极坐标系与平面直角坐标系的区别

合集下载

平面直角坐标系和极坐标

平面直角坐标系和极坐标

第二节平面直角坐标系和极坐标为了需要,温习一下平面坐标系(直角坐标系和极坐标)一平面直角坐标系1.平面直角坐标系的成立为了确信平面上点的位置:(1)在平面上选定两条相互垂直的直线,并指定正方向(用箭头表示);(2)以两直线的交点O作为原点;(3)选取任意长的线段作为两直线的公共单位长度;如此,咱们就说在平面上成立了一个直角坐标系(图1-2-1)图1-2-1这两条相互垂直的直线叫做坐标轴,适应上把其中的一条放在水平的位置上,从左到右的方向是正方向,这条轴叫做横坐标轴,简称为横轴或x轴,与x轴垂直的一条叫做纵坐标轴,简称为纵轴或y轴,从下到上的方向是它的正方向。

2. 平面上点的坐标成立了直角坐标系后,平面上的任意一点P的位置就能够够确信了,方式是如此的:由P 点别离作y轴和x轴的平行线,交点别离是M和N,设x轴上的有向线段OM的数量是a,y轴上有向线段ON的数量是b,咱们称a是P点的横坐标,b是P点的纵坐标,写成形式(a,b),如此的一对有序实数(a,b)叫做P点的坐标。

反过来,易知任意一对实数(a,b),都能够确信平面上的一个点.由上面的分析,能够取得下面的结论:在给定的直角坐标系下,关于平面上的任意一点P,咱们能够取得唯一的有序实数对(a,b)来和它对应;反过来,关于任何有序实数对,在平面上就能够确信唯一的点,那个点的坐标是(a,b)。

确实是说,平面上的点和有序实数对(a,b)之间成立了一一对应得关系。

咱们在代数里已经明白坐标轴把平面分成了四个部份,每一部份是一个象限。

依照数轴上有向线段的数量,能够明白得第I象限内的点的坐标的符号是(+,+),第II象限内的是(—,+),第III象限内的是(—,—),第IV象限内的是(+,—)。

坐标轴上的点不属于任何象限,在x轴的正方向上的点,坐标的符号是(+,0);负方向上的点的坐标符号是(—,0)。

同理,在y 轴的正方向上的点,坐标的符号是(0,+);负方向上的点的坐标符号是(0,—)。

平面直角坐标系

平面直角坐标系

02
点在平面直角坐标系中的表示
点在平面直角坐标系中的表示方法
直角坐标法
在平面内选定一个原点O和x、y轴,对于平面内的任意一点P ,通过原点O作一直角与x轴正方向夹角为α,再作一直角与y 轴正方向夹角为β,两直角的交点即为点P的坐标。
极坐标法
以原点O为极点,x轴正方向为极轴,建立极坐标系。对于平 面内的任意一点P,通过原点O作一直线与极轴夹角为θ,再 作一直线与极轴夹角为α,两直线的交点即为点P的极坐标。
点的坐标与位置关系
点的横坐标
表示点在x轴上的投影距离 。
点的纵坐标
表示点在y轴上的投影距离 。
点的位置关系
通过比较点的坐标值,可 以确定点在平面直角坐标 系中的位置关系,如平行 、垂直、相交等。
点在平面直角坐标系中的变换
平移变换
将点沿着x轴或y轴方向移动一定的距离,点的坐 标值会相应地增加或减少。
几何图形的性质研究
利用平面直角坐标系,可以研究几何图形的性质和特点,例如对称性、中心对 称等。
04
平面直角坐标系与极坐标系的 关系
极坐标系的基本概念
1 2
极坐标系
在平面内,以一个固定点为极点,一个固定射线 为极轴,用来研究点的位置的一种坐标系。
极坐标表示
在极坐标系中,一个点的位置由一个实数r和一 个角度θ来确定,记作(r, θ)。
旋转变换
将点绕原点旋转一定的角度,点的坐标值会发生 变化。
缩放变换
将点在x轴或y轴方向上放大或缩小一定的倍数, 点的坐标值会相应地增加或减少。
03
平面直角坐标系的应用
解析几何问题
直线方程的求解
通过平面直角坐标系,可以确定 直线上任意两点的坐标,从而求 出直线的方程。

极坐标系的基本概念

极坐标系的基本概念

极坐标系的基本概念极坐标系是一种描述平面上点位置的坐标系,它以点到原点的距离和点与正半轴的夹角来表示点的位置。

相比于直角坐标系,极坐标系更适用于描述圆形或球形的几何问题。

本文将介绍极坐标系的基本概念及其在数学和物理中的应用。

一、极坐标系的定义极坐标系用两个数表示点的位置,分别是极径和极角。

极径表示点到原点的距离,用正实数表示;极角表示点与正半轴的夹角,以弧度为单位。

在极坐标系中,原点表示极径为0的点,也是极角为任意值的点。

在直角坐标系中,一个点的位置由X坐标和Y坐标确定,即(x,y)。

而在极坐标系中,一个点的位置由极径r和极角θ确定,即(r,θ)。

二、极坐标系与直角坐标系的转换公式在极坐标系和直角坐标系之间,可以通过一些公式进行坐标的转换。

1. 从直角坐标系到极坐标系的转换:极径r可以通过以下公式计算:r = √(x² + y²)极角θ可以通过以下公式计算:θ = arctan(y/x),其中arctan为反正切函数。

2. 从极坐标系到直角坐标系的转换:X坐标可以通过以下公式计算:x = r * cos(θ),其中cos为余弦函数。

Y坐标可以通过以下公式计算:y = r * sin(θ),其中sin为正弦函数。

三、极坐标系的应用极坐标系在数学和物理中有着广泛的应用。

1. 极坐标方程一些图形在直角坐标系中难以描述,而在极坐标系中可以用较简单的方程表示。

例如,圆的方程在极坐标系中可以表示为 r = a,其中a为圆的半径。

其他曲线如椭圆、双曲线等也可以用极坐标方程表示。

2. 极坐标系中的积分在计算一些特殊曲线的弧长、曲面积分和体积等问题时,极坐标系更加方便。

利用极坐标系进行积分计算可以简化问题并提高计算效率。

3. 物理中的应用极坐标系在力学、电磁学、流体力学等领域都有广泛应用。

例如,在描述质点的运动轨迹时,如果运动轨迹呈现出旋转或对称性,极坐标系更适用于描述和分析。

结语极坐标系作为一种描述平面上点位置的坐标系,具有简洁、直观的特点,被广泛应用于数学和物理学科中。

坐标系与平面直角坐标系

坐标系与平面直角坐标系

坐标系与平面直角坐标系坐标系是数学中用来表示和描述点和线的工具。

它由坐标轴和原点组成,并利用数值组合来确定点的位置。

坐标系被广泛应用于几何学、物理学、经济学等领域,特别是在平面直角坐标系中,它的重要性更加突出。

一、坐标系简介坐标系是由一个或多个坐标轴组成,坐标轴可以是直线、圆、球或其他几何形状。

通常情况下,坐标轴是直线,用来表示一个维度上的数值变化。

一个坐标系可以是一维、二维或多维的,取决于坐标轴的数量。

在平面直角坐标系中,坐标系由水平的x轴和垂直的y轴组成,它们相交于原点O。

二、平面直角坐标系平面直角坐标系是二维坐标系中最基本和最常用的一种。

x轴和y轴分别垂直于彼此,并且固定在平面上。

这一坐标系被广泛应用于几何学、物理学、计算机图形学等领域。

在平面直角坐标系中,每个点的位置可以由一对有序数值(x, y)来表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。

三、确定坐标点的方法在平面直角坐标系中,确定一个点的位置可以使用两种方法:绝对坐标和相对坐标。

1. 绝对坐标:绝对坐标是指将点的位置与坐标轴上的数值直接对应。

例如,点A的绝对坐标为(3, 4),表示它在x轴上的位置为3,y轴上的位置为4。

这种方法适用于直接给出点的坐标。

2. 相对坐标:相对坐标是指将点的位置与其他已知点或线段的关系来确定。

例如,点B相对于点A的位置为(-2, 1),表示它在x轴上的位置比点A小2个单位,在y轴上的位置比点A大1个单位。

这种方法适用于推导和计算点的位置。

使用绝对坐标和相对坐标,我们可以在平面直角坐标系中准确地定位和描述任意点。

四、坐标系的应用平面直角坐标系在许多学科和行业中都起着重要作用。

1. 几何学:平面直角坐标系可以用来研究和解决几何形状的性质和问题。

例如,通过确定点的坐标,我们可以计算两点之间的距离或计算线段的长度。

2. 物理学:平面直角坐标系在物理学中广泛应用于描述和分析物体的运动。

通过在坐标系中绘制物体的位置随时间的变化,我们可以得到物体的速度、加速度等重要信息。

极坐标系

极坐标系

4.1.2 极坐标系1.了解极坐标系.2.会在极坐标系中用极坐标刻画点的位置.3.体会在极坐标系和平面直角坐标系中刻画点的位置的区别.[基础·初探]1.极坐标系(1)在平面上取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.其中,点O 称为极点,射线Ox 称为极轴.(2)设M 是平面上任一点,ρ表示OM 的长度,θ表示以射线Ox 为始边,射线OM 为终边所成的角.那么,每一个有序实数对(ρ,θ)确定一个点的位置.ρ称为点M 的极径,θ称为点M 的极角.有序实数对(ρ,θ)称为点M 的极坐标.约定ρ=0时,极角θ可取任意角.(3)如果(ρ,θ)是点M 的极坐标,那么(ρ,θ+2k π)或(-ρ,θ+(2k +1)π)(k ∈Z )都可以看成点M 的极坐标.2.极坐标与直角坐标的互化以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且在两种坐标系中取相同的长度单位(如图4-1-3所示),平面内任一点M 的直角坐标(x ,y )与极坐标(ρ,θ)可以互化,公式是:⎩⎨⎧x =ρcos θ,y =ρsin θ;或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).图4-1-3通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ<2π.[思考·探究]1.建立极坐标系需要哪几个要素?【提示】 建立极坐标系的要素是:(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向,四者缺一不可.2.为什么点的极坐标不惟一?【提示】 根据我们学过的任意角的概念:一是终边相同的角有无数个,它们相差2π的整数倍,所以点(ρ,θ)还可以写成(ρ,θ+2k π)(k ∈Z );二是终边在一条直线上且互为反向延长线的两角的关系,所以点(ρ,θ)的坐标还可以写成(-ρ,θ+2k π+π)(k ∈Z ).3.将直角坐标化为极坐标时如何确定ρ和θ的值?【提示】 由ρ2=x 2+y 2求ρ时,ρ不取负值;由tan θ=yx (x ≠0)确定θ时,根据点(x ,y )所在的象限取得最小正角.当x ≠0时,θ角才能由tan θ=yx 按上述方法确定.当x =0时,tan θ没有意义,这时又分三种情况:(1)当x =0,y =0时,θ可取任何值;(2)当 x =0,y >0时,可取θ=π2;(3)当x =0,y <0时,可取θ=3π2.[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_____________________________________________________ 解惑:_____________________________________________________ 疑问2:_____________________________________________________ 解惑:_____________________________________________________ 疑问3:_____________________________________________________ 解惑:_____________________________________________________≤θ<2π).图4-1-4【自主解答】 对每个点我们先看它的极径的长,再确定它的极角,因此这些点的极坐标为A ⎝ ⎛⎭⎪⎫7,π6,B ⎝ ⎛⎭⎪⎫4,3π4,C ⎝ ⎛⎭⎪⎫5,7π6,D ⎝ ⎛⎭⎪⎫6,7π4,E ()9,0,F (3,π),G ⎝ ⎛⎭⎪⎫9,3π2. [再练一题]1.已知边长为a 的正六边形ABCDEF ,建立适当的极坐标系,写出各点的极坐标.【导学号:98990003】【解】 以正六边形中心O 为极点,OC 所在直线为极轴建立如图所示的极坐标系.由正六边形性质得:C (a,0),D (a ,π3),E (a ,2π3),F (a ,π),A (a ,43π),B (a ,53π) 或C (a,0),D (a ,π3),E (a ,2π3),F (a ,π),A (a ,-2π3),B (a ,-π3).在极坐标系中,求与点M (3,-3)关于极轴所在的直线对称的点的极坐标.【自主解答】 极坐标系中点M (ρ,θ)关于极轴对称的点的极坐标为M ′(ρ,2k π-θ)(k ∈Z ),利用这个规律可得对称点的坐标为(3,2k π+π3)(k ∈Z ).[再练一题]2.在极坐标系中,点A 的极坐标为⎝ ⎛⎭⎪⎫3,π6(限定ρ>0,0≤θ<2π).(1)点A 关于极轴对称的点的极坐标是________; (2)点A 关于极点对称的点的极坐标是________. (3)点A 关于直线θ=π2对称的点的极坐标是________. 【解析】 通过作图如图可求解为【答案】 (1)(3,11π6) (2)(3,7π6) (3)(3,5π6)(1)把点M 的极坐标⎝ ⎛⎭⎪⎫8,2π3化成直角坐标;(2)把点P 的直角坐标(6,-2)化成极坐标(ρ>0,0≤θ<2π).【自主解答】 (1)x =8cos 2π3=-4,y =8sin 2π3=43,因此,点M 的直角坐标是(-4,43).(2)ρ=(6)2+(-2)2=22, tan θ=-26=-33, 又因为点P 在第四象限且0≤θ≤2π,得θ=11π6.因此,点P 的极坐标为(22,11π6).[再练一题]3.(1)把点A 的极坐标(2,7π6)化成直角坐标;(2)把点P 的直角坐标(1,-3)化成极坐标(ρ>0,0≤θ<2π). 【解】 (1)x =2cos 7π6=-3, y =2sin 7π6=-1,故点A 的直角坐标为(-3,-1). (2)ρ=12+(-3)2=2,tan θ=-31=- 3.又因为点P 在第四象限且0≤θ<2π,得θ=5π3. 因此点P 的极坐标是(2,5π3).在极坐标系中,已知A ⎝ ⎭⎪⎫3,-π3,B ⎝ ⎭⎪⎫1,2π3,求A 、B 两点之间的距离.【思路探究】 将点的极坐标化为直角坐标,在用两点间距离公式求解. 【自主解答】 对于A (3,-π3),x =3cos(-π3)=32;y =3sin(-π3)=-332, ∴A (32,-332).对于B (1,2π3),x =1×cos 2π3=-12,y =1×sin 2π3=32,∴B (-12,32). ∵AB =(32+12)2+(-332-32)2=4+12=4,∴A 、B 两点之间的距离为4.有些问题在用极坐标表示时没有现成的解法,但在直角坐标系中却是一个常见的问题.因此,换一个坐标系,把极坐标系中的元素换成直角坐标系中的元素,问题就可以迎刃而解了.如果题目要求用极坐标作答,那么解完再用极坐标表示就行了.[再练一题]4.在极坐标系中,已知三点:A (4,0)、B ⎝ ⎛⎭⎪⎫4,3π2、C ⎝ ⎛⎭⎪⎫ρ,π6.(1)求直线AB 与极轴所成的角;(2)若A 、B 、C 三点在一条直线上,求ρ的值.【解】 (1)点A 的直角坐标为(4,0),点B 的直角坐标为(0,-4),直线AB 在直角坐标系中的方程为x -y =4.故直线AB 与x 轴所成角为π4.(2)点C 的直角坐标为⎝ ⎛⎭⎪⎫32ρ,12ρ,代入直线方程得 32ρ-12ρ=4, 解得ρ=83-1=4(3+1).[真题链接赏析](教材第17页习题4.1第6题)将下列各点的极坐标化为直角坐标:⎝ ⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫6,-π3,⎝ ⎛⎭⎪⎫-2,11π6,(5,π),⎝ ⎛⎭⎪⎫4,-3π2, ⎝ ⎛⎭⎪⎫-42,3π4.已知下列各点的直角坐标,求它们的极坐标.(1)A (3,3);(2)B (-2,-23); (3)C (0,-2);(4)D (3,0).【命题意图】 本题主要考查极坐标与直角坐标的互化,属基础题. 【解】 (1)由题意可知:ρ=32+(3)2=23,tan θ=33,所以θ=π6,所以点A 的极坐标为(23,π6). (2)ρ=(-2)2+(-23)2=4,tan θ=-23-2=3,又由于θ为第三象限角,故θ=43π,所以B 点的极坐标为(4,43π).(3)ρ=02+(-2)2=2.θ为32π,θ在y 轴负半轴上,所以点C 的极坐标为(2,32π).(4)ρ=32+02=3,tan θ=03=0,故θ=0.所以D 点的极坐标为(3,0).1.点P (-2,2)的极坐标(θ∈[0,2π))为________. 【解析】 由ρ=x 2+y 2=(-2)2+22=22,tan θ=2-2=-1,∵P 点在第二象限内, ∴θ=3π4,∴ρ的极坐标为(22,3π4). 【答案】 (22,3π4)2.在极坐标系中,与(ρ,θ)关于极轴对称的点是________.【导学号:98990004】【解析】 极径为ρ,极角为θ,θ关于极轴对称的角为负角-θ,故所求的点为(ρ,-θ).【答案】 (ρ,-θ)3.将极坐标⎝ ⎛⎭⎪⎫2,3π2化为直角坐标为________.【解析】 x =ρcos θ=2cos 32π=0,y =ρsin θ=2sin 32π=-2, 故直角坐标为(0,-2). 【答案】 (0,-2)4.已知A ,B 的极坐标分别是⎝ ⎛⎭⎪⎫3,π4和⎝ ⎛⎭⎪⎫-3,π12,则A 和B 之间的距离等于________.【解析】 由余弦定理得 AB =ρ12+ρ22-2ρ1ρ2·cos (θ1-θ2) = 32+(-3)2-2×3×(-3)cos (π4-π12) =9+9+93=18+9 3=36+322.【答案】36+322我还有这些不足:(1)_____________________________________________________(2)_____________________________________________________ 我的课下提升方案:(1)_____________________________________________________(2)_____________________________________________________。

极坐标系的概念

极坐标系的概念

【作业表单3:单元学习目标与活动设计及检验提示单】单元学习主题极坐标系的概念单元学习目标1.认识极坐标,能在极坐标系中用极坐标刻画点的位置;2.体会极坐标系与平面直角坐标系的区别,能进行极坐标和直角坐标间的互化。

单元学习活动一、导入1.平面直角坐标系是最常用的一种坐标系,但不是唯一的一种坐标系。

有时用别的坐标系比较方便。

还有什么坐标系呢?我们先看下面的问题:(投影图片,让学生直观感受引进极坐标的必要性。

)2.在以上问题中,位置是用什么方法确定的?3.在生活中人们经常用方向和距离来表示一点的位置:如台风预报、地震预报、测量、航空、航海等。

这种用方向和距离表示平面上一点的位置的思想,就是极坐标的基本思想。

二、探究新知问题:类比建立平面直角坐标系的过程,怎样建立极坐标系?(学生思考,抽生回答,并补充,最后教师总结。

)1.极坐标系的概念(1)概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位,一个角度单位(通常用弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。

(2)点的极坐标的规定:如图:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为 ;以极轴Ox为始边,射线OM为终边5海里(1)距离:5 海里(2)方向:东偏北30º.O x拯救船30º发现走私走私船在拯救船的什么位置呢?距离40 kmxO方向:4π敌机敌机在坦克的什么位置?。

平面直角坐标系平面直角坐标系

平面直角坐标系平面直角坐标系

感谢您的观看
THANKS
性质
平面直角坐标系是一个正交坐标系,它具有唯一性和可数性 。
平面直角坐标系的建系的中心点 。
确定x轴与y轴
根据定义,x轴是一条与y轴垂直的数轴,y轴是 一条与x轴垂直的数轴。
确定单位长度
选择一个单位长度,通常选择一个合适的长度单 位,如毫米或厘米。
坐标系中的点与坐标
方向向量的计算
方向向量的计算可以通过两个点的坐标进行计算,得到一个向量,该向量的模等于两点之间的距离,方向与连 接两点的线段一致。
三维空间中的坐标系
三维空间中的坐标系定义
三维空间中的坐标系使用三个参数,x、y 、z,来定义空间中的任意一点。
VS
三维空间中的坐标系扩展
三维空间中的坐标系可以扩展到更高维度 的空间中,例如四维空间、五维空间等。
计算机图形学中的应用
像素坐标
在计算机图形学中,每个像素点都有其在平面直角坐标系中的位 置,通过坐标可以方便地对像素点进行操作。
渲染算法
通过平面直角坐标系可以设计各种渲染算法,如阴影算法、反射 算法等。
三维建模
在三维建模中,平面直角坐标系是基础,可以通过它来建立三维模 型的空间关系。
05
平面直角坐标系的扩展
平移平面直角坐标系中的点,其坐标值会相应地发生变化。平移过程中,点 的坐标值沿横轴或纵轴方向移动,移动距离等于平移方向上的坐标增量。
点的旋转
旋转平面直角坐标系中的点,其坐标值不会发生变化,但会围绕旋转中心转 动。旋转过程中,点的坐标值相对于旋转中心转动,旋转角度等于旋转角度 的弧度值。
距离与角度的计算
平面直角坐标系
2023-11-04
目 录
• 平面直角坐标系的基本概念 • 平面直角坐标系中的基本运算 • 平面直角坐标系中的图形变换 • 平面直角坐标系的应用 • 平面直角坐标系的扩展

3大常用坐标系

3大常用坐标系

3大常用坐标系摘要:一、坐标系简介1.坐标系的定义2.坐标系的作用二、3大常用坐标系1.笛卡尔坐标系(直角坐标系)a.定义及特点b.坐标表示c.应用领域2.极坐标系a.定义及特点b.坐标表示c.应用领域3.球坐标系a.定义及特点b.坐标表示c.应用领域三、坐标系的转换1.不同坐标系之间的转换方法2.转换过程中的注意事项四、总结1.各种坐标系的优缺点2.选择合适的坐标系进行问题分析正文:坐标系是数学中用来表示位置的一种工具,它有助于将复杂的空间关系简化为有序的数值关系,便于研究和计算。

在众多坐标系中,有3大常用坐标系,分别是笛卡尔坐标系(直角坐标系)、极坐标系和球坐标系。

首先,我们来了解一下笛卡尔坐标系。

它是一种平面直角坐标系,由两条互相垂直的坐标轴组成,通常用x轴和y轴表示。

在笛卡尔坐标系中,一个点的位置可以通过其横坐标和纵坐标来表示。

这种坐标系在平面几何、解析几何等领域有着广泛的应用。

其次,我们来介绍一下极坐标系。

极坐标系是一种基于极点的坐标系,由一个极径和一个极角组成。

极径表示点到原点(极点)的距离,极角表示从极轴逆时针旋转到连接极点和该点的线段的角度。

极坐标系在行星运动、电磁学等领域具有较高的实用价值。

最后,我们来探讨一下球坐标系。

球坐标系是一种三维坐标系,由一个径向坐标和一个球面坐标组成。

径向坐标表示点到原点(球心)的距离,球面坐标表示从球心到该点的球面弧所对应的圆心角。

球坐标系在地球物理学、天文学等领域应用广泛。

在实际问题分析中,我们需要根据问题的性质和需要解决的问题类型来选择合适的坐标系。

例如,在平面几何问题中,我们通常会选择笛卡尔坐标系;而在研究行星运动时,极坐标系则更为方便。

当然,在某些情况下,可能需要将一种坐标系转换为另一种坐标系,以便于问题的分析和解决。

在进行坐标系转换时,需要注意坐标系的转换公式及其适用范围,避免出现错误。

总之,这3大常用坐标系各有优缺点,适用于不同的领域和问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极点O的极坐标呢?
思考:如果给出一
个极坐标(2, ),那
它对应的点是否唯 一?
三、极坐标系与平面直角坐标系的区别?
如果规定 0, 0 2
除极点外,平面内的点可用唯一的极坐
标( , )表示;同时,极坐标( , )表
示的点是唯一的
笛卡尔(法国)
1596-1650
笛卡尔于1637年《几何学》--平面 直角坐标系
牛 顿(英国)
1642-1727
五、极坐标与直角坐标的互化
把直角坐标系的原点作为极点; x轴的正半轴作为极轴; 取相同的单位长度
把直角坐标系的原点作为极点;
x轴的正半轴作为极轴;
o
取相同的单位长度 试一试
试将刚才所描述的
台风中心的极坐标
(800, 5 )
角坐标3
化成直
设M是平面内任意一点,它的直角
则 | AB | 12 22 212 cos(1 2 )
理想化条件下:台风中心不动,

物体绕台风中心逆时针旋转,角速度 12 弧度/小时,离台风中心的距离以5公里/小 时速度减小,求 t 个小时后物体的位移
100公里
六、课堂总结
1.极坐标系 0, R
M (,)
第一个提出极坐标系是谁? 他为什么要提出极坐标系?
四、极坐标系的历史
伯努利.于1691年《教师学报》最 先发表了上述有关极坐标系的理论.
伯努利(瑞士)
1654-1705
牛顿.完成于1671年,发表于1736年 《流数法与无穷级数》---把极坐标 看成是确定平面上的点的位置的方 法,并与其他9种坐标系的进行转换
一、描述台风中心位置
温州 800公里
今年第8号台风“凤 凰”,今天下午4时 中心位置已经到达温 州东南偏南方向大约 800公里附近的洋面 上,也就是在北纬 22.3度,东经123.8度
哪些条件刻画了台 风中心的位置?
笛卡尔(法国)
1596-1650
1637年笛卡尔受天文地理的经 度、纬度启发,创建了平面直 角坐标系,用横坐标和纵坐标 确定平面中点的位置
⑴设M是平面内一点,极点O
与点M的距离|OM|叫做点M的
极径,记为

⑵以极轴Ox为始边,射
线OM为终边的角xOM叫
做点M的极角,记为

o
M (,)
x
⑶有序实数对( , )叫做点M的
极坐标,记为 M (, )
一般地,不做特殊说明时,我们认为 0, R
o
3
如图在平面地图上 建立极坐标系,试 写出台风中心的极 坐标
坐标是 (x, y) ,极坐标是 (, )
x cos, y sin
2 x2 y2 , tan y (x 0)
x
研究:如左图 ,假
设当距离台风中
心700公里时应
福州
当发布台风蓝色
警报,问福州
(200, 4 )
3
是否已发布台风
蓝色警报?
推导
已知极坐标系中,点A(1,1), B(2,2 )
今年第南偏南方向大约 800公里附近的洋面 上,也就是在北纬 22.3度,东经123.8度
为什么台风预报时 两个都会提及?
二、极坐标系的概念
在平面内取一个定点O,叫做极点; 自极点O引一条射线Ox,叫做极轴; 再选定一个长度单位,一个角度单位 (通常用弧度)及其正方向(通常取逆 时针方向), 这样就建立了一个极坐标系.



o
x
2.极坐标与直角坐标的互化
x cos, y sin
2 x2 y2 , tan y (x 0)
x
相关文档
最新文档