算法时间复杂度
常用算法时间复杂度

常用算法时间复杂度在计算机科学领域中,算法是解决问题的一种方法。
算法的好坏不仅与其解决问题的准确性相关,而且和其所需的时间和空间复杂度也有关。
时间复杂度是度量算法执行所需时间的数量级,通常用大O符号表示,因此也被称为大O复杂度。
下面介绍一些常用算法的时间复杂度。
1. 常数时间复杂度(O(1))此类算法与输入规模大小无关,执行时间始终相同。
例如,访问数组的某个元素,可以通过索引直接访问,不需要循环遍历整个数组。
2. 线性时间复杂度(O(n))此类算法的执行时间与输入规模成线性关系。
例如,遍历一个数组,需要循环访问每个元素一次,时间复杂度为O(n)。
3. 对数时间复杂度(O(logn))此类算法的执行时间与输入规模成对数关系。
例如,二分查找算法,每次执行都能将待查找元素的搜索区间缩小一半,因此时间复杂度为O(logn)。
4. 平方时间复杂度(O(n^2))此类算法的执行时间与输入规模的平方成正比。
例如,嵌套循环遍历二维数组,需要执行n*n次操作,时间复杂度为O(n^2)。
5. 立方时间复杂度(O(n^3))此类算法的执行时间与输入规模的立方成正比。
例如,嵌套循环遍历三维数组,需要执行n*n*n次操作,时间复杂度为O(n^3)。
6. 指数时间复杂度(O(2^n))此类算法的执行时间随着输入规模的增加呈指数级增长。
例如,求解某些NP问题(非确定性多项式问题)的暴力搜索算法,时间复杂度为O(2^n)。
7. 阶乘时间复杂度(O(n!))此类算法的执行时间随着输入规模的增加呈阶乘级增长。
例如,通过枚举法求解某些问题,每次需要执行n!次操作,时间复杂度为O(n!)。
在实际应用中,时间复杂度是衡量算法效率的重要指标,因此开发人员需要在设计时考虑时间复杂度优化问题。
如果算法复杂度较高,可能会导致程序执行时间过长,甚至无法正常运行。
因此,开发人员需要根据具体情况来选择合适的算法,以达到更好的性能要求。
算法的时间复杂度是指什么

算法的时间复杂度是指什么时间复杂度通常用大O符号表示。
大O表示法表示算法运行时间的上界,即算法最坏情况下的运行时间。
时间复杂度可以分为几个级别,如常数时间O(1)、对数时间O(log n)、线性时间O(n)、线性对数时间O(n log n)、平方时间O(n^2)等。
这些时间复杂度级别代表了问题规模增长时算法所需时间的不同变化速度。
在分析算法的时间复杂度时,通常关注的是算法运行时间随问题规模n的增长而变化的趋势,而不关注具体的运行时间。
因此,时间复杂度是一种抽象的概念,用于比较不同算法的运行效率。
1.基本操作数计数法:通过统计算法执行的基本操作数来估计算法的时间复杂度。
基本操作就是算法中最频繁执行的操作,例如赋值、比较、加法、乘法等。
基本操作数计数法的思路是,通过对算法中的基本操作进行计数,然后选择基本操作数最大的那一部分作为算法的时间复杂度。
2.事后统计法:通过实际运行算法并统计其执行时间来估计算法的时间复杂度。
这种方法通常用于验证理论上估计的时间复杂度是否准确。
然而,事后统计法只能得到特定输入情况下的时间复杂度,不能推断出算法的一般情况下的时间复杂度。
3.算法复杂度分析法:通过对算法中各个语句进行分析,得出算法的时间复杂度。
这种方法可以用数学方法推导出时间复杂度的表达式,通常使用数学归纳法、递推关系、循环求和等方法进行分析。
算法的时间复杂度对于衡量算法的效率非常重要。
较低的时间复杂度意味着算法可以在更短的时间内处理更大规模的问题。
因此,选择合适的算法设计和算法优化可以提高程序的运行效率,并减少资源消耗,对于大规模数据处理和系统性能优化至关重要。
时间复杂度分析及常用算法复杂度排名

时间复杂度分析及常用算法复杂度排名随着计算机技术的不断发展,人们对于算法的效率也提出了更高的要求。
好的算法可以大大地提高程序的运行效率,而坏的算法则会导致程序运行缓慢,浪费更多的时间和资源。
因此,在实际的开发中,需要对算法的效率进行评估和分析。
其中,时间复杂度是评估算法效率的重要指标之一,接下来就让我们来探讨一下时间复杂度分析及常用算法复杂度排名。
一、时间复杂度时间复杂度,简称时间复杂度,是指在算法中用来衡量算法运行时间大小的量。
通常情况下,时间复杂度用 O(n) 来表示,其中n 表示输入数据规模的大小。
由于常数系数和低次项不会对时间复杂度的大致表示产生影响,因此,时间复杂度的精确算法往往会被简化为最高次项的时间复杂度,即 O(n)。
二、时间复杂度的分析时间复杂度可以通过算法中的循环次数来分析。
一般来说,算法中的循环分为两种情况:一种是 for 循环,一种是 while 循环。
因为 for 循环的循环次数一般是固定的,因此可以通过循环次数来估算时间复杂度;而 while 循环的循环次数取决于输入数据的大小,因此时间复杂度的分析需要基于输入数据的规模进行分析和推导。
三、时间复杂度的常见表示法在实际的算法分析中,常常用到以下几种时间复杂度表示法:常数阶 O(1)、对数阶 O(logn)、线性阶 O(n)、线性对数阶 O(nlogn)、平方阶 O(n^2)、立方阶 O(n^3)、指数阶 O(2^n) 等。
常数阶 O(1):表示算法的时间不随着输入规模的增加而增加,即不论输入数据的大小,算法的运行时间都是固定的。
例如,最好的情况下,二分查找的时间复杂度即为 O(1)。
对数阶 O(logn):表示算法的时间复杂度随着输入规模的增加而增加,但增长比较缓慢,即随着输入规模的每增加一倍,算法所需的运行时间大致增加一个常数。
例如,二分查找的时间复杂度即为 O(logn)。
线性阶 O(n):表示算法的时间复杂度随着输入规模的增加而增加,增长速度与输入规模成线性比例关系。
算法时间复杂度的计算公式

算法时间复杂度的计算公式算法时间复杂度是算法效率的一种度量方式,通常用大O符号来表示,例如O(1)、O(n)、O(n^2)等。
在计算算法时间复杂度时,需要考虑算法中各种操作的时间复杂度,并将它们合并为总时间复杂度。
以下是常见的算法操作时间复杂度:1. 常数级别:O(1)2. 对数级别:O(logn)3. 线性级别:O(n)4. 线性对数级别:O(nlogn)5. 平方级别:O(n^2)6. 立方级别:O(n^3)7. 指数级别:O(2^n)计算总时间复杂度的公式如下:1. 顺序执行的操作,时间复杂度直接相加。
例如,若有操作A、B、C,它们的时间复杂度分别为O(a)、O(b)、O(c),则总时间复杂度为O(a + b + c)。
2. 嵌套执行的操作,时间复杂度取最大值。
例如,若有操作A、B,操作A执行了n次,每次的时间复杂度为O(n),操作B的时间复杂度为O(nlogn),则总时间复杂度为O(n*nlogn),即O(n^2logn)。
3. 分支语句的时间复杂度为其中时间复杂度最大的分支的时间复杂度。
例如,若有分支语句,分别包含操作A和操作B,它们的时间复杂度分别为O(a)、O(b),则分支语句的时间复杂度为O(max(a,b))。
4. 循环结构的时间复杂度为循环次数乘以循环体的时间复杂度。
例如,若有循环结构,循环次数为n,循环体包含操作A和操作B,它们的时间复杂度分别为O(a)、O(b),则循环结构的时间复杂度为O(n*max(a,b))。
综上所述,计算算法总时间复杂度需要考虑各个操作的时间复杂度以及它们的执行顺序、嵌套关系、分支和循环结构。
算法时间复杂度的计算公式

算法时间复杂度的计算公式
算法时间复杂度是衡量算法效率的重要指标,它是指算法运行时间随着问题规模的增大而增长的速度。
计算算法时间复杂度需要考虑以下几个因素:
1. 循环结构的次数:算法中循环结构执行的次数是影响时间复杂度的重要因素之一。
2. 嵌套循环结构:如果算法中有多个嵌套循环结构,那么时间复杂度的计算就要考虑这些循环的嵌套次数。
3. 条件判断语句:如果算法中有条件判断语句,那么时间复杂度的计算需要根据条件的判断次数进行计算。
4. 递归调用:如果算法中有递归调用,那么时间复杂度的计算需要根据递归的次数进行计算。
算法时间复杂度的计算公式可以表示为:
T(n) = O(f(n))
其中,T(n)表示算法的时间复杂度,f(n)表示算法执行的时间,O表示算法的渐进时间复杂度。
根据算法的实际情况,可以通过分析算法中循环结构的次数、嵌套次数、条件判断次数、递归次数等因素,来确定算法的时间复杂度。
- 1 -。
时间复杂度详解

时间复杂度详解时间复杂度详解什么是时间复杂度•时间复杂度是一种衡量算法执行效率的方式。
•它表示算法的运行时间与输入大小的关系,为我们提供了衡量算法性能的指标。
时间复杂度的表示•时间复杂度使用大O符号(O)来表示。
•O(n)表示算法的时间复杂度与输入规模n成正比。
常见的时间复杂度•O(1):常数时间复杂度,无论输入规模的大小,算法的执行时间都保持不变。
•O(log n):对数时间复杂度,随着输入规模的增加,算法的执行时间逐渐增长,但增长速度很慢。
•O(n):线性时间复杂度,算法的执行时间与输入规模n成比例增长。
•O(n log n):线性对数时间复杂度,随着输入规模的增加,算法的执行时间逐渐增长,但增长速度比O(n)慢。
•O(n^2):平方时间复杂度,算法的执行时间与输入规模n的平方成比例增长。
•O(2^n):指数时间复杂度,算法的执行时间随着输入规模n的增加而急剧增长。
•O(n!):阶乘时间复杂度,算法的执行时间随着输入规模n的增加而急剧增长。
如何计算时间复杂度•首先,确定算法的基本操作。
•其次,根据算法的基本操作,分析每个操作的时间复杂度。
•最后,根据每个操作的时间复杂度,确定整个算法的时间复杂度。
如何选择合适的算法•在设计算法时,我们应该选择时间复杂度低的算法。
•当输入规模较小时,可以选用时间复杂度较高但简单易懂的算法。
•当输入规模较大时,应该尽量选择时间复杂度较低的算法。
总结•时间复杂度是一种衡量算法执行效率的方式,它表示算法的运行时间与输入规模的关系。
•常见的时间复杂度包括常数时间复杂度、对数时间复杂度、线性时间复杂度等。
•计算时间复杂度的步骤包括确定算法的基本操作、分析每个操作的时间复杂度以及确定整体的时间复杂度。
•在选择算法时,应该根据输入规模选择合适的时间复杂度。
参考资料:[腾讯课堂-计算机科学与技术](。
算法时间复杂度计算公式

算法时间复杂度计算公式算法(Algorithm)是指⽤来操作数据、解决程序问题的⼀组⽅法。
对于同⼀个问题,使⽤不同的算法,也许最终得到的结果是⼀样的,但在过程中消耗的资源和时间却会有很⼤的区别。
那么我们应该如何去衡量不同算法之间的优劣呢?主要还是从算法所占⽤的「时间」和「空间」两个维度去考量。
时间维度:是指执⾏当前算法所消耗的时间,我们通常⽤「时间复杂度」来描述。
空间维度:是指执⾏当前算法需要占⽤多少内存空间,我们通常⽤「空间复杂度」来描述。
因此,评价⼀个算法的效率主要是看它的时间复杂度和空间复杂度情况。
然⽽,有的时候时间和空间却⼜是「鱼和熊掌」,不可兼得的,那么我们就需要从中去取⼀个平衡点。
下⾯我来分别介绍⼀下「时间复杂度」和「空间复杂度」的计算⽅式。
⼀、时间复杂度我们想要知道⼀个算法的「时间复杂度」,很多⼈⾸先想到的的⽅法就是把这个算法程序运⾏⼀遍,那么它所消耗的时间就⾃然⽽然知道了。
这种⽅式可以吗?当然可以,不过它也有很多弊端。
这种⽅式⾮常容易受运⾏环境的影响,在性能⾼的机器上跑出来的结果与在性能低的机器上跑的结果相差会很⼤。
⽽且对测试时使⽤的数据规模也有很⼤关系。
再者,并我们在写算法的时候,还没有办法完整的去运⾏呢。
因此,另⼀种更为通⽤的⽅法就出来了:「⼤O符号表⽰法」,即 T(n) = O(f(n))我们先来看个例⼦:for(i=1; i<=n; ++i){j = i;j++;}通过「⼤O符号表⽰法」,这段代码的时间复杂度为:O(n) ,为什么呢?在⼤O符号表⽰法中,时间复杂度的公式是: T(n) = O( f(n) ),其中f(n) 表⽰每⾏代码执⾏次数之和,⽽ O 表⽰正⽐例关系,这个公式的全称是:算法的渐进时间复杂度。
我们继续看上⾯的例⼦,假设每⾏代码的执⾏时间都是⼀样的,我们⽤ 1颗粒时间来表⽰,那么这个例⼦的第⼀⾏耗时是1个颗粒时间,第三⾏的执⾏时间是 n个颗粒时间,第四⾏的执⾏时间也是 n个颗粒时间(第⼆⾏和第五⾏是符号,暂时忽略),那么总时间就是 1颗粒时间 + n颗粒时间 + n颗粒时间,即 (1+2n)个颗粒时间,即: T(n) = (1+2n)*颗粒时间,从这个结果可以看出,这个算法的耗时是随着n的变化⽽变化,因此,我们可以简化的将这个算法的时间复杂度表⽰为:T(n) = O(n)为什么可以这么去简化呢,因为⼤O符号表⽰法并不是⽤于来真实代表算法的执⾏时间的,它是⽤来表⽰代码执⾏时间的增长变化趋势的。
数据结构算法时间复杂度的计算

数据结构算法时间复杂度的计算数据结构和算法时间复杂度的计算是评估算法性能的重要手段之一,通过分析算法的时间复杂度,可以了解算法在处理不同规模的输入时所需的时间。
时间复杂度是用来衡量算法执行时间随输入规模增长的趋势。
它通常用大O表示法来表示,表示算法执行时间的增长速度。
大O表示法中的O 表示"上界",即理想情况下算法的最高执行时间。
在计算时间复杂度时,我们关注算法中的基本操作数,而不是具体的执行时间。
例如,对于一个循环结构,我们关注循环体内的操作次数,而不是循环的执行时间。
下面我们将分别介绍几种常见的数据结构和算法以及它们的时间复杂度计算方法。
1. 数组(Array)数组是最简单、最常见的一种数据结构。
数组由一系列相同类型的元素组成,可以通过索引来访问和修改元素。
对于数组来说,可以通过索引直接访问任何一个元素。
所以数组的访问时间复杂度为O(1)。
2. 链表(Linked List)链表是另一种常见的数据结构,它由一系列节点组成。
节点包含了数据和指向下一个节点的指针。
对于链表来说,需要遍历整个链表来访问或者修改一些节点,所以链表的访问时间复杂度为O(n),其中n是链表的长度。
3. 栈(Stack)和队列(Queue)栈和队列是两种常见的线性数据结构。
对于栈来说,只能从栈顶插入和删除元素,所以栈的插入和删除操作的时间复杂度都是O(1)。
对于队列来说,只能从队列的一端插入元素,从队列的另一端删除元素。
队列的插入和删除操作的时间复杂度也都是O(1)。
4. 散列表(Hash Table)散列表通过将关键字映射为数组的索引,然后将值存储在该索引对应的数组位置上。
对于散列表来说,如果散列函数很好的均匀分布关键字,则散列表的插入、删除和查找操作的时间复杂度都是O(1)。
5. 树(Tree)树是一种非线性数据结构,由节点和边组成。
对于树来说,树的操作通常需要遍历整棵树来完成,所以树的插入、删除和查找操作的时间复杂度都是O(n),其中n是树的节点数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法时间复杂度 The final edition was revised on December 14th, 2020.
实验一算法的时间复杂度
一、实验目的与要求
熟悉C/C++语言的集成开发环境;
通过本实验加深对算法分析基础知识的理解。
二、实验内容:
掌握算法分析的基本方法,并结合具体的问题深入认识算法的时间复杂度分析。
三、实验题
定义一个足够大的整型数组,并分别用起泡排序、简单选择排序、快速排序和归并排序对数组中的数据进行排序(按从小到大的顺序排序),记录每种算法的实际耗时,并结合数据结构中的知识对算法的时间复杂度分析进行说明。
实验数据分两种情况:
1、数组中的数据随机生成;
2、数组中的数据已经是非递减有序。
四、实验步骤
理解算法思想和问题要求;
编程实现题目要求;
上机输入和调试自己所编的程序;
验证分析实验结果;
整理出实验报告。
五、实验程序
#include<iostream>
#include<>
#include<>
using namespace std;
void SelectSort(int r[ ], int n)
{
int i;
int j;
int index;
int temp;
for (i=0; i<n-1; i++)
{
index=i;
for (j=i+1; j<n; j++)
if (r[j]<r[index])
index=j;
if (index!=i)
{
temp=r[i];
r[i]=r[index];
r[index]=temp;
}
}
for(i=0;i<n;i++)
cout<<r[i]<<" ";
cout<<"\n";
}
void BubbleSort(int r[], int n)
{
int temp;
int exchange;
int bound;
exchange=n-1;
while (exchange)
{
bound=exchange;
exchange=0;
for (int j=0; j<bound; j++)
if (r[j]>r[j+1])
{
temp=r[j];
r[j]=r[j+1];
r[j+1]=temp;
exchange=j;
}
}
for(int i=0;i<n;i++)
cout<<r[i]<<" ";
cout<<"\n";
}
int Partition(int r[], int first, int end) {
int i=first;
int j=end;
int temp;
while (i<j)
{
while (i<j && r[i]<= r[j])
j--; if (i<j)
{
temp=r[i];
r[i]=r[j];
r[j]=temp;
i++;
}
while (i<j && r[i]<= r[j])
i++;
if (i<j)
{
temp=r[j];
r[j]=r[i];
r[i]=temp;
j--;
}
}
return i;
}
//快速排序
void QuickSort(int r[], int first, int end)
{
if (first<end)
{
int pivot=Partition(r, first, end);
QuickSort(r, first, pivot-1);
QuickSort(r, pivot+1, end);
}
}
void Merge(int r[], int r1[], int s, int m, int t) {
int i=s;
int j=m+1;
int k=s;
while (i<=m && j<=t)
{
if (r[i]<=r[j])
r1[k++]=r[i++];
else
r1[k++]=r[j++];
}
if (i<=m)
while (i<=m)
r1[k++]=r[i++];
else
while (j<=t)
r1[k++]=r[j++];
}
void MergePass(int r[ ], int r1[ ], int n, int h) {
int i=0;
int k;
while (i<=n-2*h)
{
Merge(r, r1, i, i+h-1, i+2*h-1);
i+=2*h;
}
if (i<n-h)
Merge(r, r1, i, i+h-1, n);
else for (k=i; k<=n; k++)
r1[k]=r[k];
}
void MergeSort2(int r[], int r1[], int r2[],int s, int t) {
int m;
if (s==t)
{
r1[s]=r[s];
}
else
{
m=(s+t)/2;
MergeSort2(r, r2, r1, s, m);
MergeSort2(r, r2, r1, m+1, t);
Merge(r2, r1, s, m, t);
}
}
int main()
{
int b[100];
const int numv=100;
clock_t t=clock();
for(int k=0;k<100;k++)
b[k]=rand()%100;
cout<<b[k]<<" ";
cout << "\n起泡排序结果为:" << "\n";
BubbleSort(b, numv);
cout<<clock()-t<<"ms"<<endl;
cout<<"\n 简单选择排序结果为:"<<"\n";
SelectSort(b, numv);
cout<<clock()-t<<"ms"<<endl;
cout<<"\n 快速排序结果为:"<<"\n";
QuickSort(b,0,100);
for(int j=0;j<100;j++)
cout<<b[j]<<" ";
cout<<"\n";
cout<<clock()-t<<"ms"<<endl;
const int h=100;
int b1[h];
for(int i=0;i<h;i++)
b1[i]=rand()%k;
int a1[h];
int c1[h];
cout<<"\n 归并排序结果为:"<<"\n";
MergeSort2(b1,a1,c1,0,h-1);
for(int m=0; m < h; m++)
cout<<a1[m]<<" ";
cout<<"\n";
cout<<(clock()-t)<<"ms"<<endl;
return 0;
}
六实验结果
当随机数为10时:
起泡排序结果为:4ms
简单选择排序结果为:7ms
快速排序结果为:12ms
归并排序结果为:16ms
当随机数为100时:
起泡排序结果为:20ms
简单选择排序结果为:41ms
快速排序结果为:61ms
归并排序结果为:82ms
当随机数为1000时:
起泡排序结果为:289ms
简单选择排序结果为:480ms
快速排序结果为:720ms
归并排序结果为:993ms
七、实验分析
通过本实验知道了最快排序的方法,明白了各种排序法的时间复杂度。