排序算法时间复杂度分析

合集下载

排序—时间复杂度为O(nlogn)的两种排序算法

排序—时间复杂度为O(nlogn)的两种排序算法
➢ 为了达到施工控制的目的,我们首先必须 通过施工控制计算来确定桥梁结构施工过 程中每个阶段在受力和变形方面的理想状 态(施工阶段理想状态),以此为依据来控制 施工过程中每个阶段的结构行为,使其最 终成桥线形和受力状态满足设计要求。
(一)施工控制结构计算的一般原则
➢ 预应力混凝土连续梁桥、连续刚构桥的施工控制计算除了 必须满足与实际施工相符合的基本要求外,还要考虑诸多 相关的其他因素。
➢ 立0号段底模时,同时安装支座及防倾覆锚固装置。如图512所示。
0号块 1 2
3
0号块
1 2 3 4
1.底模架 2.支架 3.墩身
1.底模架 3.节点板
2.三角撑架 4.墩身
图5-12 支架搭设方式图
墩梁临时锚固
0号块
1 2 3 4
0号块
1 2 3
1.临时支座 3.临时支撑
2.永久支座 4.预应力钢绞线
(三)预应力混凝土连续梁的合拢施
工要点
1. 掌握合拢期间的气温预报情况,测试分析气温变化规律, 以确定合拢时间并为选择合拢锁定方式提供依据。
2. 根据结构情况及梁温的可能变化情况,选定适宜的合拢 方式并作力学建算。
3. 选择日气温较低、温度变化幅度较小时锁定合拢口并灌 注合拢段混凝土。
4. 合拢口的锁定,应迅速、对称地进行,先将外刚性支撑 一段与梁端预埋件焊接(或栓接),而后迅速将外刚性 支撑另一端与梁连接,临时预应力束也应随之快速张拉。 在合拢口锁定后,立即释放一侧的固结约束,使梁一端 在合拢口锁定的连接下能沿支座左右伸缩。
目的:桥梁施工控制的目的就是确保施工过程中结构
的可靠度和安全性,保证桥梁成桥桥面线 形及受力状态符合设计要求。
(二) 施工控制的内容

时间复杂度分析及常用算法复杂度排名

时间复杂度分析及常用算法复杂度排名

时间复杂度分析及常用算法复杂度排名随着计算机技术的不断发展,人们对于算法的效率也提出了更高的要求。

好的算法可以大大地提高程序的运行效率,而坏的算法则会导致程序运行缓慢,浪费更多的时间和资源。

因此,在实际的开发中,需要对算法的效率进行评估和分析。

其中,时间复杂度是评估算法效率的重要指标之一,接下来就让我们来探讨一下时间复杂度分析及常用算法复杂度排名。

一、时间复杂度时间复杂度,简称时间复杂度,是指在算法中用来衡量算法运行时间大小的量。

通常情况下,时间复杂度用 O(n) 来表示,其中n 表示输入数据规模的大小。

由于常数系数和低次项不会对时间复杂度的大致表示产生影响,因此,时间复杂度的精确算法往往会被简化为最高次项的时间复杂度,即 O(n)。

二、时间复杂度的分析时间复杂度可以通过算法中的循环次数来分析。

一般来说,算法中的循环分为两种情况:一种是 for 循环,一种是 while 循环。

因为 for 循环的循环次数一般是固定的,因此可以通过循环次数来估算时间复杂度;而 while 循环的循环次数取决于输入数据的大小,因此时间复杂度的分析需要基于输入数据的规模进行分析和推导。

三、时间复杂度的常见表示法在实际的算法分析中,常常用到以下几种时间复杂度表示法:常数阶 O(1)、对数阶 O(logn)、线性阶 O(n)、线性对数阶 O(nlogn)、平方阶 O(n^2)、立方阶 O(n^3)、指数阶 O(2^n) 等。

常数阶 O(1):表示算法的时间不随着输入规模的增加而增加,即不论输入数据的大小,算法的运行时间都是固定的。

例如,最好的情况下,二分查找的时间复杂度即为 O(1)。

对数阶 O(logn):表示算法的时间复杂度随着输入规模的增加而增加,但增长比较缓慢,即随着输入规模的每增加一倍,算法所需的运行时间大致增加一个常数。

例如,二分查找的时间复杂度即为 O(logn)。

线性阶 O(n):表示算法的时间复杂度随着输入规模的增加而增加,增长速度与输入规模成线性比例关系。

排序—时间复杂度为O(n2)的三种排序算法

排序—时间复杂度为O(n2)的三种排序算法

排序—时间复杂度为O(n2)的三种排序算法1 如何评价、分析⼀个排序算法?很多语⾔、数据库都已经封装了关于排序算法的实现代码。

所以我们学习排序算法⽬的更多的不是为了去实现这些代码,⽽是灵活的应⽤这些算法和解决更为复杂的问题,所以更重要的是学会如何评价、分析⼀个排序算法并在合适的场景下正确使⽤。

分析⼀个排序算法,主要从以下3个⽅⾯⼊⼿:1.1 排序算法的执⾏效率1)最好情况、最坏情况和平均情况时间复杂度待排序数据的有序度对排序算法的执⾏效率有很⼤影响,所以分析时要区分这三种时间复杂度。

除了时间复杂度分析,还要知道最好、最坏情况复杂度对应的要排序的原始数据是什么样的。

2)时间复杂度的系数、常数和低阶时间复杂度反映的是算法执⾏时间随数据规模变⼤的⼀个增长趋势,平时分析时往往忽略系数、常数和低阶。

但如果我们排序的数据规模很⼩,在对同⼀阶时间复杂度的排序算法⽐较时,就要把它们考虑进来。

3)⽐较次数和交换(移动)次数内排序算法中,主要进⾏⽐较和交换(移动)两项操作,所以⾼效的内排序算法应该具有尽可能少的⽐较次数和交换次数。

1.2 排序算法的内存消耗也就是分析算法的空间复杂度。

这⾥还有⼀个概念—原地排序,指的是空间复杂度为O(1)的排序算法。

1.3 稳定性如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变,那么这种排序算法叫做稳定的排序算法;如果前后顺序发⽣变化,那么对应的排序算法就是不稳定的排序算法。

在实际的排序应⽤中,往往不是对单⼀关键值进⾏排序,⽽是要求排序结果对所有的关键值都有序。

所以,稳定的排序算法往往适⽤场景更⼴。

2 三种时间复杂度为O(n2)的排序算法2.1 冒泡排序2.1.1 原理两两⽐较相邻元素是否有序,如果逆序则交换两个元素,直到没有逆序的数据元素为⽌。

每次冒泡都会⾄少让⼀个元素移动到它应该在的位置。

2.1.2 实现void BubbleSort(int *pData, int n) //冒泡排序{int temp = 0;bool orderlyFlag = false; //序列是否有序标志for (int i = 0; i < n && !orderlyFlag; ++i) //执⾏n次冒泡{orderlyFlag = true;for (int j = 0; j < n - 1 - i; ++j) //注意循环终⽌条件{if (pData[j] > pData[j + 1]) //逆序{orderlyFlag = false;temp = pData[j];pData[j] = pData[j + 1];pData[j + 1] = temp;}}}}测试结果2.1.3 算法分析1)时间复杂度最好情况时间复杂度:当待排序列已有序时,只需⼀次冒泡即可。

几种排序的算法时间复杂度比较

几种排序的算法时间复杂度比较

几种排序的算法时间复杂度比较1.选择排序:不稳定,时间复杂度 O(n^2)选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。

这样,经过i遍处理之后,前i个记录的位置已经是正确的了。

2.插入排序:稳定,时间复杂度 O(n^2)插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。

第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i] 又是排好序的序列。

要达到这个目的,我们可以用顺序比较的方法。

首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。

图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。

3.冒泡排序:稳定,时间复杂度 O(n^2)冒泡排序方法是最简单的排序方法。

这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。

在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。

所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。

如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。

显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。

在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。

一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。

4.堆排序:不稳定,时间复杂度 O(nlog n)堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。

各种排序算法的时间复杂度和空间复杂度(阿里)

各种排序算法的时间复杂度和空间复杂度(阿里)

各种排序算法的时间复杂度和空间复杂度(阿⾥)⼆分查找法的时间复杂度:O(logn) redis,kafka,B+树的底层都采⽤了⼆分查找法参考:⼆分查找法 redis的索引底层的跳表原理实现参考:⼆分查找法参考:⼆分查找法:1.⼆分查找⼆分查找也称为折半查找,它是⼀种效率较⾼的查找⽅法。

⼆分查找的使⽤前提是线性表已经按照⼤⼩排好了序。

这种⽅法充分利⽤了元素间的次序关系,采⽤分治策略。

基本原理是:⾸先在有序的线性表中找到中值,将要查找的⽬标与中值进⾏⽐较,如果⽬标⼩于中值,则在前半部分找,如果⽬标⼩于中值,则在后半部分找;假设在前半部分找,则再与前半部分的中值相⽐较,如果⼩于中值,则在中值的前半部分找,如果⼤于中值,则在后半部分找。

以此类推,直到找到⽬标为⽌。

假设我们要在 2,6,11,13,16,17,22,30中查找22,上图所⽰,则查找步骤为:⾸先找到中值:中值为13(下标:int middle = (0+7)/2),将22与13进⾏⽐较,发现22⽐13⼤,则在13的后半部分找;在后半部分 16,17,22,30中查找22,⾸先找到中值,中值为17(下标:int middle=(0+3)/2),将22与17进⾏⽐较,发现22⽐17⼤,则继续在17的后半部分查找;在17的后半部分 22,30查找22,⾸先找到中值,中值为22(下标:int middle=(0+1)/2),将22与22进⾏⽐较,查找到结果。

⼆分查找⼤⼤降低了⽐较次数,⼆分查找的时间复杂度为:O(logn),即。

⽰例代码:public class BinarySearch {public static void main(String[] args) {int arr[] = {2, 6, 11, 13, 16, 17, 22, 30};System.out.println("⾮递归结果,22的位置为:" + binarySearch(arr, 22));System.out.println("递归结果,22的位置为:" + binarySearch(arr, 22, 0, 7));}//⾮递归static int binarySearch(int[] arr, int res) {int low = 0;int high = arr.length-1;while(low <= high) {int middle = (low + high)/2;if(res == arr[middle]) {return middle;}else if(res <arr[middle]) {high = middle - 1;}else {low = middle + 1;}}return -1;}//递归static int binarySearch(int[] arr,int res,int low,int high){if(res < arr[low] || res > arr[high] || low > high){return -1;}int middle = (low+high)/2;if(res < arr[middle]){return binarySearch(arr, res, low, middle-1);}else if(res > arr[middle]){return binarySearch(arr, res, middle+1, high);}else {return middle;}}}其中冒泡排序加个标志,所以最好情况下是o(n)直接选择排序:排序过程:1 、⾸先在所有数据中经过 n-1次⽐较选出最⼩的数,把它与第 1个数据交换,2、然后在其余的数据内选出排序码最⼩的数,与第 2个数据交换...... 依次类推,直到所有数据排完为⽌。

二分归并排序的时间复杂度以及递推式

二分归并排序的时间复杂度以及递推式

一、简介二分归并排序是一种常见的排序算法,它通过将问题分解为子问题,并将子问题的解合并来解决原始问题。

该算法的时间复杂度非常重要,因为它直接影响算法的效率和性能。

在本文中,我们将深入探讨二分归并排序的时间复杂度,并通过递推式来进一步分析算法的性能。

二、二分归并排序的时间复杂度1. 分析在二分归并排序中,时间复杂度可以通过以下三个步骤来分析:- 分解:将原始数组分解为较小的子数组。

- 解决:通过递归调用来对子数组进行排序。

- 合并:将排好序的子数组合并为一个整体有序的数组。

2. 时间复杂度在最坏情况下,二分归并排序的时间复杂度为O(nlogn)。

这是因为在每一层递归中,都需要将数组分解为两个规模近似相等的子数组,并且在每一层递归的最后都需要将这两个子数组合并起来。

可以通过递推式来进一步证明算法的时间复杂度。

3. 递推式分析我们可以通过递推式来分析二分归并排序的时间复杂度。

假设对规模为n的数组进行排序所需的时间为T(n),则可以得到以下递推式:T(n) = 2T(n/2) +其中,T(n/2)表示对规模为n/2的子数组进行排序所需的时间表示将两个子数组合并所需的时间。

根据递推式的定义,我们可以得到二分归并排序的时间复杂度为O(nlogn)。

三、结论与个人观点通过以上分析,我们可以得出二分归并排序的时间复杂度为O(nlogn)。

这意味着该算法在最坏情况下也能保持较好的性能,适用于大规模数据的排序。

我个人认为,二分归并排序作为一种经典的排序算法,其时间复杂度的分析对于理解算法的工作原理和性能至关重要。

通过深入研究递推式,可以更加直观地理解算法的性能表现,为进一步优化算法提供了重要的参考依据。

四、总结在本文中,我们探讨了二分归并排序的时间复杂度,通过分析和递推式的方式深入理解了该算法的性能表现。

通过对时间复杂度的分析,我们对算法的性能有了更深入的认识,并且能够更好地理解算法在实际应用中的表现。

相信通过本文的阅读,读者能够对二分归并排序有更全面、深刻和灵活的理解。

快排复杂度及其证明

快排复杂度及其证明

快排复杂度及其证明快速排序(Quicksort)是一种经典的排序算法,其平均时间复杂度为O(nlogn)。

该算法的核心思想是通过递归地将数组分割成较小的子数组,然后分别对子数组进行排序。

快速排序的步骤如下:首先选择一个基准元素,然后将数组中比基准元素小的元素放在基准元素的左边,将比基准元素大的元素放在基准元素的右边。

接着递归地对左右两个子数组进行排序,直到整个数组有序。

快速排序的时间复杂度分析如下:在最好情况下,每次划分都能平分数组,时间复杂度为O(nlogn);在最坏情况下,每次划分只能将数组分成一个元素和其余元素两部分,时间复杂度为O(n^2)。

然而,通过随机选择基准元素或者使用三数取中法可以避免最坏情况的发生,从而保证快速排序的平均时间复杂度为O(nlogn)。

快速排序的时间复杂度证明可以通过数学归纳法进行推导。

假设对n个元素的数组进行快速排序的时间复杂度为T(n),则有:T(n) = 2T(n/2) + O(n)。

其中2T(n/2)表示对左右两个子数组进行排序的时间复杂度,O(n)表示划分数组的时间复杂度。

根据主定理(Master Theorem)可知,对于递推式T(n) = aT(n/b) + f(n),其中a>=1,b>1,f(n)是多项式,有以下三种情况:1. 若f(n) = O(n^d),其中d<logba,则T(n) = O(n^logba);2. 若f(n) = Θ(n^d * log^k n),其中d=logba,则T(n) = O(n^d * log^(k+1) n);3. 若f(n) = Ω(n^d),其中d>logba,则T(n) = O(f(n))。

根据快速排序的递推式T(n) = 2T(n/2) + O(n),可以得到a=2,b=2,f(n)=O(n)。

因此,根据主定理可知,快速排序的时间复杂度为O(nlogn)。

快速排序是一种时间复杂度为O(nlogn)的高效排序算法,通过合理选择基准元素和递归地划分子数组,可以在平均情况下实现较快的排序速度。

关于算法的实验报告(3篇)

关于算法的实验报告(3篇)

第1篇一、实验目的1. 理解快速排序算法的基本原理和实现方法。

2. 掌握快速排序算法的时间复杂度和空间复杂度分析。

3. 通过实验验证快速排序算法的效率。

4. 提高编程能力和算法设计能力。

二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验原理快速排序算法是一种分而治之的排序算法,其基本思想是:选取一个基准元素,将待排序序列分为两个子序列,其中一个子序列的所有元素均小于基准元素,另一个子序列的所有元素均大于基准元素,然后递归地对这两个子序列进行快速排序。

快速排序算法的时间复杂度主要取决于基准元素的选取和划分过程。

在平均情况下,快速排序的时间复杂度为O(nlogn),但在最坏情况下,时间复杂度会退化到O(n^2)。

四、实验内容1. 快速排序算法的代码实现2. 快速排序算法的时间复杂度分析3. 快速排序算法的效率验证五、实验步骤1. 设计快速排序算法的C++代码实现,包括以下功能:- 选取基准元素- 划分序列- 递归排序2. 编写主函数,用于生成随机数组和测试快速排序算法。

3. 分析快速排序算法的时间复杂度。

4. 对不同规模的数据集进行测试,验证快速排序算法的效率。

六、实验结果与分析1. 快速排序算法的代码实现```cppinclude <iostream>include <vector>include <cstdlib>include <ctime>using namespace std;// 生成随机数组void generateRandomArray(vector<int>& arr, int n) {srand((unsigned)time(0));for (int i = 0; i < n; ++i) {arr.push_back(rand() % 1000);}}// 快速排序void quickSort(vector<int>& arr, int left, int right) { if (left >= right) {return;}int i = left;int j = right;int pivot = arr[(left + right) / 2]; // 选取中间元素作为基准 while (i <= j) {while (arr[i] < pivot) {i++;}while (arr[j] > pivot) {j--;}if (i <= j) {swap(arr[i], arr[j]);i++;j--;}}quickSort(arr, left, j);quickSort(arr, i, right);}int main() {int n = 10000; // 测试数据规模vector<int> arr;generateRandomArray(arr, n);clock_t start = clock();quickSort(arr, 0, n - 1);clock_t end = clock();cout << "排序用时:" << double(end - start) / CLOCKS_PER_SEC << "秒" << endl;return 0;}```2. 快速排序算法的时间复杂度分析根据实验结果,快速排序算法在平均情况下的时间复杂度为O(nlogn),在最坏情况下的时间复杂度为O(n^2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法分析与设计实验报告
姓名:龚一帆
班级:04011404
学号:2014211849
专业:计算机科学与技术
一.实验题目排序问题求解
二.实验目的
1)以排序(分类)问题为例,掌握分治法的基本设计策略。

2)熟练掌握一般插入排序算法的实现;
3)熟练掌握快速排序算法的实现;
4) 理解常见的算法经验分析方法;
三.实验环境
计算机、C语言程序设计环境
四.实验内容与步骤
1.生成实验数据:
代码:
int main()
{
freopen("/Users/shana/Desktop/实验课/算法实验课/1/Data.txt","w",stdout);
srand(static_cast<unsigned>(time(0)));
cout<<2000<<endl;
for(int i=0;i<2000;i++)
{
cout<<rand()%10000+1<<endl;
}
return0;
}
2.实现直接插入排序算法.
思路:每个数以此往前移动,直到遇见一个数比他小,就换下一个数继续移动代码:
void InsertSort(int a[],int n)
{
for(int j=i-1;j>=0;j--)
{
if(a[j]>a[j+1])
{
swap(a[j],a[j+1]);
}
}
}
3.实现快速排序算法.
思路:
使用了二分的思想,将每段数组以与该数组的第一个数比较大小的关系分类并改变它们的位置,实现这段数组总所有比第一个数大的数都在第一个数的后面,比第一个小的数都在第一个数前面,再将本次划分的两段数组再进行本次操作,直到每段数组只有一个数
代码:
void sway(int n,int m)
{
int temp=a[n];
a[n]=a[m];
a[m]=temp;
}
int partition(int p,int q)
{
int n=q,s=1;
while(p!=q)
{
if( s&&a[n]<a[p])
{
s=!s;
sway(n,p);
n=++p;
}
elseif( s&&a[n]>=a[p])
{
n=--q;
}
elseif( !s &&a[n]>a[q])
{
sway(n,q);
n=--q;
}
elseif( !s &&a[n]<=a[q])
{
n=++p;
}
}
return n;
}
void qsort(int p,int q)
{
int j=partition(p,q);
if(p!=j) qsort(p,j-1);
if(q!=j) qsort(j+1,q);
}
五.实验结果与分析
测试时间:
分析:
插入排序的时间复杂度是O(n^2),而快速排序的时间复杂度是O(nlogn),本次数据大小为2000,理论上快排的时间大约是插入排序的百分之一,但由于IO 输入输出数据等步骤的耗时,实际耗时仅为插入排序的十分之一,但效率也已经比插入排序要高许多
六.心得体会
由于之前已经研究过这两种算法,所以本次试验完成的比较顺利。

算法可以说是程序的灵魂,解决同样问题的算法,会由于步骤和思路的不同导致效率大不相同,学习算法可以不断的优化我们的代码,锻炼我们的思维,改变我们的思考方式,所以我一定要好好学习算法!。

相关文档
最新文档