排序算法时间复杂度比较
排序算法比较

排序算法比较
排序算法的效率主要取决于算法的时间复杂度。
以下是常见的几种排序算法的时间复杂度和优缺点的对比:
1. 冒泡排序
冒泡排序的时间复杂度为O(n^2)。
优点是它的实现简单易懂,缺点是排序速度很慢,对大规模数据排序不太适用。
2. 插入排序
插入排序的时间复杂度也为 O(n^2)。
它的优点是适用于小数
据量的排序,缺点是对于大规模数据排序仍然效率不高。
3. 选择排序
选择排序的时间复杂度也为 O(n^2)。
它的优点是对于小数据
量的排序速度较快,但是因为其算法结构固定,所以其效率在大规模数据排序中表现不佳。
4. 快速排序
快速排序的时间复杂度为 O(nlogn)。
它是一种非常常用的排序算法,适用于大规模数据排序。
快速排序的优点在于分治的思想,可以充分发挥多线程并行计算的优势,缺点是在极端情况下(如输入的数据已经有序或者逆序)排序速度会较慢。
5. 堆排序
堆排序的时间复杂度为 O(nlogn)。
它的优点在于实现简单、稳定,可以用于实时系统中的排序。
缺点是在排序过程中需要使用一个堆结构来维护排序序列,需要额外的内存开销。
同时,由于堆的性质,堆排序不能发挥多线程并行计算的优势。
6. 归并排序
归并排序的时间复杂度为 O(nlogn)。
它的优点在于稳定、可靠,效率在大规模数据排序中表现良好。
归并排序在实现过程中需要使用递归调用,需要额外的内存开销。
同时,归并排序不适用于链式存储结构。
各种排序的时间复杂度

排序算法所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
分类在计算机科学所使用的排序算法通常被分类为:计算的复杂度(最差、平均、和最好表现),依据串列(list)的大小(n)。
一般而言,好的表现是O。
(n log n),且坏的行为是Ω(n2)。
对於一个排序理想的表现是O(n)。
仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n)。
记忆体使用量(以及其他电脑资源的使用)稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。
也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串列中R出现在S之前,在排序过的串列中R也将会是在S之前。
一般的方法:插入、交换、选择、合并等等。
交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。
选择排序包含shaker排序和堆排序(heapsort)。
当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。
然而,假设以下的数对将要以他们的第一个数字来排序。
(4, 1) (3, 1) (3, 7) (5, 6)在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:(3, 1) (3, 7) (4, 1) (5, 6) (维持次序)(3, 7) (3, 1) (4, 1) (5, 6) (次序被改变)不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。
不稳定排序算法可以被特别地时作为稳定。
作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较,就会被决定使用在原先资料次序中的条目,当作一个同分决赛。
然而,要记住这种次序通常牵涉到额外的空间负担。
排列算法列表在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。
稳定的冒泡排序(bubble sort)— O(n2)鸡尾酒排序 (Cocktail sort, 双向的冒泡排序) — O(n2)插入排序(insertion sort)— O(n2)桶排序(bucket sort)— O(n); 需要 O(k) 额外记忆体计数排序 (counting sort) — O(n+k); 需要 O(n+k) 额外记忆体归并排序(merge sort)— O(n log n); 需要 O(n) 额外记忆体原地归并排序— O(n2)二叉树排序(Binary tree sort)— O(n log n); 需要 O(n) 额外记忆体鸽巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 额外记忆体基数排序(radix sort)—O(n·k); 需要 O(n) 额外记忆体Gnome sort — O(n2)Library sort — O(n log n) with high probability, 需要(1+ε)n 额外记忆体不稳定选择排序(selection sort)— O(n2)希尔排序(shell sort)— O(n log n) 如果使用最佳的现在版本Comb sort — O(n log n)堆排序(heapsort)— O(n log n)Smoothsort — O(n log n)快速排序(quicksort)—O(n log n) 期望时间, O(n2) 最坏情况; 对於大的、乱数串列一般相信是最快的已知排序Introsort — O(n log n)Patience sorting —O(n log n + k) 最外情况时间, 需要额外的 O(n + k) 空间, 也需要找到最长的递增子序列(longest increasing subsequence)不实用的排序算法Bogo排序—O(n × n!) 期望时间, 无穷的最坏情况。
时间复杂度分析及常用算法复杂度排名

时间复杂度分析及常用算法复杂度排名随着计算机技术的不断发展,人们对于算法的效率也提出了更高的要求。
好的算法可以大大地提高程序的运行效率,而坏的算法则会导致程序运行缓慢,浪费更多的时间和资源。
因此,在实际的开发中,需要对算法的效率进行评估和分析。
其中,时间复杂度是评估算法效率的重要指标之一,接下来就让我们来探讨一下时间复杂度分析及常用算法复杂度排名。
一、时间复杂度时间复杂度,简称时间复杂度,是指在算法中用来衡量算法运行时间大小的量。
通常情况下,时间复杂度用 O(n) 来表示,其中n 表示输入数据规模的大小。
由于常数系数和低次项不会对时间复杂度的大致表示产生影响,因此,时间复杂度的精确算法往往会被简化为最高次项的时间复杂度,即 O(n)。
二、时间复杂度的分析时间复杂度可以通过算法中的循环次数来分析。
一般来说,算法中的循环分为两种情况:一种是 for 循环,一种是 while 循环。
因为 for 循环的循环次数一般是固定的,因此可以通过循环次数来估算时间复杂度;而 while 循环的循环次数取决于输入数据的大小,因此时间复杂度的分析需要基于输入数据的规模进行分析和推导。
三、时间复杂度的常见表示法在实际的算法分析中,常常用到以下几种时间复杂度表示法:常数阶 O(1)、对数阶 O(logn)、线性阶 O(n)、线性对数阶 O(nlogn)、平方阶 O(n^2)、立方阶 O(n^3)、指数阶 O(2^n) 等。
常数阶 O(1):表示算法的时间不随着输入规模的增加而增加,即不论输入数据的大小,算法的运行时间都是固定的。
例如,最好的情况下,二分查找的时间复杂度即为 O(1)。
对数阶 O(logn):表示算法的时间复杂度随着输入规模的增加而增加,但增长比较缓慢,即随着输入规模的每增加一倍,算法所需的运行时间大致增加一个常数。
例如,二分查找的时间复杂度即为 O(logn)。
线性阶 O(n):表示算法的时间复杂度随着输入规模的增加而增加,增长速度与输入规模成线性比例关系。
常用排序算法的时间复杂度和空间复杂度

常⽤排序算法的时间复杂度和空间复杂度以上快速排序和归并排序的空间复杂度不正确没有的参考图1,以图2为准(对,就是懒得重新画图了)排序法最差时间分析平均时间复杂度稳定度空间复杂度冒泡排序O(n2)O(n2)稳定O(1)快速排序O(n2)O(n*log2n)不稳定O(log2n)~O(n)选择排序O(n2)O(n2)稳定O(1)⼆叉树排O(n2)O(n*log2n)不稳定O(n)序插⼊排序O(n2)O(n2)稳定O(1)堆排序O(n*log2n)O(n*log2n)不稳定O(1)希尔排序O O不稳定O(1)1.插⼊排序由N-1趟排序组成,对于p=1到p=N-1趟,插⼊排序保证从位置0到位置p上的元素为已排序状态。
时间复杂度:O(N^2)代码void InsertionSort(ElementType A[],int N){int j,p;ElementType Tmp;for(p=1;p<N;p++){Tmp=A[j];//把A[j]保存下来,因为它要被插⼊到前⾯的某个位置去for(j=p;j>0&&A[j-1]>Tmp;j--)//⼤于A[j]的元素逐个后移{A[j]=A[j-1];}A[j]=Tmp;}}2.希尔排序希尔排序使⽤⼀个序列h1,h2,h3,ht,叫做增量排序。
在使⽤增量hk的⼀趟排序之后,对于每个i我们有A[i]<A[i+hk],所有相隔hk的元素被排序。
时间复杂度:O(N^(1+a)),其中0<a<1。
//代码不太好理解,使⽤了3层循环void ShellSort(ElementType A[],int N){int j,p,Increment;ElementType Tmp;for(Increment=N/2;Increment>0;Increment/=2){for(p=Increment;p<N;p++){Tmp=A[p];for(j=p;j>=Increment;j-=Increment){if(A[j]<A[j-Increment])A[j]=A[j-Increment];elsebreak;}A[j]=Tmp;}}}3. 堆排序思想:建⽴⼩顶堆,然后执⾏N次deleteMin操作。
几种排序的算法时间复杂度比较

几种排序的算法时间复杂度比较1.选择排序:不稳定,时间复杂度 O(n^2)选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。
这样,经过i遍处理之后,前i个记录的位置已经是正确的了。
2.插入排序:稳定,时间复杂度 O(n^2)插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。
第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i] 又是排好序的序列。
要达到这个目的,我们可以用顺序比较的方法。
首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。
图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。
3.冒泡排序:稳定,时间复杂度 O(n^2)冒泡排序方法是最简单的排序方法。
这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。
在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。
所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。
如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。
显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。
在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。
一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。
4.堆排序:不稳定,时间复杂度 O(nlog n)堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。
各种排序算法的时间复杂度和空间复杂度(阿里)

各种排序算法的时间复杂度和空间复杂度(阿⾥)⼆分查找法的时间复杂度:O(logn) redis,kafka,B+树的底层都采⽤了⼆分查找法参考:⼆分查找法 redis的索引底层的跳表原理实现参考:⼆分查找法参考:⼆分查找法:1.⼆分查找⼆分查找也称为折半查找,它是⼀种效率较⾼的查找⽅法。
⼆分查找的使⽤前提是线性表已经按照⼤⼩排好了序。
这种⽅法充分利⽤了元素间的次序关系,采⽤分治策略。
基本原理是:⾸先在有序的线性表中找到中值,将要查找的⽬标与中值进⾏⽐较,如果⽬标⼩于中值,则在前半部分找,如果⽬标⼩于中值,则在后半部分找;假设在前半部分找,则再与前半部分的中值相⽐较,如果⼩于中值,则在中值的前半部分找,如果⼤于中值,则在后半部分找。
以此类推,直到找到⽬标为⽌。
假设我们要在 2,6,11,13,16,17,22,30中查找22,上图所⽰,则查找步骤为:⾸先找到中值:中值为13(下标:int middle = (0+7)/2),将22与13进⾏⽐较,发现22⽐13⼤,则在13的后半部分找;在后半部分 16,17,22,30中查找22,⾸先找到中值,中值为17(下标:int middle=(0+3)/2),将22与17进⾏⽐较,发现22⽐17⼤,则继续在17的后半部分查找;在17的后半部分 22,30查找22,⾸先找到中值,中值为22(下标:int middle=(0+1)/2),将22与22进⾏⽐较,查找到结果。
⼆分查找⼤⼤降低了⽐较次数,⼆分查找的时间复杂度为:O(logn),即。
⽰例代码:public class BinarySearch {public static void main(String[] args) {int arr[] = {2, 6, 11, 13, 16, 17, 22, 30};System.out.println("⾮递归结果,22的位置为:" + binarySearch(arr, 22));System.out.println("递归结果,22的位置为:" + binarySearch(arr, 22, 0, 7));}//⾮递归static int binarySearch(int[] arr, int res) {int low = 0;int high = arr.length-1;while(low <= high) {int middle = (low + high)/2;if(res == arr[middle]) {return middle;}else if(res <arr[middle]) {high = middle - 1;}else {low = middle + 1;}}return -1;}//递归static int binarySearch(int[] arr,int res,int low,int high){if(res < arr[low] || res > arr[high] || low > high){return -1;}int middle = (low+high)/2;if(res < arr[middle]){return binarySearch(arr, res, low, middle-1);}else if(res > arr[middle]){return binarySearch(arr, res, middle+1, high);}else {return middle;}}}其中冒泡排序加个标志,所以最好情况下是o(n)直接选择排序:排序过程:1 、⾸先在所有数据中经过 n-1次⽐较选出最⼩的数,把它与第 1个数据交换,2、然后在其余的数据内选出排序码最⼩的数,与第 2个数据交换...... 依次类推,直到所有数据排完为⽌。
排序算法比较

排序算法比较在计算机科学中,排序算法是一类重要且基础的算法。
通过对数据进行排序,我们可以更高效地检索、查找以及分析数据。
在实际应用中,我们经常需要比较不同排序算法的性能和效率,以便选择最适合特定任务的排序算法。
本文将对几种常见的排序算法进行比较。
一、冒泡排序冒泡排序是一种简单但效率较低的排序算法。
其基本思想是通过多次交换相邻的元素,将最大(或最小)的元素逐渐“冒泡”到待排序序列的末尾。
具体实现过程如下:从头开始依次比较相邻的两个元素,如果顺序不正确,则进行交换。
重复此过程,直到没有任何交换发生。
冒泡排序的时间复杂度为O(n^2),其中n为待排序序列的长度。
这使得冒泡排序在大规模数据排序时表现较差。
二、插入排序插入排序是一种简单且高效的排序算法。
它的基本思想是将未排序部分的元素依次插入到已排序部分的正确位置,直到全部元素都有序。
具体实现过程如下:将未排序部分的第一个元素插入到已排序部分中的正确位置,然后再将第二个元素插入到已排序部分中,依此类推。
插入排序的时间复杂度为O(n^2),但在实际应用中,插入排序通常要比冒泡排序快得多。
插入排序对于小规模或基本有序的数据集合表现良好。
三、选择排序选择排序是一种简单但不稳定的排序算法。
其基本思想是从未排序部分选择最小(或最大)的元素,将其放到已排序部分的末尾。
具体实现过程如下:从未排序部分中选出最小的元素,将其与未排序部分的第一个元素交换位置,然后将已排序部分的长度加1。
重复此过程,直到全部元素都有序。
选择排序的时间复杂度为O(n^2),与冒泡排序和插入排序相同。
尽管选择排序的性能较差,但由于其实现简单,对于小规模数据集合仍然是一种可用的排序方法。
四、快速排序快速排序是一种高效的排序算法,常被用作标准库中的排序函数实现。
其基本思想是通过分治的策略将待排序序列划分为较小和较大的两个子序列,然后分别对子序列进行递归排序。
具体实现过程如下:选择一个基准元素,通过一趟排序将待排序序列分割为两部分,使得左边部分的元素都小于等于基准元素,右边部分的元素都大于等于基准元素。
几种常见算法的介绍及复杂度分析

几种常见算法的介绍及复杂度分析一、排序算法1.冒泡排序:通过反复交换相邻元素实现排序,每次遍历将最大元素放到最后。
时间复杂度为O(n^2)。
2.插入排序:将未排序元素插入已排序序列的适当位置,时间复杂度为O(n^2)。
3.选择排序:每次选择最小的元素放到已排序序列末尾,时间复杂度为O(n^2)。
4. 快速排序:通过递归将数组分段,并以一个基准元素为准将小于它的元素放在左边,大于它的元素放在右边,时间复杂度为O(nlogn)。
5. 归并排序:将数组递归拆分为多个子数组,对子数组进行排序并合并,时间复杂度为O(nlogn)。
二、查找算法1.顺序查找:从头到尾依次比较目标元素与数组中的元素,时间复杂度为O(n)。
2. 二分查找:依据已排序的数组特性,将目标元素与中间位置的元素比较,并根据大小取舍一半的数组进行查找,时间复杂度为O(logn)。
3.哈希查找:通过哈希函数将目标元素映射到数组的索引位置,时间复杂度为O(1),但可能需要额外的空间。
三、图算法1.广度优先(BFS):从起始节点开始,依次访问其邻居节点,再访问邻居的邻居,直到找到目标节点或遍历所有节点。
时间复杂度为O(V+E),V为顶点数量,E为边的数量。
2.深度优先(DFS):从起始节点开始一直遍历到没有未访问的邻居,再回溯到上一个节点继续遍历,直到找到目标节点或遍历所有节点。
时间复杂度为O(V+E),V为顶点数量,E为边的数量。
3. 最短路径算法(如Dijkstra算法):通过计算起始节点到每个节点的最短路径,找到起始节点到目标节点的最短路径。
时间复杂度为O(V^2),V为顶点数量。
4. 最小生成树算法(如Prim算法):通过贪心策略找到连通图的最小权重生成树,时间复杂度为O(V^2),V为顶点数量。
四、动态规划算法1.背包问题:将问题拆解为若干子问题,并通过求解子问题的最优解推导出原问题的最优解。
时间复杂度为O(nW),n为物品数量,W为背包容量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排序算法比较主要内容:1)利用随机函数产生10000个随机整数,对这些数进行多种方法排序。
2)至少采用4种方法实现上述问题求解(可采用的方法有插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序),并把排序后的结功能果保存在不同的文件里。
3)给出该排序算法统计每一种排序方法的性能(以运行程序所花费的时间为准进行对比),找出其中两种较快的方法。
程序的主要功能:1.随机数在排序函数作用下进行排序2.程序给出随机数排序所用的时间。
算法及时间复杂度(一)各个排序是算法思想:(1)直接插入排序:将一个记录插入到已排好的有序表中,从而得到一个新的,记录数增加1的有序表。
(2)冒泡排序:首先将第一个记录的关键字和第二个记录的关键字进行比较,若为逆序,则将两个记录交换,然后比较第二个记录和第三个记录的关键字。
依此类推,直到第N-1和第N个记录的关键字进行过比较为止。
上述为第一趟排序,其结果使得关键字的最大纪录被安排到最后一个记录的位置上。
然后进行第二趟起泡排序,对前N-1个记录进行同样操作。
一共要进行N-1趟起泡排序。
(3)快速排序:通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,已达到整个序列有序。
(4)选择排序:通过N-I次关键字间的比较,从N-I+1个记录中选出关键字最小的记录,并和第I(1<=I<=N)个记录交换。
时间复杂度分析排序算法最差时间时间复杂度是否稳定?插入排序O(n2) O(n2) 稳定冒泡排序O(n2) O(n2) 稳定快速排序O(n2) O(n*logn) 不稳定2选择排序O(n2) O(n2) 稳定10000个数据的时间比较:算法名称用时插入排序122冒泡排序343快速排序7选择排序116程序源代码:/********************************************************************************************** package test;public class SortArray {private static final int Min = 1;//生成随机数最小值private static final int Max = 10000;//生成随机数最大值private static final int Length = 10000;//生成随机数组长度(测试的朋友建议不要超过40000,不然你要等很久,如果你电脑配置绝对高的情况下你可以再加个0试试)public static void main(String[] args) {System.out.println("数组长度:"+Length+", Min:"+Min+", Max:"+Max);long begin;long end;int arr[] = getArray(Length);begin = System.currentTimeMillis();insertSort(arr.clone());end = System.currentTimeMillis();System.out.println("插入法排序法消耗时间:"+(end-begin)+"毫秒");begin = System.currentTimeMillis();bubbleSort(arr.clone());end = System.currentTimeMillis();System.out.println("冒泡发排序法消耗时间:"+(end-begin)+"毫秒");begin = System.currentTimeMillis();fastSort(arr.clone(),0,arr.length-1);end = System.currentTimeMillis();System.out.println("快速排序法消耗时间:"+(end-begin)+"毫秒");begin = System.currentTimeMillis();choiceSort(arr.clone());end = System.currentTimeMillis();System.out.println("选择排序法消耗时间:"+(end-begin)+"毫秒");}/**生成随机数数组* @param length 数组长度* @return int[]*/private static int[] getArray(int length){if(length<=0)return null;int arr[] = new int[length];for (int i = 0; i < arr.length; i++) {int temp = (int)(Min+Math.random()*(Max-Min-1)); arr[i] = temp;}return arr;}/**快速发排序* @param arr 需要排序的数组* @param left 数组最小下标(一般是0)* @param right 数组最大下标(一般是Length-1)* @return int[]*/private static int[] fastSort(int[] arr,int left,int right){ if(left < right){int s = arr[left];int i = left;int j = right + 1;while(true){//向右找大于s的元素的索引while(i+1 < arr.length && arr[++i] < s);//向左找小于s的元素的索引while(j-1 > -1 && arr[--j] > s);//如果i >= j 推出循环if(i >= j){break;}else{//教化i和j位置的元素int t = arr[i];arr[i] = arr[j];arr[j] = t;}}arr[left] = arr[j];arr[j] = s;//对左面进行递归fastSort(arr,left,j-1);//对右面进行递归fastSort(arr,j+1,right);}return arr;}/**插入法排序* @param arr 需要排序的数组* @return int[]*/private static int[] insertSort(int[] arr){ for(int i = 1;i < arr.length;i++){ int temp = arr[i];int j = i - 1;while(temp < arr[j]){arr[j+1] = arr[j];j--;if(j == -1){break;}}arr[j+1] = temp;}return arr;}/**冒泡发排序* @param arr 需要排序的数组* @return int[]*/private static int[] bubbleSort(int[] arr){for(int i = 0;i < arr.length;i++){//比较两个相邻的元素for(int j = 0;j < arr.length-i-1;j++){ if(arr[j] > arr[j+1]){int t = arr[j];arr[j] = arr[j+1];arr[j+1] = t;}}}return arr;}/**选择法排序* @param arr* @return*/private static int[] choiceSort(int[] arr){for(int i = 0;i < arr.length;i++){int m = i;for(int j = i + 1;j < arr.length;j++){//如果第j个元素比第m个元素小,将j赋值给mif(arr[j] < arr[m]){m = j;}}//交换m和i两个元素的位置if(i != m){int t = arr[i];arr[i] = arr[m];arr[m] = t;}}return arr; }/**打印数组* @param arr 需要打印的数组*/private static void print(int[] arr){ if(arr==null||arr.length==0)return;for (int i = 0; i < arr.length; i++) { System.out.print(arr[i]+",");}}}测试结果:11总结:好的算法+编程技巧+高效率=好的程序。
1、做什么都需要耐心,做设计写程序则更需要耐心。
一开始的时候,好不容易写好了程序,可是等最后调试的时候发现错误很隐蔽,就很费时间了。
后来我先在纸上构思出函数的功能和参数,先把各小部分编好才编主函数,考虑好接口之后才动手编,这样就比较容易成功了。
2、做任何事情我决定都应该有个总体规划。
之后的工作按照规划逐步展开完成。
对于一个完整的程序设计,首先需要总体规划写程序的步骤,分块写,分函数写,然后写完一部分马上纠错调试。
而不是像我第一次那样,一口气写完,然后再花几倍的时间调试。
一步步来,走好一步再走下一步。
3、感觉一开始设计结构写函数体现的是数据结构的思想,后面的调试则更加体现了人的综合素质,专业知识、坚定耐心、锲而不舍,真的缺一不可。
4、通过这次实验,复习了Java语言相关知识,磨练了我的意志,是我更有了自信心。
1 11。