小的回路。

c 在理想晶体中从终点到起点的矢量即为――。

(2)柏氏矢量的物理意义a 代表位错,并表示其特征(强度、畸变量)。

b 表示晶体滑移的方向和大小。

c 柏氏矢量的守恒性(唯一性):一条位错线具有唯一的柏氏矢量。

d 判断位错的类型。

(3)柏氏矢量的表示方法a 表示: b=a/n[uvw] (可以用矢量加法进行运算)。

b 求模:/b/=a/n[u2+v2+w2]1/2。

4 位错密度(1)表示方法:ρ=K/Vρ=n/A(2)晶体强度与位错密度的关系(τ-ρ图)。

(3)位错观察:浸蚀法、电境法。

5 位错的运动(1)位错的易动性。

(2)位错运动的方式a 滑移:位错沿着滑移面的移动。

刃型位错的滑移:具有唯一的滑移面螺型位错的滑移:具有多个滑移面。

位错环的滑移:注重柏氏矢量的应用。

b 攀移:刃型位错在垂直于滑移面方向上的运动。

机制:原子面下端原子的扩散――位错随半原子面的上下移动而上下运动。

相关文档
最新文档