工程力学概论论文

合集下载

力学概论论文总结范文

力学概论论文总结范文

摘要:力学作为物理学的基础学科,研究物体运动和力的相互作用。

本文对力学概论论文进行了总结,分析了力学的基本原理、研究方法及其在各个领域的应用,旨在为读者提供对力学学科的整体认识。

一、引言力学是研究物体运动和力的相互作用的一门学科,它起源于古代对日常现象的观察,经过长期的发展,形成了完整的理论体系。

力学在航空航天、土木工程、机械制造等领域具有广泛的应用,对于推动科技进步和经济发展具有重要意义。

二、力学的基本原理1. 牛顿运动定律:牛顿运动定律是力学的基础,包括惯性定律、加速度定律和作用力与反作用力定律。

2. 力的合成与分解:力的合成与分解是研究物体受力情况的重要方法,包括力的平行四边形法则和力的分解。

3. 动力学:动力学研究物体运动状态的变化及其与力的关系,包括动量定理、动能定理和角动量定理。

4. 振动与波动:振动与波动是力学中的重要内容,包括单摆、弹簧振子和机械波等。

三、力学的研究方法1. 理论推导:通过建立数学模型,对力学问题进行理论推导,如牛顿运动定律的推导。

2. 实验研究:通过实验观察和测量,验证理论推导的正确性,如验证牛顿第二定律的实验。

3. 数值计算:利用计算机技术,对复杂的力学问题进行数值计算,如有限元分析。

四、力学在各个领域的应用1. 航空航天:力学在航空航天领域具有广泛应用,如飞行器的设计、飞行轨迹的优化等。

2. 土木工程:力学在土木工程领域用于建筑结构设计、地震工程等。

3. 机械制造:力学在机械制造领域用于机械设备的设计、分析等。

4. 生物力学:力学在生物力学领域用于研究生物体运动规律,如人体运动学、骨骼力学等。

五、结论力学作为一门基础学科,具有丰富的理论体系和应用领域。

通过对力学概论论文的总结,我们可以了解到力学的基本原理、研究方法和在各个领域的应用。

力学的发展不仅推动了科技进步,也为人类生活提供了便利。

在今后的学习和研究中,我们应该深入理解力学知识,为我国科技事业的发展贡献力量。

工程力学导论论文.doc

工程力学导论论文.doc

工程力学导论论文【导语】本科作为学生毕业前最后一个教学环节,能够检验学生综合应用专业理论、根本技能、独立完成工作,分析解决实际问题的能力,也是学生取得毕业和学位资格的重要依据。

以下关于工程力学导论论文,希望您驻足阅读!一局部学生觉得力学概念、规律较为抽象,理论应用繁杂,感觉困惑与乏味,从而产生排斥感。

还有些学生愿意认真学习,但常觉得工程力学的理论难以理解透彻,做题时常常不知如何下手,不理解的知识一但累积,便容易丧失了自信,逐渐产生厌学情绪。

在目前工程力学授课内容不变,但课时缩减的趋势下,这种情况更加严重。

因此,激发学生的学习兴趣,帮助学生掌握力学思维,培养其思考和解决问题的能力,这需要教师不断与学生沟通来改良和提高教学效果。

启发式教学是在老师的启发引导下,激发学生思考,产生疑问,并主动获取知识的过程,这是一种古老而常新的教育理念。

教学是师生之间信息的传递,美国心理学家罗杰斯认为:“成功的教学依赖于一种真诚的理解和信任的师生关系,依赖于一种和谐的平安的课堂气氛。

”教师对教学和学生的热爱,注重学生的课堂情绪,会营造轻松、融洽的气氛。

在教学的过程中善于设问,激发学生求知欲,抓住时机启发学生思考,解决问题。

启发式教学最忌讳刻板,崇尚因人而异,因势利导,相机点拨。

因此,教师要有扎实的专业根底和广博的知识,不仅仅局限于书本,或局限于单一的模式,还要结合自己对教材的理解,通过自己的方式和智慧来讲授工程力学。

工程力学研究工程实际中的力学问题。

简化工程实际建立力学模型,是工程力学学习的第一步,这也是重要的一步。

学生能把力学和生活中看到的、接触到的结构和物体联系起来,工程力学就不再是抽象,而模糊的概念。

身边的力学让学生更有兴趣去了解和分析。

一般的教材只是在绪论提及力学模型的建立并举一两个例子说明。

在授课过程中很多时候都可以先讲力学模型的建立,再讲理论分析,虽然占用些许时间,往往起的效果相当好,可谓磨刀不误砍柴工。

如静力学局部,讲集中力和分布力时,集中力可以看桥面上站着一个人,人对桥的作用力。

《工程力学》课程学习认识[范文]

《工程力学》课程学习认识[范文]

《工程力学》课程学习认识[范文]第一篇:《工程力学》课程学习认识[范文]《工程力学》课程学习认识工程力学是一门技术基础课,它不仅是力学学科的基础,而且也是《机械设计基础》和《机械制造基础》等后续相关课程的基础课。

它在许多工程技术领域中有着广泛的应用,这门课程的任务是让我们掌握静力学和材料力学的基本概念和研究方法,为学习有关的后继课程打好必要的基础,并为将来学习和掌握新的科学技术创造条件。

通过本课程的学习使我们掌握了分析和解决一些简单的工程实际问题的方法。

力的作用与物质的运动是自然界和人类活动中最基本的现象。

这正是力学学科研究的对象,从而也奠定了力学在自然科学中的基础地位。

工程力学是现代工程科学技术交叉发展的一门力学分支学科,已成为土木、水利、机械、电子与信息、能源与矿山、交通、环境保护、材料与加工、自动化技术、农业、生物、海洋、船舶、石油化工、航空与航天及国防建设等工程科学的基础;工程力学具有广泛性、复杂性和多样性,体现了多学科交叉发展和相互促进,以及力学在解决重大工程技术问题中的基础性和必不可缺少重要的作用。

工程力学研究的是有关机械或工程结构的各个组成部分在受外力的情况下发生的变形,分析变形对构件的影响,并设计一些简单的构件,使它满足稳定性的要求。

开始学习这门课程,对课本主要知识结构不是很了解的话,就会觉得学习的知识很多,而且公式也非常多,有些公式还很难记,当时感觉就是有点难。

对于理科的课程,我-多听是指上课时要听老师讲课,讨论时要听同学提问。

很多人只知道上课要认真,但是在其他同学提出问题时却毫不理会,如果别人提的问题他们不会,他们听了之后就可以学到新知识或许可以掌握一种新的解题思路;如果别人提的问题他们会,那么他们听了之后就可以了解他们的解题方法知道他们错在哪里,从而避免犯相同的错误.学习应善于掌握一定的方法,这样才能对繁多的细节内容做到灵活运用,游刃有余而不是死记硬背,生搬硬套.在课前,我会自己事先做好预备工作,把下节课要学的内容自己预习一遍,在上课听讲时结合老师的思路,这样就能更好的理解与作题。

工程力学本科生毕业论文

工程力学本科生毕业论文

工程力学本科生毕业论文题目:基于结构减震措施的桥梁防震设计摘要:随着人类社会的不断发展,对桥梁的安全和可靠性需求越来越高,特别是在地震频繁出现的地区,如何保证桥梁在地震中的稳定性成为一个需要解决的问题。

本文通过结构减震措施的应用,对桥梁的防震能力进行研究和探讨。

首先对桥梁地震响应分析进行了简要介绍,结合地震波的影响因素分析,明确了减震措施的必要性。

然后介绍了减震措施常用的几种方法,包括基础隔震、支撑隔震、磁流变减震器等,详细阐述了各种减震措施的基本原理和优缺点。

最后以一座拱桥为例,给出了具体的桥梁防震方案设计,验证了结构减震措施的有效性。

关键词:结构减震、桥梁防震、地震波分析、减震措施设计Abstract:With the continuous development of human society, the demand for safety and reliability of bridges is increasing, especially in areas where earthquakes occur frequently. How to ensure the stability of bridges in earthquakes has become a problem that needs to be solved. In this paper, the application of structural seismic reduction measures on the seismic performance of bridges was studied and discussed. Firstly, the seismic response analysis of bridges was brieflyintroduced, and the influence factors of earthquake waves were analyzed to clarify the necessity of seismic reduction measures. Then, several commonly used methods of seismic reduction measures were introduced, including foundation isolation, support isolation, magneto-rheological dampers, etc., and the basic principles and advantages and disadvantages of various seismic reduction measures were explained in detail. Finally, taking an arch bridge as an example, a specific bridge seismic design scheme was given to verify the effectiveness of the structural seismic reduction measures.Keywords: Structural Seismic Reduction, Bridge Seismic Reduction, Earthquake Wave Analysis, Seismic Reduction Measures Design.【正文】一、桥梁地震响应分析桥梁在地震作用下响应的研究是桥梁防震设计的基础,也是进行减震措施设计的前提。

工程力学的论文.doc

工程力学的论文.doc

工程力学的论文我国高等教育培养出的人才规模大、人数多,但工业竞争力远不如科技发达国家,工程类人才的创新意识和创新能力普遍较低,主要原因是长期沿用传统教学模式,采用单一的课堂灌输式教学方法,教学重点仍偏于理论学习、科学工程分析,而面向工程的实践训练少,教学还停留于知识传授阶段。

接下来小编搜集了工程力学的论文,仅供大家参考,希望帮助到大家。

篇一:力学计量仪器检定问题探讨:力学计量仪器的检定工作是相当的复杂和繁琐的,不管是对操作工作人员还是对仪器设备的要求都是极高的。

正如我们所知,它不仅是力学上或是生活上的所代表的那么简单的意义,而无论是对物理学、力学还是科学方面都有着举足轻重的地位,并且在力学计量的标准化方面任重而道远。

任何计量仪器的检定都应该通过正规的勘测项目和遵循相应的规则,才能有效做到在适当范围内防止错误的发生,本文针对力学计量仪器检定出现的问题进行探讨分析,并针对性的提出解决问题的方法与措施。

关键词:力学;力学计量仪器;问题探讨无论是在我们学习中还是在我们的生活中,力学计量的使用范围越来越多在最近的几年中更是如此。

其中,主要包括对力的值、质量、振动的频率等一些相关的计量测试。

在早期力学计量就形成以牛顿力学作为基础,以质量为基本的力学。

随着时间的不断的推进,力学计量基本体系都已经发展的比较完善,同时,伴随着科学技术的进步,显示技术以及自动化技术等都被运用到了力学计量仪器检定当中,并充分发挥着自身所具备的价值。

1、力学与力学计量力学是有关力、运动和介质的一门基础学科。

生活中力学的利用是十分广泛,涉及面较广,比比皆是。

因此,力学计量作为力学的计量学也随着力学的计量学也随着力学的发展而被人们发现、研究。

在当今社会,涌现出许多科技先进的力学计量仪器,有利于帮助我们更加有效地获取更为准确的数据,准确的检测。

科学家与研发人员通过不断进步的先进的科学技术与计算机技术的运用,将其融入力学计量仪器中,这样有利于大幅度提升力学计量仪器检定工作的各方面质量,也保证了实验数据的准确性。

工程力学小论文(共3篇)

工程力学小论文(共3篇)

工程力学小论文(共3篇)
以下是网友分享的关于工程力学小论文的资料3篇,希
望对您有所帮助,就爱阅读感谢您的支持。

工程力学小论文篇1
变截面T型梁的失效分析
摘要本文基于工程力学课程失效分析知识,以空调的室外
部分的支架为例,假定(1)施加在T型梁上的载荷是均布
载荷;(2)T型梁与墙面是固定端连接,对T型梁切应力以
及正应力的分析,以对其进行安全校核,并对出现在电影中
的相关镜头作安全性评估。

关键词T型梁,变截面,安全校核
1引言
空调作为常见的电器,使用十分广泛,大多数的家用空调
均有一个室外工作部分(以下简称室外机)。

因为大多数的
房屋设计的时候在室外并没有特地给室外机留出放置的地
方,大多数的室外机均是放置在横梁上的。

这样做到底安不安全呢?本文将对这种力学情形进行安全校核,同时也对影视作品中的部分镜头的安全性进行分析。

2T型梁内力分析
图1本题中T型梁尺寸图图2最小横截面尺寸图
通过测量得到T型梁各部分参数如表格所示
分别算出剪力以及弯矩的公式(以下的x均是以T型梁最小横截面端为起点,且最大横截面端为固定端)
剪力。

工程力学概论论文:浅谈对工程力学的认识

工程力学概论论文:浅谈对工程力学的认识

浅谈对工程力学的认识0.引言刚进入大学时,我对工程力学一无所知,只知道它是一个比较冷门的专业,和物理有关。

经过了一个月地学习,我对工程力学已经有了自己的认识,下面就简单谈一下我对工程力学的认识。

1.力学发展史力学知识最早起源于对自然现象的观察和在生产劳动中的经验。

人们在建筑、灌溉等劳动中使用杠杆、斜面、汲水等器具逐渐积累起对平衡物体受力情况的认识。

古希腊的阿基米德对杠杆平衡、物体重心位置、物体在水中受到的浮力等作了系统研究,确定它们的基本规律,初步奠定了静力学即平衡理论的基础。

古代人还从对日、月运行的观察和弓箭、车轮等的使用中,了解一些简单的运动规律,如匀速的移动和转动。

但是对力和运动之间的关系,只是在欧洲文艺复兴时期以后才逐渐有了正确的认识。

伽利略在实验研究和理论分析的基础上,最早阐明自由落体运动的规律,提出加速度的概念。

牛顿继承和发展前人的研究成果(特别是开普勒的行星运动三定律),提出物体运动三定律。

伽利略、牛顿奠定了动力学的基础。

牛顿运动定律的建立标志着力学开始成为一门科学。

此后,力学的研究对象由单个的自由质点,转向受约束的质点和受约束的质点系。

这方面的标志是达朗贝尔提出的达朗贝尔原理,和拉格朗日建立的分析力学。

其后,欧拉又进一步把牛顿运动定律用于刚体和理想流体的运动方程 这看作是连续介质力学的开端。

运动定律和物性定律这两者的结合,促使弹性固体力学基本理论和粘性流体力学基本理论孪生于世,在这方面作出贡献的是纳维、柯西、泊松、斯托克斯等人。

弹性力学和流体力学基本方程的建立,使得力学逐渐脱离物理学而成为独立学科。

从牛顿到汉密尔顿的理论体系组成了物理学中的经典力学。

在弹性和流体基本方程建立后,所给出的方程一时难于求解,工程技术中许多应用力学问题还须依靠经验或半经验的方法解决。

这使得19世纪后半叶,在材料力学、结构力学同弹性力学之间,水力学和水动力学之间一直存在着风格上的显著差别。

20世纪初,随着新的数学理论和方法的出现,力学研究又蓬勃发展起来,创立了许多新的理论,同时也解决了工程技术中大量的关键性问题,如航空工程中的声障问题和航天工程中的热障问题等。

工程力学毕业论文浅谈力学在土木工程专业的重要性的优秀论文

工程力学毕业论文浅谈力学在土木工程专业的重要性的优秀论文

浅谈力学在土木工程专业的重要性的优秀论文1 概述力学是一门基础科学,它所阐明的规律带有普遍的性质。

力学又是一门技术科学,它是许多工程技术的理论基础。

土木工程是力学应用最早的工程领域之一[1]。

对于土木工程专业的学生来说,力学课程是一类极为重要的专业基础课,它不但影响学生对今后其他专业课程的理解,还将影响学生以后解决工程实际问题的能力。

所以,对力学课程在土木工程专业的重要性进行研究,可以帮助培养出适宜于社会发展的合格的工程技术人员。

2 土木工程专业主要设置的力学课程根据土木工程专业培养计划,四年本科期间,8学期内,共设置7门力学类课程。

所以说,除了理论力学、材料力学和结构力学这“三大力学”之外,结合土木工程必须与流体接触的特点,也设置了流体力学这样的学科基础课。

另外,考虑到大三之后,土木工程专业学生有“建筑工程方向”、“地下工程方向”、“古建筑修复与保护工程方向(特色方向)”三个不同的发展方向,也设置了土力学、弹性力学与有限元基础和岩石力学基础这样三门专业方向课程。

3 各门力学课程的教学内容及特点3.1理论力学理论力学是研究物体机械运动一般规律的科学,是各门力学的基础。

它忽略一般物体的微小变形,建立在力作用下物体形状、大小均不改变的刚体模型。

主要讲授内容分三个部分:淤静力学部分。

主要研究受力物体平衡时作用力所应满足的条件;同时也研究物体受力的分析方法,以及力系简化的方法等。

于运动学部分。

只从几何的角度来研究物体的运动,而不研究引起物体运动的物理原因。

盂动力学部分。

研究受力物体的运动与作用力之间的关系。

3.2材料力学材料力学以单个杆件作为主要研究对象,并且将其看作均匀、连续、各向同性的可变性固体。

它研究杆件的拉、压、弯、剪、扭变形特征,并对杆件进行强度、刚度及稳定性分析计算。

3.3流体力学流体力学是研究流体的平衡和流动的机械运动规律及其在工程实际中应用的一门学科。

流体力学研究的对象是流体,包括液体和气体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程力学概论论文关键字概论历史发展本专业毕业能干什么?力学是基础科学,又是技术科学,其发展横跨理工,与各行业的结合是非常密切的。

与力学相关的基础学科有数学、物理、化学、天文、地球科学及生命科学等,与力学相关的工程学科有机械、土木、航空航天、交通、能源、化工、材料、环境、船舶与海洋等等。

由于相关行业的发展与国民经济和科学技术的发展同步,使得力学在其中多项技术的发展中起着重要的甚至是关键的作用。

力学专业的毕业生既可以从事力学教育与研究工作,又可以从事与力学相关的机械、土木、航空航天、交通、能源、化工等工程专业的设计与研究工作,还可以从事数学、物理、化学、天文、地球或生命等基础学科的教育与研究工作。

从这个意义上讲,力学专业培养人才的对口是非常宽的,社会对力学人才的需求也是很多的。

随着力学学科的发展,在本世纪将产生一些新的学科结合点,如生物医学工程、环境与资源、数字化信息等。

经典力学与纳米科技一起孕育了微纳米力学将力学知识应用于生物领域产生了生物力学和仿生力学;这些都是近年来力学学科发展的亮点。

可以预料,随着社会的发展,力学学科与环境和人居工程等专业的学科交叉也将会进一步加强。

结论宽口径前途无量工程力学简介工程力学是研究有关物质宏观运动规律,及其应用的科学。

工程给力学提出问题,力学的研究成果改进工程设计思想。

从工程上的应用来说,工程力学包括:质点及刚体力学,固体力学,流体力学,流变学,土力学,岩体力学等。

人类对力学的一些基本原理的认识,一直可以追溯到史前时代。

在中国古代及古希腊的著作中,已有关于力学的叙述。

但在中世纪以前的建筑物是靠经验建造的。

1638年3月伽利略出版的著作《关于两门新科学的谈话和数学证明》被认为是世界上第一本材料力学著作,但他对于粱内应力分布的研究还是很不成熟的。

纳维于1819年提出了关于粱的强度及挠度的完整解法。

1821年5月14日,纳维在巴黎科学院宣读的论文《在一物体的表面及其内部各点均应成立的平衡及运动的一般方程式》,这被认为是弹性理论的创始。

其后,1870年圣维南又发表了关于塑性理论的论文水力学也是一门古老的学科。

早在中国春秋战国时期(公元前5~前4世纪),墨翟就在《墨经》中叙述过物体所受浮力与其排开的液体体积之间的关系。

欧拉提出了理想流体的运动方程式。

物体流变学是研究较广义的力学运动的一个新学科。

1929年,美国的宾厄姆倡议设立流变学学会,这门学科才受到了普遍的重视。

土力学在二十世纪初期即逐淅形成,并在40年代以后获得了迅速发展。

在其形成以及发展的初期,泰尔扎吉起了重要作用。

岩体力学是一门年轻的学科,二十世纪50年代开始组织专题学术讨沦,其后并已由对具有不连续面的硬岩性质的研究扩展到对软岩性质的研究。

岩体力学是以工程力学与工程地质学两门学科的融合而发展的。

从十九世纪到二十世纪前半期,连续体力学的特点是研究各个物体的性质,如粱的刚度与强度,柱的稳定性,变形与力的关系,弹性模量,粘性模量等。

这一时期的连续体力学是从宏观的角度,通过实验分析与理论分析,研究物体的各种性质。

它是由质点力学的定律推广到连续体力学的定律,因而自然也出现一些矛盾。

于是基于二十世纪前半期物理学的进展,并以现代数学为基础,出现了一门新的学科——理性力学。

1945年,赖纳提出了关于粘性流体分析的论文,1948年,里夫林提出了关于弹性固体分析的论文,逐步奠定了所谓理性连续体力学的新体系。

随着结构工程技术的进步,工程学家也同力学家和数学家一样对工程力学的进步做出了贡献。

如在桁架发展的初期并没有分析方法,到1847年,美国的桥梁工程师惠普尔才发表了正确的桁架分析方法。

电子计算机的应用,现代化实验设备的使用,新型材料的研究,新的施工技术和现代数学的应用等,促使工程力学日新月异地发展。

质点、质点系及刚体力学是理论力学的研究对象。

所谓刚体是指一种理想化的固体,其大小及形状是固定的,不因外来作用而改变,即质点系各点之间的距离是绝对不变的。

理论力学的理论基础是牛顿定律,它是研究工程技术科学的力学基础。

固体力学包括材料力学、结构力学、弹性力学、塑性力学、复合材料力学以及断裂力学等。

尤其是前三门力学在土木建筑工程上的应用广泛,习惯上把这三门学科统称为建筑力学,以表示这是一门用力学的一般原理研究各种作用对各种形式的土木建筑物的影响的学科。

在二十世纪50年代后期,随着电子计算机和有限元法的出现,逐渐形成了一门交叉学科即计算力学。

计算力学又分为基础计算力学及工程计算力学两个分支,后者应用于建筑力学时,它的四大支柱是建筑力学、离散化技术、数值分析和计算机软件。

其任务是利用离散化技术和数值分析方法,研究结构分析的计算机程序化方法,结构优化方法和结构分析图像显示等。

如按使结构产生反应的作用性质分类,工程力学的许多分支都可以再分为静力学与动力学。

例如结构静力学与结构动力学,后者主要包括:结构振动理论、波动力学、结构动力稳定性理论。

由于施加在结构上的外力几乎都是随机的,而材料强度在本质上也具有非确定性。

随着科学技术的进步,20世纪50年代以来,概率统计理论在工程力学上的应用愈益广泛和深入,并且逐渐形成了新的分支和方法,如可靠性力学、概率有限元法等。

力学发展简史托勒密(Ptolemy,100-170)在《大汇编》(Almagest)中建立了太阳系运行的托勒密体系。

希罗(Hero of Alexandria,约公元60)在《气体力学》(Pneumatics)中涉及了真空、水与空气的压力、虹吸管、玩具和一种用正气驱动的旋转机械。

在《力学》(Mechanics)中介绍了运动、平衡和简单机械的知识。

帕普斯(Pappus Alexandrinus,300-350)在《数学汇编第八卷》(Mathematical Collec-tion Book 8)中汇集了古希腊对力学研究的成果。

1022约旦努(Jordanus de Nemore,1220)在《重物的论述》(Liber de ponderibus)中讨论了物体的平衡问题,包含了虚功原理的萌芽。

1533哥白尼(Nicholas Copernicus,1473-1543)在《天体运行论》(De revolutionibus orbium celestium)中提出了太阳系的哥白尼系统。

1543开普勒(Johannes Kepler,1571-1630)在《宇宙的和谐》(Harmonice mindi)中总结了行星运行的三大定律。

1619斯梯芬(Semon Stevin,1548-1620)的《静力学原理》(Staticae elementis)是静力学体系标志性著作。

1586默森(Marin Mersenne,1588-1648)在《宇宙的和谐》(Traite de l’Harmonie Universelle)是最早关于声音、音乐和乐器的著作。

1627邓玉函(Joannes Terrens,1576-1630)王徵在《远西奇器图说》中最早介绍了西方力学知识。

1627伽利略(Galileo Galilei,1564-1642)在《关于托勒密与哥白尼两大世界体系的对话》(The system of the world:in four dialogues where-in the two grand systemes of Ptolemy and Copernicus)中系统地论证了哥白尼系统,提出了惯性运动的概念。

1632关于两门新学科的对话》总结了材料强度、自由落体和抛物体的运动规律。

1638托里拆利(Evangelista Torrielli,1608-1647)在《论重物的运动》(De motu gravium)中证明了孔口出流的速度与液高的平方根成比例(即托里拆利定理),还指出位置最低时平衡得好,是平衡稳定性的最早提法。

1644波义耳(Boyle, Hobert,1627-1691)在《关于空气的弹性及其效果的物理力学新实验》(New experiments physico-mechanicall, tou-ching the spring of the air and its effects)中以系统的实验论证了气体的弹性。

1660科恩(A. Korn)在《关于弹性理论与转轴弯曲的不等式》(Uber einige ungleichungen welche in der theorie der elastoschen und elektrischen schwingungen eine rolle spoelen)中给出了弹性力学能量正定性的不等式。

1909索维菲(Arnold Sommerfeld,1868-1951)在《对流动转变为湍流的解释》(Ein beitrag zur hydrodynamichen erklaung der turbulent flus-sigkeit-sbewegungen)是对层流稳定性的较早研究,得到了非自共轭的Orr-Sommerfeld偏微分方程。

1909冯.米赛斯(Richard von Mises,1883-1953)在《塑性变形固体的力学》(Mechanik der fes-ten korper in plastisch deformablen)中提出固体在一定应力状态下的一种屈服条件,被称为米赛斯条件。

1913伽辽金( , 1871-1945)在《在某些杆与板平衡问题中的级数》(俄文)中提出一种直接离散的近似方法,被称为伽辽金(Galerkin)方法。

1915诺特(Emmy Noether,1882-1935)在《变分问题的不变量》(Invariante Variations prob-leme)中给出了两个关于动力系统的不变量定理,对20世纪力学和物理的发展产生了深刻的影响。

1918格里菲斯(Alan Arnold Griffith,1893-1963)在《固体的流动与断裂现象》(The phenomena of Rupture and Flow in Solids)是断裂力学的最早文献。

1920从上述简单介绍中可以看到以下结论:16世纪以前力学发展较慢;中国虽然有很多水利、桥梁、土木等等的伟大工程,却没有发表过力学方面的文献;力学与数学关系紧密、力学的发展与工程的需要密不可分;一辈子能为后人留下有用的宝贵知识并不容易。

21世纪力学发展趋势固体力学方面:经典的连续介质力学的模型和体系可能被突破,它们可能将包括某些对宏观力学行为起敏感作用的细观和微观因素,以及它们的演化,从而使复合材料的强化、韧化和功能化立足于科学的认识之上固体力学将融汇力-热-电-磁等效应,机械力与热、电、磁等效应的转换和控制,从而解决微机械、微工艺、微控制等方面急需解决的问题。

相关文档
最新文档