极坐标高考考点解析

合集下载

极坐标

极坐标

1.极坐标系的概念:在平面上取一个定点O叫做极 点;自点O引一条射线Ox叫做极轴;再选定一个长度 单位、角度单位(通常取弧度)及其正方向(通常取逆时 针方向为正方向),这样就建立了一个极坐标系.
设M是平面上的任一点,极点O与点M 的距离|OM|叫做点M的极径,记为ρ;以极 轴Ox为始边,射线OM为终边的∠xOM叫 做点M的极角,记为θ.有序数对(ρ,θ)称为 点M的极坐标,记作M(ρ,θ).
(2)M 点的直角坐标为(2,0). N 点的直角坐标为0,233. 所以 P 点的直角坐标为1, 33, 则 P 点的极坐标为233,π6, 所以直线 OP 的极坐标方程为 θ=π6(ρ∈R).
(1)极坐标系与直角坐标系在满足极点、极轴分别与原 点、x 轴正半轴重合时,可用 x=ρcosθ,y=ρsinθ 将极坐标 方程化为直角坐标方程;反之,利用 ρ2=x2+y2,tanθ=xy(x≠0) 可以将直角坐标方程化为极坐标方程.
考点串串讲
1.极坐标系 (1)一般地,在平面上取一个定点 O,自点 O 引一条射线 OX, 同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为 正方向),这样就建立了一个极坐标系,其中,点 O 称为极点,射 线 OX 称为极轴. 设 M 是平面上任一点,ρ 表示 OM 的长度,θ 表示以射线 OX 为始边,射线 OM 为终边所成的角,那么,有序数对(ρ,θ)称为点 M 的极坐标.显然,每一个有序实数对(ρ,θ)决定一个点的位置. 其中,ρ 称为点 M 的极径,θ 称为点 M 的极角. 由极径的意义可知 ρ≥0.当极角 θ 的取值范围是[0,2π)时,平面 上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我 们规定,极点的极坐标是极径 ρ=0,极角 θ 可以取任意角.

极坐标(高考考点解析)

极坐标(高考考点解析)

极坐标与参数方程 目录题型1:求圆或直线的极坐标方程 .......................................................................................................................... 1 题型2:极坐标方程化参数方程 .............................................................................................................................. 1 题型3:参数方程化极坐标方程 .............................................................................................................................. 2 题型4:求圆与直线的交点 ...................................................................................................................................... 4 题型5:求两点间距离 .............................................................................................................................................. 4 题型6:求点到直线的距离 ...................................................................................................................................... 5 题型7:极坐标的综合性问题 . (6)题型1:求圆或直线的极坐标方程【例1】【2013年高考安徽卷(理)】在极坐标系中,圆2cos ρθ=的垂直于极轴的两条切线方程分别为( )A .0()cos 2R θρρ=∈=和B .()cos 22R πθρρ=∈=和C .()cos 12R πθρρ=∈=和 D .0()cos 1R θρρ=∈=和【答案】B【解析1】由2cos ρθ=知,圆心坐标为(1,0),半径为1,所以圆与极轴的两个交点坐标为(0,0),(2,0)。

高二数学极坐标试题答案及解析

高二数学极坐标试题答案及解析

高二数学极坐标试题答案及解析1.已知直线:(为参数);椭圆:(为参数)(Ⅰ)求直线倾斜角的余弦值;(Ⅱ)试判断直线与椭圆的交点个数.【答案】(1);(2)没有交点.【解析】(1)将参数方程转化为直角坐标系下的普通方程;(2)掌握常见的将参数方程转化为直角坐标系下的普通方程;(3)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式.试题解析:(1)将直线参数方程化为普通方程得:,得斜率为,则倾斜角的余弦值为椭圆的普通方程为:,得:所以没有交点.【考点】(1)参数方程的应用;(2)直线与椭圆相交的综合问题.2.在直角坐标系中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线C2的直角坐标方程为.(1)求曲线C1的直角坐标方程;(2)已知为曲线C2上一点,Q为曲线C1上一点,求P、Q两点间距离的最小值.【答案】(1);(2)【解析】(1)将参数方程转化为直角坐标系下的普通方程,需要根据参数方程的结构特征,选取恰当的消参方法,常见的消参方法有:代入消参法、加减消参法、平方消参法;(2)将参数方程转化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若有范围限制,要标出的取值范围;(3)先转化为普通方程和直角坐标方程后根据题意设点根据点到直线的距离公式.试题解析:解:(1)由得, 3分即,所以直线l的直角坐标方程为; 6分(2)P为上一点,设,其中, 8分则P到直线l的距离,其中所以当时,的最大值为.【考点】(1)参数方程与普通方程的互化;(2)参数方程的应用.3.在平面直角坐标系中,以为极点,轴非负半轴为极轴建立坐标系,已知曲线的极坐标方程为,直线的参数方程为: (为参数),两曲线相交于两点. 求:(1)写出曲线的直角坐标方程和直线的普通方程;(2)若求的值.【答案】(1),x-y-2="0;" (2)【解析】(1) 由得,曲线C的直角坐标方程为,由中两式相减的x-y=2,直线l的普通方程为x-y-2="0;(2)" 将代入得,设M,N对应的参数分别为,则所以试题解析:(1)由得,曲线C的直角坐标方程为,由中两式相减的x-y=2,直线l的普通方程为x-y-2=0(2)将代入得,设M,N对应的参数分别为,则所以.【考点】1.极坐标与直角坐标的互化;2.参数方程与普通方程的互化;3.参数的几何意义4.已知直线的极坐标方程为,圆M的参数方程为。

极坐标参数方程题型归纳7种

极坐标参数方程题型归纳7种

极坐标参数方程题型归纳7种标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-极坐标与参数方程(高考真题)题型归纳一、极坐标方程与直角坐标方程的互化1.(2015·广东理,14)已知直线l的极坐标方程为2ρsin⎝⎛⎭⎫θ-π4=2,点A的极坐标为A⎝⎛⎭⎫22,7π4,则点A到直线l的距离为________.[立意与点拨]本题考查极坐标与平面直角坐标的互化、点到直线的距离,属于容易题.解答本题先进行极直互化,再求距离.二、参数方程与直角坐标方程的互化【解析】椭圆方程为:14622=+yx,因为1cossin22=+xx,令⎩⎨⎧==ααcos2sin6yx,则有X+2y=αsin6+αcos4=()ϕα++sin166,最大值22,最小值22-三、根据条件求直线和圆的极坐标方程四、求曲线的交点及交点距离4.(2015·湖北高考)在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C的参数方程为⎩⎨⎧x=t-1t,y=t+1t(t为参数),l与C相交于A,B 两点,则|AB|=________.【解析】直线l的极坐标方程ρ(sin θ-3cos θ)=0化为直角坐标方程为3x-y=0,曲线C的参数方程⎩⎨⎧x=t-1t,y=t+1t两式经过平方相减,化为普通方程为y2-x2=4,联立⎩⎪⎨⎪⎧3x-y=0,y2-x2=4解得⎩⎪⎨⎪⎧x=-22,y=-322或⎩⎪⎨⎪⎧x=22,y=322.所以点A⎝⎛⎭⎪⎫-22,-322,B⎝⎛⎭⎪⎫22,322.所以|AB|=⎝⎛⎭⎪⎫-22-222+⎝⎛⎭⎪⎫-322-3222=2 5.5.在平面直角坐标xOy 中,已知直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t ,(t 为参数),直线l 与抛物线y 2=4x 相交于A 、B 两点,求线段AB 的长.[解析] 解法1:将l 的方程化为普通方程得l :x +y =3,∴y =-x +3,代入抛物线方程y 2=4x 并整理得x 2-10x +9=0,∴x 1=1,x 2=9. ∴交点A (1,2),B (9,-6),故|AB |=82+82=8 2.解法2:将l 的参数方程代入y 2=4x 中得,(2+22t )2=4(1-22t ), 解之得t 1=0,t 2=-82,∴|AB |=|t 1-t 2|=8 2.6.(2015·陕西理,23)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.[立意与点拨] 考查极坐标与参数方程、转化与化归思想和函数思想;解答本题(1)需熟记极直互化公式;(2)用参数坐标将距离表达为t 的函数,转化为函数最值求解.[解析](1)由ρ=23sin θ,得ρ2=23ρsin θ,从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P (3+12t ,32t ),又C (0,3),则|PC |=3+12t 2+32t -32=t 2+12,故当t =0时,|PC |取得最小值,此时,P 点的直角坐标为(3,0).五、利用参数方程求最值( 转化与化归思想和函数思想 )[立意与点拨](用三角函数作为参数,转化成求三角函数最值问题,着重理解转化思维,用参数法实现转化的技巧)8.(2015·新课标Ⅱ高考)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.【解】(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝ ⎛⎭⎪⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π.(此题C 1代表的是一条过原点的直线) 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3.当α=5π6时,|AB |取得最大值,最大值为4.9.(2015·商丘市二模)已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l 的极坐标方程为:ρsin ⎝⎛⎭⎫θ-π6=12,曲线C 的参数方程为:⎩⎪⎨⎪⎧x =2+2cos α,y =2sin α.(1)写出直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值.[解析] (1)∵ρsin ⎝⎛⎭⎫θ-π6=12,∴ρ⎝ ⎛⎭⎪⎫32sin θ-12cos θ=12,∴32y -12x =12,即l :x -3y +1=0.(2)解法一:由已知可得,曲线上的点的坐标为(2+2cos α,2sin α), 所以,曲线C 上的点到直线l 的距离d =|2+2cos α-23sin α+1|2=⎪⎪⎪⎪4cos ⎝⎛⎭⎫α+π3+32≤72. 所以最大距离为72.解法二:曲线C 为以(2,0)为圆心,2为半径的圆.圆心到直线的距离为32,所以,最大距离为32+2=72.10.(文)(2014·新课标Ⅰ理,23)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.[解析](1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ,(θ为参数)直线l 的普通方程为:2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|PA |=d sin30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.(将d=|AB|sin30利用三角关系进行转化,转化化归思想,高考考点考察学生思维能力)当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255. 当sin(θ+α)=1时,|PA |取得最小值,最小值为255.六、直线参数方程中的参数的几何意义方法一:方法二:根据直线参数方程中t 的几何意义,可知,弦长=|t 1-t 2|.得:053154153154122=⎪⎭⎫⎝⎛--+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛+t t t t ,方程化简,然后用韦达定理求 弦长=|t 1-t 2|=()212214t t t t -+=.....13.(理)在直角坐标系xOy 中,过点P (32,32)作倾斜角为α的直线l 与曲线C :x 2+y 2=1相交于不同的两点M 、N .(1)写出直线l 的参数方程;(2)求1|PM |+1|PN |的取值范围.(根据直线参数方程中t 的几何意义,用参数t 表示所求量1|PM |+1|PN |,然后用t 的二次方程的韦达定理,转化成三角函数进而求范围,此题较难)[解析] (1)⎩⎪⎨⎪⎧x =32+t cos α,y =32+t sin α,(t 为参数).(2)将⎩⎪⎨⎪⎧x =32+t cos α,y =32+t sin α.(t 为参数)代入x 2+y 2=1中,消去x ,y 得,t 2+(3cos α+3sin α)t +2=0,由Δ=(3cos α+3sin α)2-8=12sin 2(α+π6)-8>0⇒sin(α+π6)>63, 1|PM |+1|PN |=1-t 1+1-t 2=-t 1+t 2t 1t 2=3cos α+3sin α2=3sin(α+π6)∈(2,3].七、求动点坐标、求变量的值14.(2015·陕西理,23)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.[立意与点拨] 考查极坐标与参数方程、转化与化归思想和函数思想;解答本题(1)需熟记极直互化公式;(2)用参数坐标将距离表达为t 的函数,转化为函数最值求解.[解析] (1)由ρ=23sin θ,得ρ2=23ρsin θ,从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P (3+12t ,32t ),又C (0,3),则|PC |=3+12t 2+32t -32=t 2+12,故当t =0时,|PC |取得最小值,此时,P 点的直角坐标为(3,0).(此处用参数t 来表示所求距离,然后当作变量为t 的二次函数,求最值)15.(2016全国卷I)在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==,sin 1,cos t a y t a x t (为参数,)0>a .在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C . (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程; (Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 与2C 的公共点都在3C 上,求a .【解析】:⑴ cos 1sin x a t y a t =⎧⎨=+⎩(t 均为参数),∴()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程⑵ 24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=, 224x y x ∴+=,即()2224x y -+= ②,3C :化为普通方程为2y x =由题意:1C 和2C 的公共方程所在直线即为3C ,①—②得:24210x y a -+-=,即为3C∴210a -=,∴1a =(圆与圆交点所在直线的求法,联立圆方程,两方程相减,可得变量的方程)16.(文)(2015·唐山市二模)在极坐标系中,曲线C :ρ=2a cos θ(a >0),l :ρcos ⎝⎛⎭⎫θ-π3=32,C 与l 有且仅有一个公共点.(1)求a ; (2)O 为极点,A ,B 为C 上的两点,且∠AOB =π3,求|OA |+|OB |的最大值.[解析] (1)曲线C 是以(a,0)为圆心,以a 为半径的圆; l 的直角坐标方程为x +3y -3=0.由直线l 与圆C 相切可得|a -3|2=a ,解得a =1. (求符合条件的变量值,建立等量关系,解方程)(2)不妨设A 的极角为θ,B 的极角为θ+π3,则|OA |+|OB |=2cos θ+2cos ⎝⎛⎭⎫θ+π3=3cos θ-3sin θ=23cos ⎝⎛⎭⎫θ+π6, 当θ=-π6时,|OA |+|OB |取得最大值2 3.(用三角函数作为参数,转化成求三角函数最值问题,着重理解转化思维,用参数法实现转化的技巧)。

极坐标与参数方程和不等式选讲压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

极坐标与参数方程和不等式选讲压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题12极坐标与参数方程和不等式选讲压轴题题型/考向一:极坐标与参数方程题型/考向二:不等式选讲○热○点○题○型一极坐标与参数方程1.极坐标系:极径OM =ρ,即M 点与极点O 间的距离极角=θ∠XOM ,即以极轴OX 为始边,OM 为终边的角2.极坐标与直角坐标的互化例如()1-3-,,则()()33=3-1-=2=1-+3-=22θρtan ,又()1-3-, 在第三象限,所以πθ34=,⎪⎭⎫⎝⎛342∴π,3.常见曲线的极坐标方程4.常见曲线的参数方程①圆222()()x a y b r -+-=的参数方程是:cos sin ()x a r y b r θθθ=+⎧⎨=+⎩为参数②椭圆22221(0,0,)x y a b a b a b +=>>≠的参数方程是:cos ,()sin x a y b θθθ=⎧⎨=⎩为参数③过定点00(,)P x y 倾斜角为α的直线l 的标准参数方程为:00cos ,()sin x x t t y y t αα=+⎧⎨=+⎩为参数5:直线的标准参数方程中t的几何意义过定点00(,)P x y 倾斜角为α的直线l 的标准参数方程为:00cos ,()sin x x t t y y t αα=+⎧⎨=+⎩为参数00(,)P x y 点所对应的参数为0t =0,记直线l 与任意曲线相交于,A B 两点所对应的参数分别为12,t t ,则①线段AB 的中点O 所对应的参数为t =2+21t t ,如果线段AB 的中点恰好是P ,则有0=+21t t ②12AB t t =-=,③1212121212,0t t t t PA PB t t t t t t ⎧+⋅>⎪+=+=⎨-=⋅<⎪⎩,④1212121212,00t t t t PA PB t t t t t t ⎧+⋅<⎪-=-=⎨-=⋅>⎪⎩⑤1212PA PB t t t t ⋅=⋅=⋅注:①将直线的参数方程代入曲线的方程得到关于t 的二次方程,则由韦达定理得出:abt t -=+21、ac t t =216、直线一般式:过定点00(,)P x y 斜率αtan =k =ab的直线的参数方程是⎩⎨⎧+=+=bt y y atx x 00(t 为参数)①若1=+22b a ,即为标准式,此时参数t 具备几何意义②若1≠+22b a ,参数t 不具备标准式中t 的几何意义.标准式与一般式的联系与互化:直线的普通参数方程⎩⎨⎧+=+=bt y y atx x 00(t 为参数)化为直线的标准参数方程的方法是将直线的方向向量化为直线的单位向量,即是化为参数方程⎪⎪⎩⎪⎪⎨⎧++=++=220220t b a b y y t b a a x x (t 为参数)7、经过极点或原点的三种直线方程:①普通方程:②极坐标方程:③参数方程:1.在平面直角坐标系xOy 中,已知直线l 的参数方程为41,535x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),抛物线C的极坐标方程为2sin 4cos ρθθ=.(1)求直线l 和抛物线C 的直角坐标方程;(2)求直线l 被抛物线C 截得的弦长.2.在平面直角标系xOy 中,曲M 的参数方程为2sin y α⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πsin 4ρθ⎛⎫+= ⎪⎝⎭(1)求曲线M 的普通方程;(2)若D 为曲线M 上一动点,求D 到l 距离的取值范围.3.在直角坐标系xOy 中,曲线C 的参数方程为y α=⎧⎪⎨=⎪⎩(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πcos 4ρθ⎛⎫+= ⎪⎝⎭(1)求直线l 的一般方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,直线l 与x 轴相交于点P ,求PA PB ⋅的值.4.在平面直角坐标系xOy 中,曲线C 的参数方程为22sin y ϕ⎨=+⎩(其中ϕ为参数).以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,直线l πcos 44θ⎛⎫-= ⎪⎝⎭.(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于A ,B 两点,点P 是曲线C 上的一动点,求PAB 面积的最大值.5.在平面直角坐标系xOy 中,直线l 过点()1,0M ,且倾斜角为π4,以坐标原点为极点,以x 轴的非负半轴为极轴,建立极坐标系,曲线C 的参数方程是为2cos ,sin x y θθ=⎧⎨=⎩(θ参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)已知曲线C 与直线l 相交于A ,B 两点,则AB 的值.6.在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin cos sin x y αααα=-⎧⎨=+⎩(α为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πcos 6ρθ⎛⎫+ ⎪⎝⎭(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)P 为l 上一点,过P 作曲线C 的两条切线,切点分别为A ,B ,若3APB π∠≥,求点P 横坐标的取值范围.1sin ,2APO ∴∠≥∴在Rt OAP △中,||2||22OP OA ∴≤=,22(323)22x x ∴+-≤,两边平方得解得353522x -+≤≤,3⎡-2240x y x +-=,以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程;(2)设直线l 交曲线C 于两点A ,B ,求AOB ∠的大小.直线l 的参数方程为1cos ,1sin .x t y t ϕϕ=-+⎧⎨=+⎩(t 为参数).(1)若π4ϕ=,求直线l 的普通方程和曲线C 的直角坐标方程;(2)过点()0,3P -向直线l 作垂线,垂足为Q ,说明点Q 的轨迹为何种曲线.9.在平面直角坐标系xOy 中,曲线1C 的参数方程为1sin y ϕ⎧⎨=+⎩(ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为ρθ=.(1)求曲线1C 的极坐标方程与曲线2C 的直角坐标方程;(2)直线l :()6πθρ=∈R 与曲线1C ,2C 分别交于M 、N 两点(异于极点O ),P 为2C 上的动点,求△PMN 面积的最大值.y =⎪⎩极点,x 轴为正半轴建立极坐标,椭圆C 的极坐标方程为2222cos 2sin 4ρθρθ+=,其右焦点为F ,直线l 与椭圆C 交于,A B 两点.(1)求||||FA FB +的值;(2)若点P 是椭圆上任意一点,求PAB 的面积最大值.83○热○点○题○型二不等式选讲【考点1】基本不等式基本不等式的常见结论:(1)222a b ab +≥(,a b R ∈),当且仅当a b =时,等号成立;(2)2a b ab +≥(,0a b >),当且仅当a b =时,等号成立;(3)33a b c abc ++≥a b c ==时,等号成立(4)2b a a b+≥(,a b 同号,a b =时取等号。

(完整版)极坐标与参数方程知识点总结大全

(完整版)极坐标与参数方程知识点总结大全

极坐标与参数方程一、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上(即曲线上的点在方程上,方程的解都在曲线上),那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.练习1.若直线的参数方程为,则直线的斜率为( )12()23x tt y t=+⎧⎨=-⎩为参数A .B .C .D .2323-3232-2.下列在曲线上的点是( )sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数A .B .C .D .1(,231(,)42-3.将参数方程化为普通方程为( )222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数A .B .C .D .2y x =-2y x =+2(23)y x x =-≤≤2(01)y x y =+≤≤注:普通方程化为参数方程,参数方程的形式不一定唯一(由上面练习(1、3可知))。

应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。

3.圆的参数方程如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周运动,设,则。

这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是转过的角度(称为旋转角)。

圆心为,半径为的圆的普通方程是,它的参数方程为:。

4.椭圆的参数方程以坐标原点为中心,焦点在轴上的椭圆的标准方程为其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为其中参数仍为离心角,通常规定参数的范围为∈[0,2)。

极坐标与参数方程知识点总结

极坐标与参数方程知识点总结

第一部分:坐标系与参数方程【考纲知识梳理】1.平而直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换©: ° “纟> 的作用卜-,点P(x, y)对应到点[y=“・%(“>0)p(p,y),称卩为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图⑴所示,在平而内取一个左点o.叫做极点,自极点o引一条射线&.叫做极轴;再选左一个长度单位,一个角度单位(通常取弧度)及英正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平而图形为几何背景,而平而直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可•但极坐标系和平而直角坐标系都是平而坐标系. (2)极坐标设M是平而内一点,极点。

与点M的距离IOMI叫做点M的极径,记为°;以极轴Ox为始边,射线OM为终边的角厶OM叫做点M的极角,记为。

有序数对(卩。

)叫做点M的极坐标,记作M(p^) ~般地,不作特殊说明时,我们认为可取任意实数•特别地,当点M在极点时,它的极坐标为(OP X&W R)。

和直角坐标不同,平而内一个点的极坐标有无数种表示•如果规左°>0,05&<2兀,那么除极点外,平而内的点可用唯一的极坐标(0。

)表示;同时,极坐标(Q &)表示的点也是唯一确泄的.3•极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图(2)所示:(2)互化公式:设M是坐标平面内任意一点,它的直角坐标是(儿极坐标是(%X°no),于是极坐标与直角坐标的互化公式如表:点M直角坐标(%,>') 极坐标(p,0)互化公式X = QCOS&<[y = psinO0 "+〉厂tan® = —(x0)X在一般情况卜:由tan&确左角时,可根据点M所在的象限最小正角.4 •常见曲线的极坐标方程y7y %X N曲线图形极坐标方程圆心在极点,半径为广的圆p = r (0 <0 < 2 兀)圆心为(几0),半径为/•的圆p = 2r -—< 0\ 2 2 /圆心为(几彳j,半径为r 的圆AOip = 2rsin 0(0 <0<^)过极点,倾斜角为a 的直线(1) 0 = a(p e R )或& = rr + a(p e R ) (2) 0 = a(p > 0)或& =兀 + a(p > 0)过点(",0),与极轴垂直的直线o~(a ・0) -VpCQS0 =彳-彳 <0 < yj过点与极轴平行的直 线• ■ • • ■ • ■ ■ • • ■01•Xpsin 0 = «(0 <0 < 7r)注:由于平而上点的极坐标的表示形式不唯一,即(Q&), (°,2兀+ &), (-+ &),(—°-龙+ &)都表示同一点的坐标,这与点的直角坐标的唯一性明显不同•所以对于曲线上的点的极坐标的多种表示形式,只要求至少 有一个能满足极坐标方程即可•例如对于极坐标方程P = O 点M可以表示为U 4;p = 0・二、参数方程1. 参数方程的概念一般地,在平而直角坐标系中,如果曲线上任意一点的坐标(“)都是某个变数/的函数F 々①,并且对[y = sv )于f 的每一个允许值,由方程组①所确左的点M (x,y )都在这条曲线上,那么方程①就叫做这条曲线的参数 方程,联系变数(x,y )的变数f 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程 叫的极坐标满足方程等多种形式,其中,只有M14 4丿做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数(x,y)中的一个与参数f的关系,例如兀=/(/),把它代入普通方程,求出另一个变数与参数l\= f(t)的关系y = g(”,那么{丿〈就是曲线的参数方程,在参数方程与普通方程的互化中,必须使(x,y)的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一立唯一。

高二数学简单曲线的极坐标方程试题答案及解析

高二数学简单曲线的极坐标方程试题答案及解析

高二数学简单曲线的极坐标方程试题答案及解析1.已知极坐标的极点在平面直角坐标系的原点O处,极轴与轴的正半轴重合,且长度单位相同.直线的极坐标方程为:,曲线C:(为参数),其中.(Ⅰ)试写出直线的直角坐标方程及曲线C的普通方程;(Ⅱ)若点P为曲线C上的动点,求点P到直线距离的最大值.【解析】(Ⅰ)直接利用极坐标与直角坐标的互化,以及消去参数,即可取得直线的直角坐标方程及曲线C的普通方程;(Ⅱ)求出圆的圆心与半径,利用圆心到直线的距离加半径即可求出点P到直线距离的最大值.试题解析:(Ⅰ)因为,所以,则直线的直角坐标方程为.曲线C:,且参数,消去参数可知曲线C的普通方程为.(Ⅱ)由(Ⅰ)知,曲线C是以(0,2)为圆心,半径为2的圆,则圆心到直线的距离,所以点P到直线的距离的最大值是.【考点】参数方程化成普通方程.2.已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,则曲线的直角坐标方程为 .【答案】【解析】已知曲线的极坐标方程是,以极点为原点,因此方程【考点】参数方程的应用.3.已知圆的极坐标方程为ρ2-4ρ·cos+6=0.(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.【答案】(1)普通方程:,圆的参数方程为:,为参数;(2).【解析】(1)圆的普通方程与圆的极坐标方程之间的转换关系在于圆上一点与极径,极角间的关系:,圆的普通方程与圆的参数方程的关系也在于此,即圆上一点与圆半径,圆上点与圆心连线与轴正向夹角的关系:;(2)利用圆的参数方程,将转化为关于的三角函数关系求最值,一般将三角函数转化为的形式.试题解析:由圆上一点与极径,极角间的关系:,可得,并可得圆的标准方程:,所以得圆的参数方程为:,为参数.由(1)可知:故.【考点】(1)圆的普通方程与圆的参数方程和极坐标之间的关系;(2)利用参数方程求最值. 4.已知曲线M与曲线N:ρ=5cosθ-5sinθ关于极轴对称,则曲线M的方程为() A.ρ=-10cos B.ρ=10cosC.ρ=-10cos D.ρ=10cos【答案】B【解析】设点是曲线M上的任意一点,点关于极轴的对称点必在曲线N上,所以故选B.【考点】极坐标方程.5.在极坐标系中,圆的圆心的极坐标为()A.B.C.D.【答案】D.【解析】把圆的极坐标方程化为直角坐标方程,求出圆心的直角坐标,再把它化为极坐标.【考点】简单曲线的极坐标方程;点的极坐标和直角坐标的互化.6.极坐标方程表示的曲线为()A.一条射线和一个圆B.两条直线C.一条直线和一个圆D.一个圆【答案】C【解析】化简为,得到或,化成直角坐标方程为:或,故选C.【考点】极坐标方程与普通方程的互化7.在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立坐标系.已知点的极坐标为,直线的极坐标方程为,且点在直线上.(1)求的值及直线的直角坐标方程;(2)圆c的参数方程为,(为参数),试判断直线与圆的位置关系.【答案】(1),(2)相交【解析】解:(Ⅰ)由点在直线上,可得所以直线的方程可化为从而直线的直角坐标方程为 5分(Ⅱ)由已知得圆的直角坐标方程为所以圆心为,半径以为圆心到直线的距离,所以直线与圆相交 10分【考点】直线与圆点评:主要是考查了直线与圆的位置关系的运用,属于基础题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x a r cos , ( 为参数) 。 y b r sin .
2
【解析 2】 2cos 2 cos x y 2 x ( x 1) y 1
x2 y 2 , cos
x x2 y 2
, sin
y x2 y 2

tan
y 等直接代入并化解即可; x
2 2 2
(3) 将圆的直角坐标方程化为参数方程时, 应牢记关系: 圆的直角坐标方程为 ( x a) ( y b) r , 对应的参数方程为
极坐标与参数方程 目录
题型 1:求圆或直线的极坐标方程 .......................................................................................................................... 1 题型 2:极坐标方程化参数方程 .............................................................................................................................. 1 题型 3:参数方程化极坐标方程 .............................................................................................................................. 2 题型 4:求圆与直线的交点 ...................................................................................................................................... 4 题型 5:求两点间距离 .............................................................................................................................................. 4 题型 6:求点到直线的距离 ...................................................................................................................................... 5 题型 7:极坐标的综合性问题 .................................................................................................................................. 6
D. 0( R)和 cos 1
【解析 1】由 2cos 知,圆心坐标为 (1, 0) ,半径为 1,所以圆与极轴的两个交点坐标为 (0,0) ,
(2,0) 。
过极点 (0,0) 且与极轴垂直的直线的极坐标方程为
( R) 。 2 过点 (2,0) 且与极轴垂直的直线的极坐标方程为 cos 2 。
【规律方法】 (1)熟记课本 12 页——14 页的结论。 (a)半径为 a ,圆心 C 坐标为 (a,0)( a 0) ,圆 C 的极坐标方程为 2a cos ; (b)过点 A(a,0)(a 0) ,且垂直于极轴的直线 l 的极坐标方程为 cos a 。 (2)识模,解模。 (a)识模:能识别并理解极坐标方程表示的图形; (b)解模:根据图形的几何意义解题。 【解析 2】 2cos 2 cos x y 2 x ( x 1) y 1 。
2x x y
2 2
x2 y 2 2 x ( x 1)2 y 2 1
x 1 cos , ( 为参数) 。 y sin .
【规律方法】
(1)极坐标方程化参数方程时,首先将极坐标方程化为直角坐标方程,再将直角坐标方程化为参数方 程。其中直角坐标方程起桥梁作用,过渡作用。 (2) 极坐标方程化为直角坐标方程, 只需把公式


2
2
2
2
当 y 0 时,得圆与 x 轴的两个交点的横坐标为 0 与 2,所以与圆相切且与 x 轴垂直的两条直线方程为
x 0, x 2。
将两切线的直角坐标方程利用 x cos 化为极坐标方程

2
( R) , cos 2 。
【规律方法】 (1)先将极坐标问题转化为直角坐标问题,在直接坐标系下求解。 (2)再将直角坐标系下的结论转化为极坐标系下的结论。 【提示】 将极坐标问题转化为直角坐标问题,是解决极坐标问题的常用方法。
题型 1:求圆或直线的极坐标方程
【例 1】 【2013 年高考安徽卷(理) 】 在极坐标系中,圆 2cos 的垂直于极轴的两条切线方程分别为( A. 0( R)和 cos 2 C.
【答案】B

B.

2
( R)和 cos 2

2
( R)和 cos 1
题型 2:极坐标方程化参数方程
第 1 页 共 6 页
【例 2】 【2013 年高考广东卷(文) 】 已知曲线 C 的极坐标方程为 2cos .以极点为原点, 极轴为 x 轴的正半轴建立直角坐标系, 则曲线
C 的参数方程为____________.
【解析 1】 2cos
x2 y 2
相关文档
最新文档