上海市初一数学下册试题及答案
上海市浦东新区七年级数学下学期期末试卷(含解析)沪科版

七年级(下)期末数学试卷、选择题(本大题共6小题,每题2分,满分12分)1 •下列关于无理数的说法,错误的是()A.无理数是实数B .无理数是无限不循环小数C.无理数是无限小数D .无理数是带根号的数2.如图,线段AB边长为1个单位长度的正方形分割为两个等腰直角三角形,以AB的长为半径画弧交数轴于点C,那么点C在数轴上表示的实数是(A. 40°B. 50°C. 60°D. 70°4. 下列说法:①任意三角形的内角和都是180°;②三角形的一个外角大于任何一个内角;③三角形的中线、角平分线和高线都是线段;④三角形的三条高线必在三角形内,其中正确的是()A.①②B .①③ C .②③ D .③④5. 已知如图所示的两个三角形全等,则/ a的度数是()A. 72°B. 60°C. 50°D. 58A为圆心, 那么/ 3的度数是(AD// EF ,/ D=40,/ F=30°,那么/ ACD6.在直角坐标平面内,已知在 y 轴与直线x=3之间有一点M ( a ,3),如果该点关于直线x=3的对称点M 的坐标为(5, 3),那么a 的值为( )A. 4B. 3C. 2D. 1二、填空题(本大题共 12题,每题3分,满分36分) 7.. = ____ .&据上海市统计局最新发布的统计公报显示,2015年末上海市常住人口总数约为24152700人,用科学记数法将 24152700保留三个有效数字是 9.如图,/ 2的同旁内角是 _______ .11.已知三角形的三边长分别为 3cm, xcm 和7cm,那么x 的取值范围是 _______ABC 中,AB=AC 点O 是厶ABC 内一点,且 OB=OC 联结 AO 并延长交边 BC 于点D,如果BD=6那么BC 的值为BC// DE / ABC=120,那么直线 AB DE 的夹角是12.如图,在等腰厶 10.如图,已知 C的度数是D16. 在平面直角坐标系中,如果点__________________________ M (- 1, a- 1)在第三象限,那么a的取值范围是 _________________________________________ .17. 如图,将边长为1个单位长度的正方形ABCD置于平面直角坐标系内,如果BC与x轴平行,且点A的坐标是(2, 2),那么点C的坐标为18. 在等腰厶ABC中,如果过顶角的顶点A的一条直线AD W^ ABC分别割成两个等腰三角形,那么/ BAC=三、解答题(本大题共8小题,第19题,每小题6分;第20题,每小题6分;第21题6分;第22题5分,第23题6分,第24题7分,第25题8分,第26题10分)19. (6分)计算(写出计算过程):(1) 2 ~+( r 0- ~;(2)「X — =^.20. (4分)利用幕的性质计算(写出计算过程,结果表示为含幕的形式)1 1(1)3…X…;1 2 - 3(2)(10 、10 …).21. (6分)如图,已知直线AB CD被直线EF所截,FG平分/ EFD, /仁/ 2=80°,求/BGF的度数.解:因为/ 仁/2=80° (已知),所以AB// CD()所以/ BGF+Z 3=180°( ____ )因为/2+/EFD=180 (邻补角的意义)所以/ EFD= .(等式性质).因为FG平分/ EFD(已知)连结ED, EC(1)试说明△ ADC与△ BEC全等的理由;(2)试判断△ DCE的形状,并说明理由.所以/ 3= / EFD(角平分线的意义).AD! BC,垂足为点D,Z C=2/ 1 , / A Z1,求/ B的度如图,已知AB=AC BD丄AC CE! AB,垂足分别为点D, E,说明△ ABD与△ ACE 24. 如图,点E是等边△ ABC外一点,点D是BC边上一点, AD=BE / CAD/ CBE所以/ 3= .(等式性质).数.23.(6分)全等的理由.(7分)25. ( 8分)如图,在直角坐标平面内,已知点 A ( 8, 0),点B的横坐标是2,\ AOB的面积为12.(1)求点B的坐标;(2)如果P是直角坐标平面内的点,那么点P在什么位置时,S AAO=2S A AOB?7 -6 ■5 一26. (10分)如图1,以AB为腰向两侧分别作全等的等腰厶ABC^D A ABD过点A作/ MAN 使/ MAN M BAC=a (0°v a v60°),将/ MAN勺边AM与AC叠合,绕点A按逆时针方向旋转,与射线CB, BD分别交于点E, F,设旋转角度为3 .(1)如图1,当0°< 3 V a时,线段BE与DF相等吗?请说明理由.(2)当a V 3 V 2a时,线段CE FD与线段BD具有怎样的数量关系?请在图2中画出图形并说明理由.(3)联结EF,在/ MAN绕点A逆时针旋转过程中(0°V 3 V 2a ),当线段AD丄EF时,请用含a 的代数式直接表示出/ CEA的度数.参考答案与试题解析一、选择题(本大题共 6小题,每题2分,满分12分) 1 •下列关于无理数的说法,错误的是( )A.无理数是实数 B .无理数是无限不循环小数 C.无理数是无限小数 D .无理数是带根号的数 【考点】无理数.【分析】依据无理数的定义以及无理数常见类型进行解答即可.【解答】 解:A 、实数包括无理数和有理数,故 A 正确,与要求不符; B 无理数是无限不循环小数,正确,与要求不符; C 无理数是无限小数,正确,与要求不符; D 无理数是带根号的数,错误,如 一=3是有理数,与要求相符.故选:D.【点评】本题主要考查的是无理数的认识,掌握无理数的定义以及常见类型是解题的关键.2.如图,线段 AB 边长为1个单位长度的正方形分割为两个等腰直角三角形,以 A 为圆心,AB 的长为半径画弧交数轴于点C,那么点C 在数轴上表示的实数是()jA/1 = 一 *A. 1+ 'B. .C.D. 1【考点】实数与数轴;勾股定理.A图3【分析】先根据勾股定理求出直角三角形的斜边,即可得出选项.【解答】解:C点表示的数是:叮I j ' +1= 1 +1=1+ -,故选A.【点评】本题考查了数轴和实数,勾股定理的应用,能读懂图象是解此题的关键.3. 如图,直线I i // I 2,/仁110°,/ 2=130°,那么/ 3的度数是()A. 40°B. 50°C. 60°D. 70°【考点】平行线的性质.【分析】延长AC交FB的延长线于点D得到/ 4,根据两直线平行,同旁内角互补得到/4=180°-/ 1,再根据三角形外角性质可得/ 3=/ 2-/ 4,代入数据计算即可.【解答】解:如图,延长AC交FB的延长线于点D,•/ AE// BF,•••/ 4=180°-/ 1=70°,•••/ 3=/ 2-/ 4=60°.故选:C.【点评】主要考查两直线平行,同旁内角互补的性质,作辅助线和运用三角形的一个外角等于和它不相邻的两个内角的和也非常重要.4. 下列说法:①任意三角形的内角和都是180°;②三角形的一个外角大于任何一个内角;③三角形的中线、角平分线和高线都是线段;④三角形的三条高线必在三角形内,其中正确的是()A.①②B .①③ C .②③ D .③④【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的外角性质.【分析】分别根据三角形外角的性质、三角形的分类及三角形的内角和定理对各选项进行逐一分析即可.【解答】解:任意三角形的内角和都是180°,故①正确;三角形的一个外角大于任何一个和它不相邻的内角,故②错误;三角形的中线、角平分线、高线都是线段,故③正确;只有锐角三角形的三条高线在三角形内,故④错误;故选B.【点评】本题考查的是三角形外角的性质,三角形的高、中线、角平分线的概念;三角形的内角和定理及其推论;三角形的分类即三角形的外角大于任何一个与之不相邻的内角.5•已知如图所示的两个三角形全等,则/ a的度数是()A. 72°B. 60°C. 50°D. 58°【考点】全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解::•两个三角形全等,• •• a =50°,故选:C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.6.在直角坐标平面内,已知在y轴与直线x=3之间有一点M( a, 3),如果该点关于直线x=3的对称点M的坐标为(5, 3),那么a的值为()A. 4B. 3C. 2D. 1【考点】坐标与图形变化-对称.【分析】根据题意得出对称点到直线x=3的距离为2,再利用对称点的性质得出答案.【解答】解:•••该点关于直线x=3的对称点N的坐标为(5, 3),•••对称点到直线x=3的距离为2,•••点M( a,3)到直线x=3的距离为2,a=1,故选:D.【点评】此题主要考查了坐标与图形的性质,根据题意得出对称点到直线x=3的距离是解题关键.二、填空题(本大题共12题,每题3分,满分36分)7. \ '■= 3 .【考点】算术平方根.【分析】根据算术平方根的概念直接解答即可【解答】解:二=3 .故答案为:3.【点评】本题主要考查了开平方的能力,比较简单.&据上海市统计局最新发布的统计公报显示,2015年末上海市常住人口总数约为24152700人,用科学记数法将24152700保留三个有效数字是 2.42 X 107.【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a x 10n的形式,其中1 w|a| v 10, n为整数.确定n的值是易错点,由于24152700有8位,所以可以确定n=8 -仁1.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字. 用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:用科学记数法将24152700保留三个有效数字是 2.42 X 107.故答案为:2.42 X 107.【点评】本题考查科学记数法的表示方法,正确确定出a和n的值是解题的关键.9. 如图,/ 2的同旁内角是/ 4【考点】同位角、内错角、同旁内角.【分析】根据同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行分析即可.【解答】解:/ 2的同旁内角是/ 4,故答案为:/ 4.【点评】此题主要考查了同旁内角,关键是掌握同旁内角的边构成“ U'形.10. 如图,已知BC// DE / ABC=120,那么直线AB DE的夹角是120°或60°.根据平行线的性质得出/ AOE=/ ABC=120,即可得出答案.•/ BC/ DE / ABC=120 ,•••/ AOE=/ ABC=120 ,•••/ EOB=180 - 120° =60°,即直线AB DE的夹角是120°或60°,故答案为:120°或60°.【点评】本题考查了平行线的性质的应用,能根据平行线的性质得出/ AOE=/ABC=120是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.11. 已知三角形的三边长分别为3cm, xcm和7cm,那么x的取值范围是4cm< x v 10cm【分析】平行线的性质.【考【考点】三角形三边关系.【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边可得:【解答】解:•••三角形的三边长分别是3, 7, x,根据三角形三边关系:x V 7+3, x > 7 - 3,x的取值范围是4cm v x V 10cm.故答案为:4cm v x V 10cm.【点评】考查了三角形的三边关系,解答此题的关键是熟知三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.12. 如图,在等腰厶ABC中,AB=AC点O是厶ABC内一点,且OB=OC联结AO并延长交边BC于点D,如果BD=6那么BC的值为12 .【分析】根据AB=AC OB=OC可知直线AO是线段BC的垂直平分线,由AO与BC交于点D,BD=6从而可以得到BC的长,本题得以解决.【解答】解:I AB=AC OB=OC•••点A,点O在线段BC的垂直平分线上,•直线AO是线段BC的垂直平分线,••• AO与BC交于点D,•BD=CD•/ BD=6,• BC=2BD=12故答案为:12.【点评】本题考查等腰三角形的性质,解题的关键是明确题意,利用线段垂直平分线的性质解答问题.4 V x V 10.13. 如图,已知点A B、C、F在同一条直线上,AD// EF,/ D=40,/ F=30°,那么/ ACD 的度数是110°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等可求/ A的度数,再根据三角形内角和定理即可得到/ ACD的度数,从而求解.【解答】解:I AD// EF,•••/ A=/ F=30°,•// D=40 ,•••/ ACD=180 - 30°- 40° =110°.故答案为:110°.【点评】此题主要考查了平行线的性质及三角形内角和定理等知识点. 本题的关键是求得/A的度数.14. 如图,将△ ABC沿射线BA方向平移得到△ DEF AB=4, AE=3那么DA的长度是 _1_B ------------------ 七【考点】平移的性质.【分析】根据平移的性质得到AD=BE从而求解.【解答】解:•••将△ ABC沿-射线BA方向平移得到△ DEF, AB=4, AE=3• DA=BE=A- AE=4- 3=1 ,故答案为:1 .【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15. 如图,在四边形ABCD中, AD// BC,要使△ ABD^A CDB可添加一个条件为/ A=Z CCBD=Z ADB加上公共边BD,所以根据“ AAS判断△ ABD◎ △ CDB时,可添加/ A=Z C.【解答】解:I AD// BC,•••/ CBD=/ ADB而BD=DB•••当添加/ A=Z C时,可根据“ AAS判断△ ABD^A CDB故答案为:/ A=Z C【点评】本题考查了全等三角形的判定,全等三角形的判定方法的选择,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边,或两角的夹边;若已知一边一角,则找另一组角,或找这个角的另一边.16. 在平面直角坐标系中,如果点M(- 1, a- 1)在第三象限,那么a的取值范围是a v1_.【考点】解一元一次不等式;点的坐标.【分析】利用各个象限点的特点,第三象限,纵坐标和横坐标都小于零列出不等式求解即可.【解答】解:•••点M(- 1, a- 1)在第三象限,•- a - 1 v 0,• a v 1,故答案为a v 1【点评】此题是解一元一次不等式,主要考查了象限点的特点求解,解本题的关键是掌握象限点的特点,是中考常考的常规题.17. 如图,将边长为1个单位长度的正方形ABCD置于平面直角坐标系内,如果BC与x轴平行,且点A的坐标是(2, 2),那么点C的坐标为(3, 1).【考点】坐标与图形性质.【分析】根据点A的坐标是(2, 2), BC// x轴、AB=BC=1即可得.【解答】解:•••点A的坐标是(2, 2), BC// x轴,且AB=1,•••点B坐标为(2, 1),又BC=1,•••点C的坐标为(3, 1),故答案为:(3, 1).【点评】本题主要考查坐标与图形性质,点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.18. 在等腰厶ABC中,如果过顶角的顶点A的一条直线AD W^ ABC分别割成两个等腰三角形, 那么/ BAC= 90° 或108°.【考点】等腰三角形的性质.【分析】根据题意画出图形,分类讨论,利用三角形的内角和定理和等腰三角形的性质可得结论. 【解答】解:①当BD=CD CD=AD寸,如图①所示,•/ AB=AC•••/ B=Z C,设/ B=Z C=x,•/ BD=CD CD=AD•••/ BAD玄B=x,Z CAD M C=x,•4x=180°,•x=45°,•••/ BAC=2x=45 X 2=90°;②当AD=BD AC=C[时,如图②所示,•/ AB=AC设/ B=Z C=x, •/ AD=BD AC=CD1•••/ BAD玄B=x,Z CAD= '2【点评】本题主要考查了等腰三角形的性质,根据题意画出图形分类讨论,角和定理是解答此题的关键.三、解答题(本大题共8小题,第19题,每小题6分;第20题,每小题分;第22题5分,第23题6分,第24题7分,第25题8分,第26题19•计算(写出计算过程):(1)2 7+ (三)0- 7;(2)—-【考点】二次根式的混合运算;零指数幕.【分析】(1)计算出0指数的值,然后合并同类二次根式即可;(2 )把除法化成乘法,然后按乘法的交换律计算即可.【解答】解:(1)原式=2 7+1- ?=「+1;(2)原式=“ —X 2 -=10x—产180。
沪科版七年级下册数学期末考试试题及答案精选全文完整版

可编辑修改精选全文完整版沪科版七年级下册数学期末考试试卷一、选择题(本大题共有10小题,每小题4分,满分40分)1.(4分)下列实数中,是无理数的为()A.3.14 B.C.D.2.(4分)下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与23.(4分)生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA分子直径约为0.0000002cm,这个数量用科学记数法可表示为()A.0.2×10﹣6cm B.2×10﹣6cm C.0.2×10﹣7cm D.2×10﹣7cm4.(4分)如右图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°5.(4分)把多项式x3﹣2x2+x分解因式结果正确的是()A.x(x2﹣2x)B.x2(x﹣2)C.x(x+1)(x﹣1)D.x(x﹣1)26.(4分)若分式的值为0,则b的值是()A.1B.﹣1 C.±1 D.27.(4分)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.8.(4分)如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°9.(4分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b210.(4分)定义运算a⊗b=a(1﹣b),下面给出了关于这种运算的几个结论:11.①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+(b⊗b)=2ab;④若a⊗b=0,则a=0.其中正确结论的个数()A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)化简:=.12.(5分)如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是.13.(5分)若代数式x2﹣6x+b可化为(x﹣a)2﹣1,则b﹣a的值是.14.(5分)观察下列算式:31=3,32=9,33=27,34=81,35=243,…,根据上述算式中的规律,你认为32014的末位数字是.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:.16.(8分)解方程:.四、(本大题共2小题,每小题8分,满分16分)17.(8分)解不等式组:并把解集在数轴上表示出来.18.(8分)先化简,再求值:(1+)+,其中x=2.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,已知DE∥BC,BE平分∠ABNC,∠C=55°,∠ABC=70°.①求∠BED的度数(要有说理过程).②试说明BE⊥EC.20.(10分)描述并说明:海宝在研究数学问题时发现了一个有趣的现象:请根据海宝对现象的描述,用数学式子填空,并说明结论成立的理由.如果(其中a>0,b>0).那么(结论).理由∴,∴则.六、(本题满分12分)21.(12分)画图并填空:(1)画出△ABC先向右平移6格,再向下平移2格得到的△A1B1C1.(2)线段AA1与线段BB1的关系是:平行且相等.(3)△ABC的面积是 3.5平方单位.七、(本题满分12分)22.(12分)列分式方程解应用题巴蜀中学小卖部经营某款畅销饮料,3月份的销售额为20000元,为扩大销量,4月份小卖部对这种饮料打9折销售,结果销售量增加了1000瓶,销售额增加了1600元.(1)求3月份每瓶饮料的销售单价是多少元?(2)若3月份销售这种饮料获利8000元,5月份小卖部打算在3月售价的基础上促销打8折销售,若该饮料的进价不变,则销量至少为多少瓶,才能保证5月的利润比3月的利润增长25%以上?八、(本题满分14分)23.(14分)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表11 2 3 ﹣7﹣2 ﹣1 0 1(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值.表2a a2﹣1 ﹣a ﹣a22﹣a 1﹣a2a﹣2 a2参考答案与解析1、考点:无理数.专题:应用题.分析:A、B、C、D根据无理数的概念“无理数是无限不循环小数,其中有开方开不尽的数”即可判定选择项.解答:解:A、B、D中3.14,,=3是有理数,C中是无理数.故选:C.点评:此题主要考查了无理数的定义,其中:(1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数.(2)无理数是无限不循环小数,其中有开方开不尽的数.(3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不循环小数不能化为分数,它是无理数.2、考点:实数的性质.分析:根据相反数的概念、性质及根式的性质化简即可判定选择项.解答:解:A、=2,﹣2+2=0,故选项正确;B、=﹣2,﹣2﹣2=﹣4,故选项错误;C、﹣2+()=﹣,故选项错误;D、|﹣2|=2,2+2=4,故选项错误.故选A.点评:本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.3、考点:科学记数法—表示较小的数.专题:应用题.分析:小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 2=2×10﹣7cm.故选D.点评:本题考查用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、考点:平行线的判定.分析:根据平行线的判定分别进行分析可得答案.解答:解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.点评:此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5、考点:提公因式法与公式法的综合运用.分析:这个多项式含有公因式x,应先提取公因式,然后再按完全平分公式进行二次分解.解答:解:原式=x(x2﹣2x+1)=x(x﹣1)2.故选D.点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.6、考点:分式的值为零的条件.专题:计算题.分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:由题意,得:b2﹣1=0,且b2﹣2b﹣3≠0;解得:b=1;故选A.点评:由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.7、考点:由实际问题抽象出分式方程.专题:应用题;压轴题.分析:题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解答:解:根据题意,得.故选C.点评:理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.8、考点:翻折变换(折叠问题).专题:压轴题.分析:根据折叠的性质,对折前后角相等.解答:解:根据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.故选B.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.9、考点:平方差公式的几何背景.分析:第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.解答:解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.10、考点:整式的混合运算.专题:新定义.分析:先认真审题.理解新运算,根据新运算展开,求出后再判断即可.解答:解:∵2⊗(﹣2)=2×[1﹣(﹣2)]=6,∴①正确;∵a⊗b=a(1﹣b)=a﹣ab,b⊗a=b(1﹣a)=b﹣ab,∴②错误;∵a+b=0,∴b=﹣a,∴(a⊗a)+(b⊗b)=a(1﹣a)+b(1﹣b)=a﹣a2+b﹣b2=0﹣a2﹣a2=﹣2a2,2ab=2a(﹣a)=﹣2a2,∴③在正确;∵a⊗b=0,∴a(1﹣b)=0,a=0或1﹣b=0,∴④错误;即正确的有2个,故选B.点评:本题考查了整式的混合运算的应用,解此题的关键是能理解新运算的意义,题目比较好,难度适中.11、考点:二次根式的性质与化简.分析:根据二次根式的性质解答.解答:解:原式===4.点评:解答此题,要根据二次根式的性质:=|a|解题.12、考点:平行线的性质.专题:计算题.分析:由AB与CD平行,利用两直线平行内错角相等求出∠D的度数,在三角形COD中,利用内角和定理即可求出所求角的度数.解答:解:∵AB∥CD,∠A=20°,∴∠D=∠A=20°,在△COD中,∠D=20°,∠COD=100°,∴∠C=60°.故答案为:60°点评:此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.13、考点:配方法的应用.分析:先将代数式配成完全平方式,然后再判断a、b的值.解答:解:x2﹣6x+b=x2﹣6x+9﹣9+b=(x﹣3)2+b﹣9=(x﹣a)2﹣1,∴a=3,b﹣9=﹣1,即a=3,b=8,故b﹣a=5.故答案为:5.点评:能够熟练运用完全平方公式,是解答此类题的关键.14、考点:尾数特征;规律型:数字的变化类.分析:由31=3,32=9,33=27,34=813,35=243,36=729,37=2187,38=6561…,可知末位数字以3、9、7、1四个数字为一循环,用32014的指数2014除以4得到的余数是几就与第几个数字相同,由此解答即可.解答:解:末位数字以3、9、7、1四个数字为一循环,2014÷4=503…2,所以32014的末位数字与32的末位数字相同是9.故答案为9.点评:此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.15、考点:实数的运算.分析:本题涉及零指数幂、负指数幂、二次根式化简、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式===2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.16、考点:解分式方程.专题:计算题.分析:观察可得2﹣x=﹣(x﹣2),所以可确定方程最简公分母为:(x﹣2),然后去分母将分式方程化成整式方程求解.注意检验.解答:解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时有常数项的不要漏乘常数项.17、考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,并在数轴上表示出来即可.解答:解:解不等式①得:x≤3,由②得:3(x﹣1)﹣2(2x﹣1)>6,化简得:﹣x>7,解得:x<﹣7,在数轴上表示为:,故原不等式组的解集为:x<﹣7.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18、考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=•=,当x=2时,原式==1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19、考点:平行线的性质;垂线.专题:计算题.分析:①由BE为角平分线,求出∠EBC的度数,再由DE与BC平行,利用两直线平行内错角相等求出∠DEB度数即可;②由DE与BC平行,得到一对同旁内角互补,求出∠DEC度数,在三角形BEC中,利用内角和定理求出∠BEC为90°,即可得证.解答:解:①∵∠ABC=70°,BE平分∠ABC,∴∠EBC=∠ABC=70°×=35°,又∵DE∥BC,∴∠BED=∠EBC=35°;②∵DE∥BC,∴∠C+∠DEC=180°,∴∠DEC=180°﹣55°=125°,又∵∠BED+∠BEC=∠DEC,∴∠DCE=125°,∵∠BED=35°,∴∠BEC=90°,则BE⊥EC.点评:此题考查了平行线的判定,以及垂直定义,熟练掌握平行线的判定方法是解本题的关键.20、考点:分式的混合运算.专题:图表型.分析:根据题意列出关系式,猜想得到结论,利用分式的加减法则计算,再利用完全平方公式变形即可得证.解答:解:如果++2=ab(其中a>0,b>0),那么a+b=ab;理由:∵++2=ab,∴=ab,∴a2+b2+2ab=(ab)2,即(a+b)2=(ab)2,则a+b=ab.故答案为:++2=ab;a+b=ab;∵++2=ab,∴=ab,∴a2+b2+2ab=(ab)2,即(a+b)2=(ab)2,则a+b=ab.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21、考点:作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质,对应点的连线平行且相等;(3)利用△ABC所在的正方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.解答:解:(1)△A1B1C1如图所示;(2)AA1与线段BB1平行且相等;(3)△ABC的面积=3×3﹣×2×3﹣×3×1﹣×2×1=9﹣3﹣1.5﹣1=3.5.故答案为:平行且相等;3.5.点评:本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22、考点:分式方程的应用.分析:(1)设3月份每瓶饮料的销售单价为x元,表示出4月份的销售量,根据4月份销量量增加1000瓶可得出方程,解出即可;(2)利用(1)中所求得出每瓶饮料的进价,再由5月的利润比3月的利润至少增长25%,可得出不等式,解出即可.解答:解:(1)设3月份每瓶饮料的销售单价为x元,由题意得,﹣=1000解得:x=4经检验x=4是原分式方程的解答:3月份每瓶饮料的销售单价是4元.(2)饮料的进价为(20000﹣8000)÷(20000÷4)=2.4元,设销量为y瓶,由题意得,(4×0.8﹣2.4)y≥8000×(1+25%)解得y≥12500答:销量至少为12500瓶,才能保证5月的利润比3月的利润增长25%以上.点评:本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是设出未知数,表示出3月份及4月份的销售量.23、考点:一元一次不等式组的应用.分析:(1)根据某一行(或某一列)各数之和为负数,则改变改行(或该列)中所有数的符号,称为一次“操作”,先改变表1的第4列,再改变第2行即可;(2)根据每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,然后分别根据如果操作第三列或第一行,根据每行的各数之和与每列的各数之和均为非负整数,列出不等式组,求出不等式组的解集,即可得出答案.解答:解:(1)根据题意得:原数表改变第4列得:1 2 3 7﹣2 ﹣1 0 ﹣1再改变第2行得:1 2 3 72 1 0 1(2)∵每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,则:①如果操作第三列,a a2﹣1 a ﹣a22﹣a 1﹣a22﹣a a2第一行之和为2a﹣1,第二行之和为5﹣2a,,解得:≤a,又∵a为整数,∴a=1或a=2,②如果操作第一行,﹣a 1﹣a2 a a22﹣a 1﹣a2a﹣2 a2则每一列之和分别为2﹣2a,2﹣2a2,2a﹣2,2a2,已知2a2≥0,则:,解得a=1,验证当a=1时,满足不等式,综上可知:a=1.点评:此题考查了一元一次不等式组的应用,关键是读懂题意,根据题目中的操作要求,列出不等式组,注意a为整数。
2020-2021学年上海市七年级下学期期末数学试卷(有答案)-精品试卷

最新上海市七年级(下)期末数学试卷一、填空题(共14小题,每小题2分,满分28分)1.-27的立方根是.2.把玉算表示成幕的形式是.3.数轴上点A B表示的数分别是-巫,-1,那么A B两点间的距离是.4.计算:回引亏二 _________ .5.比较大小:-3 (用d {”号填空).6.用科学记数法表示近似数29850 (保留三位有效数字)是 .7.已知等腰三角形的两条边长分别是3cm、7cm,那么这个等腰三角形的周长是cm.8. 一个三角形三个内角度数的比是2: 3: 4,那么这个三角形是三角形.9.如图,在△ ABC中,D在边AC上,如果AB=BD=DC且/ C=40°,那么/ A=°,B10.如图,已知BE=CD要使AAB®AACD,要添加一个条件是.(只填一种情况)11•点A的坐标为(4, - 3),把点A向左平移5个单位到点A',则点A'的坐标为12.如图,AD是4ABC的中线,E是AD的中点,如果S AABD=12,那么S ACDE=.13.已知点A (-2, - 1),点B(a, b),直线AB// y轴,且AB=3,则点B的坐标是.14.如图,4ABC中,AB=AC AD是/ BAC的平分线,若^ ABD的周长为12, 4ABC的周长为16,则AD的长为.、单项选择题(本大题共有4题,每题3分,满分12分)15.在实数聒、/、0. 寸以2.1234567891011121314一(自然数依次排列)、牛豆中,无理数有()A. 2个B. 3个C. 4个D. 5个16.点P是第二象限的点且到x轴的距离为3、到y轴的距离为4,则点P的坐标是()A. ( — 4, 3)B. (4, -3)C. ( 3, -4)D. (-3, 4).17.下列说法正确的是(A. 周长相等的锐角三角形都全等B. 周长相等的直角三角形都全等C. 周长相等的钝角三角形都全等D. 周长相等的等边三角形都全等18.点A在直线m外,点B在直线m上,A、B两点的距离记作a,点A到直线m的距离记作b,则a与b的大小关系是()A. a>bB. a<bC. ai> bD. a<b三、简答题(本大题共有5题,每小题6分,满分30分)19.计算:(8>27)T-(兀-1) 0-(卜)1.20.计算:(通+V2)2- (n/5-V2)2.21.利用幕的性质进行计算:班十眄X后.22.如图,点P在CD上,已知/ BAP+Z APD=180, / 1=/ 2,请填写AE// PF的理由.解:因为/ BAP+Z APD=180ZAPC-+Z APD=180所以/ BAP=Z APC又 / 1 = /2所以/ BAP- / 1 = /APC- / 2即 / EAP=Z APF所以AE// PF .23.如图,在△ ABC中,AB=AC AD是中线,CE// AD交BA的延长线于点E,请判断△ AEC的形状,并说明理由.结论:4AEC是三角形.解:因为AB=AC BD=CD (已知),所以/ BAD=.因为CE// AD (已知),所以/ BAD=./ CAD=.所以/=/.所以= .即4AEC是三角形.四、解答题(本大题共有4题,第24、25题各7分,第26、27题各8分,满分30分)24.如图,已知点A、E、F、C在同一直线上,AE=FC过点A、C作AD// BC,且AD=CB(1)说明4人5*4CEB的理由;(2)说明DF// BE的理由.25.如图,在直角坐标平面内,已知点A的坐标(-2, 0),(1)图中点B的坐标是;(2)点B关于原点对称的点C的坐标是;点A关于y轴对称的点D的坐标是(3)四边形ABDC的面积是;(4)在直角坐标平面上找一点E,能?f足S AAD FS AABC的点E有个;(5)在y轴上找一点F,使S AADF=S A ABC,那么点F的所有可能位置是.26.如图,在△ ABC中,BD=DC /1 = /2,求证:AD是/ BAC的平分线.27.如图,在直角坐标平面内有两点A (0, 2)、B ( -2, 0)、C (2, 0).(1) △ ABC的形状是等腰直角三角形;(2)求△ ABC的面积及AB的长;(3)在y轴上找一点P,如果△ PAB是等腰三角形,请直接写出点P的坐标.参考答案与试题解析一、填空题(共14小题,每小题2分,满分28分)1. - 27的立方根是-3 .【考点】立方根.【分析】根据立方根的定义求解即可.【解答】解::(- 3) 3=-27,• • '= - 3故答案为:-3.2.把好表示成幕的形式是_g_.【考点】立方根.【分析】表示为被开方数的指数除以根指数的形式即可.【解答】解:把博表示成幕的形式是寺.4故答案为:匚了.53.数轴上点A、B表示的数分别是-72,-1,那么A、B两点间的距离是我的【考点】实数与数轴.【分析】直接根据数轴上两点间的距离公式解答即可.【解答】解:A、B两点间的距离是:-1-(-*)=-i+n=n-1,故答案为:V2- 1.4.计算:W5= 3^5 .【考点】二次根式的乘除法.【分析】直接利用二次根式乘除运算法则化简求出答案.[解答]解:后汹蓝斗片=15+.=75^75=班.故答案为:3「.5.比较大小:-3 > ~\p[5(用夕" d孝号填空).【考点】实数大小比较.【分析】要比较的两个数为负数,则先比较它们绝对值的大小,在比较3和板的大小时,先比较它们平方值的大小.【解答】解:V 32=9< 1VTO)2=10, .•-3 - 则-3 >71, 故填空答案:>.6.用科学记数法表示近似数29850 (保留三位有效数字)是2.99M04 .【考点】科学记数法与有效数字.【分析】首先用科学记数法的表示形式为aX0n的形式,其中10间<10, n为整数.确定n的值是易错点,再保留有效数字,有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:29850=2.985M04 = 2.99X04, 故答案为:2.99X04.7.已知等腰三角形的两条边长分别是3cm、7cm,那么这个等腰三角形的周长是17 cm. 【考点】等腰三角形的性质;三角形三边关系.【分析】根据题意分两种情况:第一种是底边长为7时构不成三角形要排除,第二种情况是底边长为3,然后再将三边长相加即可求得答案.「•当此三角形的腰长为3cm时,3+3< 7,不能构成三角形,故排除,;此三角形的腰长为7cm,底边长为3cm,・.•此等腰三角形的周长=7+7+3=17cm故答案为:17.8. 一个三角形三个内角度数的比是2: 3: 4,那么这个三角形是锐角三角形.【考点】三角形内角和定理.【分析】已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180 列方程求三个内角的度数,从而确定三角形的形状.【解答】解:设一份为k。
沪科版数学七年级下册全册单元测试卷含答案

沪科版数学七年级下册全册单元测试卷含答案第六章实数(2)一、选择题(每小题3分,共30分)1.下列各式中无意义的是()A.B.C.D.2.在下列说法中: 10的平方根是±; -2是4的一个平方根; 的平方根是;④0.01的算术平方根是0.1;⑤,其中正确的有()A.1个B.2个C.3个D.4个2.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算数平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和04.的立方根是()A.B.C.D.5.现有四个无理数,,,,其中在实数+1与+1之间的有()A.1个B.2个C.3个D.4个6.实数,-2,-3的大小关系是()A.B.C.D.7.已知=1.147,=2.472,=0.5325,则的值是()A.24.72B.53.25C.11.47D.114.78.若,则的大小关系是()A.B.C.D.9.已知是169的平方根,且,则的值是()A.11B.±11C.±15D.65或10.大于且小于的整数有()A.9个B.8个C.7个D.5个二、填空题(每小题3分,共30分)11.绝对值是,的相反数是.12.的平方根是,的平方根是,-343的立方根是,的平方根是.13.比较大小:(1);(2);(3);(4)2..14.当时,有意义。
15.已知=0,则=.16.最大的负整数是,最小的正整数是,绝对值最小的实数是,不超过的最大整数是.17.已知且,则的值为。
18.已知一个正数的两个平方根是和,则=,=.19.设是大于1的实数,若在数轴上对应的点分别记作A、B、C,则A、B、C三点在数轴上从左至右的顺序是.20.若无理数满足1,请写出两个符合条件的无理数.三、解答题(共40分)21.(8分)计算:(1);(2);(3);(4);22.(12分)求下列各式中的的值:(1);(2);(3);(4);23.(6分)已知实数、、在数轴上的对应点如图所示,化简:24.(7分)若、、是有理数,且满足等式,试计算的值。
上海市(沪教版)七年级数学下学期期末测试卷

上海市七下期末数学测试卷一、单项选择题(本大题共有6题,每题2分,满分12分)1.下列计算中正确的是()=1 D.√125÷√5=5A.√+√=3B.4√5−2√5=2C.√5+√52.关于√2,下列说法中不正确的是()A.√2是无理数:B.√2的平方是2C.2的平方根是√D.面积为2的正为形的边长可表示为√3.如图1,在下列条件中,能判定AD∥BC的是()A.∠1=∠2B.∠3=∠4C.∠ABC=∠ADCD.∠ABC+∠BCD=180°4.如图2 ,已知∠1=∠2,AC=AD,从○1AB=AE,○2BC=ED,○3∠B=∠E,○4∠C=∠D这四个条件中再选一个,能使△ABC≌△AED,这样的条件有()A.1个B.2个C.3个D.4个图1 图2 图35.在平面直角出标系中,如果A(a,b)在第二象,那么点B(-b,-a)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.如图3.已如△ABC中、BD,CE分别是AC,AB上的高,BD与CE交于点O,如果使∠BAC=n°,那么用含n 的代数式表示∠BOC的度数是()A..45°+n°B.90°-n°C.90°+n°D.180°-n°二、填空题(本大题共有12题,每题3分,满分36分)7、-8的立方根=__________8、比较大小:−3√2__________−2√5(填“>“,“小于”或”=”)4=________________9、用幂的形式表示:√7310.近似数0.0730的有效数字有__________个11、如图4,在△ABC中,AD⊥BC,垂足为点D,那么点B到直线AD的距离是线段__________的长度12.如图5,直线l1∥l2,把三角板的直角顶点放在l2上,三角板中60°的角在直线l1与l2之间,如果∠1=35°,那么∠2=____________度图4 图5 图613、如图6,用两根钢条AB 、CD 、在中点O 处以小转轴连在一起做成工具(卡钳)。
上海市七年级下册数学期末试卷(含答案)

下海市七年级下册数学期末试卷(含答案)一、选择题1.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D .2.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3 3.下列运算正确的是( )A .()3253a b a b =B .a 6÷a 2=a 3C .5y 3•3y 2=15y 5D .a +a 2=a 34.下列从左到右的变形,是因式分解的是( ) A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+D .228x 8x 22(2x 1)-+-=--5.如果 x 2﹣kx ﹣ab =(x ﹣a )(x +b ),则k 应为( ) A .a ﹣b B .a +b C .b ﹣a D .﹣a ﹣b6.若(x-2y)2 =(x+2y)2+M,则M= ( ) A .4xyB .- 4xyC .8xyD .-8xy 7.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .728.端午节前夕,某超市用1440元购进A 、B 两种商品共50件,其中A 种商品每件24元,B 品件36元,若设购进A 种商品x 件、B 种商品y 件,依题意可列方程组( )A .5036241440x y x y +=⎧⎨+=⎩B .5024361440x y x y +=⎧⎨+=⎩C .144036241440x y x y +=⎧⎨+=⎩D .144024361440x y x y +=⎧⎨+=⎩ 9.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .610.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A .(46,4)B .(46,3)C .(45,4)D .(45,5)二、填空题11.多项式2412xy xyz +的公因式是______.12.一个五边形所有内角都相等,它的每一个内角等于_______.13.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.14.三角形的周长为10cm ,其中有两边的长相等且长为整数,则第三边长为______cm .15.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.16.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 17.每支圆珠笔3元,每本练习簿4元,买圆珠笔和练习簿共花了14元,则买了圆珠笔______支.18.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________.19.如图,根据长方形中的数据,计算阴影部分的面积为______ .20.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .三、解答题21.计算:(1)(12)﹣3﹣20160﹣|﹣5|; (2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2;(3)(x+5)2﹣(x ﹣2)(x ﹣3);(4)(2x+y ﹣2)(2x+y+2).22.已知关于x ,y 的二元一次方程组533221x y n x y n +=⎧⎨-=+⎩的解适合方程x +y =6,求n 的值.23.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入W 元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品. (1)若24W =万元,求领带及丝巾的制作成本是多少?(2)若用W 元钱全部用于制作领带,总共可以制作几条?(3)若用W 元钱恰好能制作300份其他的礼品,可以选择a 条领带和b 条丝巾作为一份礼品(两种都要有),请求出所有可能的a 、b 的值.24.如图,大圆的半径为r ,直径AB 上方两个半圆的直径均为r ,下方两个半圆的直径分别为a ,b .(1)求直径AB 上方阴影部分的面积S 1;(2)用含a ,b 的代数式表示直径AB 下方阴影部分的面积S 2= ;(3)设a =r +c ,b =r ﹣c (c >0),那么( )(A )S 2=S 1;(B )S 2>S 1;(C )S 2<S 1;(D )S 2与S 1的大小关系不确定; (4)请对你在第(3)小题中所作的判断说明理由.25.分解因式(1)321025a a a ++;(2)(1)(2)6t t ++- .26.解下列二元一次方程组:(1)70231x y x y +=⎧⎨-=-⎩①②;(2)239 345x yx y-=⎧⎨+=⎩①②.27.如图,AB∥CD,点E、F在直线AB上,G在直线CD上,且∠EGF=90°,∠BFG=140°,求∠CGE的度数.28.定义:对于任何数a,符号[]a表示不大于a的最大整数.(1)103⎡⎤-=⎢⎥⎣⎦(2)如果2333x-⎡⎤=-⎢⎥⎣⎦,求满足条件的所有整数x。
2021沪教版(上海)初中数学七年级(下)期末考试模拟试卷及部分答案(共五套)

A.-5
B.5
C.-7
D.2
9、(4 分) 已知 a+b=-5,ab=-4,则 a2-ab+b2 的值是( )
A.37
B.33
C.29
D.21
10、(4 分) 已知关于 x 的不等式 3x-m+1>0 的最小整数解为 2,则实数 m 的取值范围是( )
A.4≤m<7
B.4<m<7
C.4≤m≤7
11.等腰三角形一腰上的中线把这个三角形的周长分成了 9 和 12 两部分,则这个等腰三角 形的底边长为 .
12.已知锐角三角形 ABC 是一个等腰三角形,其中两个内角度数之比为1: 4 ,则这个等腰 三角形顶角的度数为 . 13.如图,已知 ABC 是等边三角形, D 为 BC 延长线上一点, CE 平分 ACD ,
25.在等边 ABC 的两边 AB 、 AC 所在直线上分别有两点 M 、 N , D 为 ABC 外一点,且
MDN 60 , BDC 120 , BD DC .探究:当 M 、 N 分别在直线 AB 、 AC 上移
动时, BM 、 NC 、 MN 之间的数量关系及 AMN 的周长 Q 与等边 ABC 的周长 L 的关
20、(10 分) 先化简:(2x-x2+1)÷x2−2x+1,然后从 0,1,-2 中选择一个适当的数作为 x 的值代
x
x
入求值.
21、(12 分) 观察下列等式: ①1+1-1=1;
1 22 1
②1+1- 1 =1;
3 4 12 2
③1+1- 1 =1;
5 6 30 3
④17+18-516=14; … (1)请按以上规律写出第⑤个等式:______; (2)猜想并写出第 n 个等式:______; (3)请证明猜想的正确性.
(沪教版)初一下册数学期末试卷及答案

(沪教版)初一下册数学期末试卷及答案一、选择题:每小题3分,共30分。
1.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩实行统计分析,以下说法准确的是( )A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量【考点】总体、个体、样本、样本容量.【分析】根据总体、个体、样本、样本容量的定义对各选项判断即可.【解答】解:A、1000名考生的数学成绩是样本,故A选项错误;B、4万名考生的数学成绩是总体,故B选项错误;C、每位考生的数学成绩是个体,故C选项准确;D、1000是样本容量,故D选项错误;故选:C.【点评】本题考查了总体、个体、样本和样本容量的知识,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2.4的算术平方根是( )A.16B.2C.﹣2D.±2【考点】算术平方根.【分析】根据算术平方根定义求出即可.【解答】解:4的算术平方根是2,故选:B.【点评】本题考查了对算术平方根的定义的应用,主要考查学生的计算水平.3.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )A. B. C. D.【考点】利用平移设计图案.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后能够得到的图案是B.【解答】解:观察图形可知图案B通过平移后能够得到.故选:B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.4.下列命题错误的是( )A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数、0、负无理数D.对顶角相等【考点】命题与定理.【分析】利于实数的定义、补角的性质及对顶角的性质分别判断后即可确定准确的选项.【解答】解:A、所有的实数都可用数轴上的点表示,准确;B、等角的补角相等,准确;C、0不是无理数,故错误;D、对顶角相等,准确,故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解实数的定义、补角的性质及对顶角的性质,难度不大.5.若m>﹣1,则下列各式中错误的是( )A.6m>﹣6B.﹣5m0 D.1﹣m﹣6,准确;B、根据性质3可知,m>﹣1两边同乘以﹣5时,不等式为﹣5m0,准确;D、1﹣m5 B.5【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的整数解,据此确定a的范围.【解答】解:不等式组2故5故选D.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题:每小题4分,共24分。