复习用-2-12排序算法比较-排序方法选择-时间复杂度-
排序算法比较

排序算法比较
排序算法的效率主要取决于算法的时间复杂度。
以下是常见的几种排序算法的时间复杂度和优缺点的对比:
1. 冒泡排序
冒泡排序的时间复杂度为O(n^2)。
优点是它的实现简单易懂,缺点是排序速度很慢,对大规模数据排序不太适用。
2. 插入排序
插入排序的时间复杂度也为 O(n^2)。
它的优点是适用于小数
据量的排序,缺点是对于大规模数据排序仍然效率不高。
3. 选择排序
选择排序的时间复杂度也为 O(n^2)。
它的优点是对于小数据
量的排序速度较快,但是因为其算法结构固定,所以其效率在大规模数据排序中表现不佳。
4. 快速排序
快速排序的时间复杂度为 O(nlogn)。
它是一种非常常用的排序算法,适用于大规模数据排序。
快速排序的优点在于分治的思想,可以充分发挥多线程并行计算的优势,缺点是在极端情况下(如输入的数据已经有序或者逆序)排序速度会较慢。
5. 堆排序
堆排序的时间复杂度为 O(nlogn)。
它的优点在于实现简单、稳定,可以用于实时系统中的排序。
缺点是在排序过程中需要使用一个堆结构来维护排序序列,需要额外的内存开销。
同时,由于堆的性质,堆排序不能发挥多线程并行计算的优势。
6. 归并排序
归并排序的时间复杂度为 O(nlogn)。
它的优点在于稳定、可靠,效率在大规模数据排序中表现良好。
归并排序在实现过程中需要使用递归调用,需要额外的内存开销。
同时,归并排序不适用于链式存储结构。
各种排序的时间复杂度

排序算法所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
分类在计算机科学所使用的排序算法通常被分类为:计算的复杂度(最差、平均、和最好表现),依据串列(list)的大小(n)。
一般而言,好的表现是O。
(n log n),且坏的行为是Ω(n2)。
对於一个排序理想的表现是O(n)。
仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n)。
记忆体使用量(以及其他电脑资源的使用)稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。
也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串列中R出现在S之前,在排序过的串列中R也将会是在S之前。
一般的方法:插入、交换、选择、合并等等。
交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。
选择排序包含shaker排序和堆排序(heapsort)。
当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。
然而,假设以下的数对将要以他们的第一个数字来排序。
(4, 1) (3, 1) (3, 7) (5, 6)在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:(3, 1) (3, 7) (4, 1) (5, 6) (维持次序)(3, 7) (3, 1) (4, 1) (5, 6) (次序被改变)不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。
不稳定排序算法可以被特别地时作为稳定。
作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较,就会被决定使用在原先资料次序中的条目,当作一个同分决赛。
然而,要记住这种次序通常牵涉到额外的空间负担。
排列算法列表在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。
稳定的冒泡排序(bubble sort)— O(n2)鸡尾酒排序 (Cocktail sort, 双向的冒泡排序) — O(n2)插入排序(insertion sort)— O(n2)桶排序(bucket sort)— O(n); 需要 O(k) 额外记忆体计数排序 (counting sort) — O(n+k); 需要 O(n+k) 额外记忆体归并排序(merge sort)— O(n log n); 需要 O(n) 额外记忆体原地归并排序— O(n2)二叉树排序(Binary tree sort)— O(n log n); 需要 O(n) 额外记忆体鸽巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 额外记忆体基数排序(radix sort)—O(n·k); 需要 O(n) 额外记忆体Gnome sort — O(n2)Library sort — O(n log n) with high probability, 需要(1+ε)n 额外记忆体不稳定选择排序(selection sort)— O(n2)希尔排序(shell sort)— O(n log n) 如果使用最佳的现在版本Comb sort — O(n log n)堆排序(heapsort)— O(n log n)Smoothsort — O(n log n)快速排序(quicksort)—O(n log n) 期望时间, O(n2) 最坏情况; 对於大的、乱数串列一般相信是最快的已知排序Introsort — O(n log n)Patience sorting —O(n log n + k) 最外情况时间, 需要额外的 O(n + k) 空间, 也需要找到最长的递增子序列(longest increasing subsequence)不实用的排序算法Bogo排序—O(n × n!) 期望时间, 无穷的最坏情况。
时间复杂度分析及常用算法复杂度排名

时间复杂度分析及常用算法复杂度排名随着计算机技术的不断发展,人们对于算法的效率也提出了更高的要求。
好的算法可以大大地提高程序的运行效率,而坏的算法则会导致程序运行缓慢,浪费更多的时间和资源。
因此,在实际的开发中,需要对算法的效率进行评估和分析。
其中,时间复杂度是评估算法效率的重要指标之一,接下来就让我们来探讨一下时间复杂度分析及常用算法复杂度排名。
一、时间复杂度时间复杂度,简称时间复杂度,是指在算法中用来衡量算法运行时间大小的量。
通常情况下,时间复杂度用 O(n) 来表示,其中n 表示输入数据规模的大小。
由于常数系数和低次项不会对时间复杂度的大致表示产生影响,因此,时间复杂度的精确算法往往会被简化为最高次项的时间复杂度,即 O(n)。
二、时间复杂度的分析时间复杂度可以通过算法中的循环次数来分析。
一般来说,算法中的循环分为两种情况:一种是 for 循环,一种是 while 循环。
因为 for 循环的循环次数一般是固定的,因此可以通过循环次数来估算时间复杂度;而 while 循环的循环次数取决于输入数据的大小,因此时间复杂度的分析需要基于输入数据的规模进行分析和推导。
三、时间复杂度的常见表示法在实际的算法分析中,常常用到以下几种时间复杂度表示法:常数阶 O(1)、对数阶 O(logn)、线性阶 O(n)、线性对数阶 O(nlogn)、平方阶 O(n^2)、立方阶 O(n^3)、指数阶 O(2^n) 等。
常数阶 O(1):表示算法的时间不随着输入规模的增加而增加,即不论输入数据的大小,算法的运行时间都是固定的。
例如,最好的情况下,二分查找的时间复杂度即为 O(1)。
对数阶 O(logn):表示算法的时间复杂度随着输入规模的增加而增加,但增长比较缓慢,即随着输入规模的每增加一倍,算法所需的运行时间大致增加一个常数。
例如,二分查找的时间复杂度即为 O(logn)。
线性阶 O(n):表示算法的时间复杂度随着输入规模的增加而增加,增长速度与输入规模成线性比例关系。
使用C语言实现12种排序方法

使⽤C语⾔实现12种排序⽅法⽬录1.冒泡排序2.插⼊排序3.折半插⼊排序4.希尔排序5.选择排序6.鸡尾酒排序7.堆排序8.快速排序9.归并排序10.计数排序11.桶排序12.基数排序1.冒泡排序思路:⽐较相邻的两个数字,如果前⼀个数字⼤,那么就交换两个数字,直到有序。
时间复杂度O(n^2),稳定性:这是⼀种稳定的算法。
代码实现:void bubble_sort(int arr[],size_t len){size_t i,j;for(i=0;i<len;i++){bool hasSwap = false; //优化,判断数组是否已经有序,如果有序可以提前退出循环for(j=1;j<len-i;j++){ //这⾥j<len-i是因为最后⾯的肯定都是最⼤的,不需要多进⾏⽐较if(arr[j-1]>arr[j]){ //如果前⼀个⽐后⼀个⼤swap(&arr[j-1],&arr[j]); //交换两个数据hasSwap = true;}}if(!hasSwap){break;}}}2.插⼊排序思路:把⼀个数字插⼊⼀个有序的序列中,使之仍然保持有序,如对于需要我们进⾏排序的数组,我们可以使它的前i个数字有序,然后再插⼊i+1个数字,插⼊到合适的位置使之仍然保持有序,直到所有的数字有序。
时间复杂度:O(n^2) 稳定性:稳定的算法代码实现:void insert_sort(int arr[],int len){int i,j;for(i=1;i<len;i++){int key = arr[i]; //记录当前需要插⼊的数据for(j= i-1;i>=0&&arr[j]>key;j--){ //找到插⼊的位置arr[j+1] = arr[j]; //把需要插⼊的元素后⾯的元素往后移}arr[j+1] = key; //插⼊该元素}}3.折半插⼊排序思路:本质上是插⼊排序,但是通过半分查找法找到插⼊的位置,让效率稍微快⼀点。
几种排序的算法时间复杂度比较

几种排序的算法时间复杂度比较1.选择排序:不稳定,时间复杂度 O(n^2)选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。
这样,经过i遍处理之后,前i个记录的位置已经是正确的了。
2.插入排序:稳定,时间复杂度 O(n^2)插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。
第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i] 又是排好序的序列。
要达到这个目的,我们可以用顺序比较的方法。
首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。
图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。
3.冒泡排序:稳定,时间复杂度 O(n^2)冒泡排序方法是最简单的排序方法。
这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。
在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。
所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。
如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。
显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。
在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。
一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。
4.堆排序:不稳定,时间复杂度 O(nlog n)堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。
各种排序算法的时间复杂度和空间复杂度(阿里)

各种排序算法的时间复杂度和空间复杂度(阿⾥)⼆分查找法的时间复杂度:O(logn) redis,kafka,B+树的底层都采⽤了⼆分查找法参考:⼆分查找法 redis的索引底层的跳表原理实现参考:⼆分查找法参考:⼆分查找法:1.⼆分查找⼆分查找也称为折半查找,它是⼀种效率较⾼的查找⽅法。
⼆分查找的使⽤前提是线性表已经按照⼤⼩排好了序。
这种⽅法充分利⽤了元素间的次序关系,采⽤分治策略。
基本原理是:⾸先在有序的线性表中找到中值,将要查找的⽬标与中值进⾏⽐较,如果⽬标⼩于中值,则在前半部分找,如果⽬标⼩于中值,则在后半部分找;假设在前半部分找,则再与前半部分的中值相⽐较,如果⼩于中值,则在中值的前半部分找,如果⼤于中值,则在后半部分找。
以此类推,直到找到⽬标为⽌。
假设我们要在 2,6,11,13,16,17,22,30中查找22,上图所⽰,则查找步骤为:⾸先找到中值:中值为13(下标:int middle = (0+7)/2),将22与13进⾏⽐较,发现22⽐13⼤,则在13的后半部分找;在后半部分 16,17,22,30中查找22,⾸先找到中值,中值为17(下标:int middle=(0+3)/2),将22与17进⾏⽐较,发现22⽐17⼤,则继续在17的后半部分查找;在17的后半部分 22,30查找22,⾸先找到中值,中值为22(下标:int middle=(0+1)/2),将22与22进⾏⽐较,查找到结果。
⼆分查找⼤⼤降低了⽐较次数,⼆分查找的时间复杂度为:O(logn),即。
⽰例代码:public class BinarySearch {public static void main(String[] args) {int arr[] = {2, 6, 11, 13, 16, 17, 22, 30};System.out.println("⾮递归结果,22的位置为:" + binarySearch(arr, 22));System.out.println("递归结果,22的位置为:" + binarySearch(arr, 22, 0, 7));}//⾮递归static int binarySearch(int[] arr, int res) {int low = 0;int high = arr.length-1;while(low <= high) {int middle = (low + high)/2;if(res == arr[middle]) {return middle;}else if(res <arr[middle]) {high = middle - 1;}else {low = middle + 1;}}return -1;}//递归static int binarySearch(int[] arr,int res,int low,int high){if(res < arr[low] || res > arr[high] || low > high){return -1;}int middle = (low+high)/2;if(res < arr[middle]){return binarySearch(arr, res, low, middle-1);}else if(res > arr[middle]){return binarySearch(arr, res, middle+1, high);}else {return middle;}}}其中冒泡排序加个标志,所以最好情况下是o(n)直接选择排序:排序过程:1 、⾸先在所有数据中经过 n-1次⽐较选出最⼩的数,把它与第 1个数据交换,2、然后在其余的数据内选出排序码最⼩的数,与第 2个数据交换...... 依次类推,直到所有数据排完为⽌。
十种排序方法

十种排序方法排序是计算机科学中常见的操作,它将一组数据按照一定的规则进行重新排列,以便更方便地进行查找、比较和分析。
在本文中,我将介绍十种常见的排序方法,并对它们的原理和特点进行详细讲解。
一、冒泡排序冒泡排序是一种简单直观的排序算法,它重复地遍历待排序的元素,比较相邻的两个元素,并按照规定的顺序交换它们,直到整个序列有序为止。
冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
二、选择排序选择排序是一种简单直观的排序算法,它每次从待排序的元素中选择最小(或最大)的元素,放到已排序序列的末尾,直到整个序列有序为止。
选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。
三、插入排序插入排序是一种简单直观的排序算法,它将待排序的元素插入到已排序序列的合适位置,使得插入之后的序列仍然有序。
插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。
四、希尔排序希尔排序是插入排序的一种改进算法,它通过将待排序的元素分组,分组进行插入排序,然后逐步缩小分组的间隔,直到间隔为1,最后进行一次完整的插入排序。
希尔排序的时间复杂度为O(nlogn),空间复杂度为O(1)。
五、归并排序归并排序是一种分治排序算法,它将待排序的序列分成两个子序列,分别进行排序,然后将已排序的子序列合并成一个有序序列。
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。
六、快速排序快速排序是一种分治排序算法,它通过选择一个基准元素,将待排序的序列分成两个子序列,一边存放比基准元素小的元素,一边存放比基准元素大的元素,然后对两个子序列进行递归排序。
快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。
七、堆排序堆排序是一种选择排序算法,它通过构建一个最大堆(或最小堆),将堆顶元素与堆的最后一个元素交换,并对剩余的元素进行调整,直到整个序列有序为止。
堆排序的时间复杂度为O(nlogn),空间复杂度为O(1)。
几种常见算法的介绍及复杂度分析

几种常见算法的介绍及复杂度分析一、排序算法1.冒泡排序:通过反复交换相邻元素实现排序,每次遍历将最大元素放到最后。
时间复杂度为O(n^2)。
2.插入排序:将未排序元素插入已排序序列的适当位置,时间复杂度为O(n^2)。
3.选择排序:每次选择最小的元素放到已排序序列末尾,时间复杂度为O(n^2)。
4. 快速排序:通过递归将数组分段,并以一个基准元素为准将小于它的元素放在左边,大于它的元素放在右边,时间复杂度为O(nlogn)。
5. 归并排序:将数组递归拆分为多个子数组,对子数组进行排序并合并,时间复杂度为O(nlogn)。
二、查找算法1.顺序查找:从头到尾依次比较目标元素与数组中的元素,时间复杂度为O(n)。
2. 二分查找:依据已排序的数组特性,将目标元素与中间位置的元素比较,并根据大小取舍一半的数组进行查找,时间复杂度为O(logn)。
3.哈希查找:通过哈希函数将目标元素映射到数组的索引位置,时间复杂度为O(1),但可能需要额外的空间。
三、图算法1.广度优先(BFS):从起始节点开始,依次访问其邻居节点,再访问邻居的邻居,直到找到目标节点或遍历所有节点。
时间复杂度为O(V+E),V为顶点数量,E为边的数量。
2.深度优先(DFS):从起始节点开始一直遍历到没有未访问的邻居,再回溯到上一个节点继续遍历,直到找到目标节点或遍历所有节点。
时间复杂度为O(V+E),V为顶点数量,E为边的数量。
3. 最短路径算法(如Dijkstra算法):通过计算起始节点到每个节点的最短路径,找到起始节点到目标节点的最短路径。
时间复杂度为O(V^2),V为顶点数量。
4. 最小生成树算法(如Prim算法):通过贪心策略找到连通图的最小权重生成树,时间复杂度为O(V^2),V为顶点数量。
四、动态规划算法1.背包问题:将问题拆解为若干子问题,并通过求解子问题的最优解推导出原问题的最优解。
时间复杂度为O(nW),n为物品数量,W为背包容量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
时间特性: • 时间复杂度为O(nlogn):快速、堆、归并排序,快
速最快,在n较大时,归并较堆更快
• 时间复杂度为O(n2):插入、冒泡、选择排序,插
入最常用,尤其基本有序时,选择记录移动次数最少
• 时间复杂度为O(dn):基数排序(自习)
• 当待排序记录有序时:插入和冒泡可达到O(n),快 速蜕化到O(n2);
• 选择、堆和归并排序的时间特性不随关键字分布而 改变
电子科技计算机学院
2. 空间特性:
• 所有的简单排序和堆排序的空间复杂度均为 O(1);
• 快速排序为O(logn);
• 归并排序和基数排序所需辅助空间最多,其空 间复杂度为O(n).
电子科技计算机学院 ***
5
3. 稳定性:
• 快速排序、希尔排序和堆排序是不稳定的; • 其他排序方法都是稳定的
排序算法
内部排序
插入排序
• 简单插入排序 • 折半插入排序 • 希尔排序
选择排序
• 简单选择排序 • 其他选择排序
归并排序
交换排序
• 冒泡排序 • 快速排序
排序方法比较
排序方法选择主要考虑: • 待排序记录个数n • 记录本身的大小 • 关键字的分布情况 • 对排序稳定性要求
电子科技计算机学院 ***
电子科技计算机学院 ***
6
排序方法 插入排序 选择排序 冒泡排序 快速排序 归并排序 堆排序 基数排序
平均时间
O(n2) O(n2) O(n2) O(nlogn) O(nlogn) O(nlogn) O(d*n)
最坏情况
O(n2) O(n2) O(n2) O(n2) O(nlogn) O(nlogn) O(d*n)
最好情况
O(n) O(n2) O(n) O(nlogn) O(nlogn) O(nlogn) O(d*n)
辅助空间
O(1) O(1) O(1) O(nlogn) O(n) O(1) O(n)
稳定性
√ √ √ × √ × √
如果待排序数据量很大,不能一次性将 所有数据读入内存,学院