二次根式与勾股定理测试题(一)
2022-2023学年人教版八年级数学下册阶段性(二次根式+勾股定理)综合练习题(附答案)

2022-2023学年人教版八年级数学下册阶段性(二次根式+勾股定理)综合练习题(附答案)一、选择题(共36分)1.下列式子不是二次根式的是()A.B.C.D.2.在下列长度的各组线段中,能构成直角三角形的是()A.3,5,9B.4,6,8C.1,,2D.3.的化简结果为()A.25B.5C.﹣5D.﹣254.下列根式中,不是最简二次根式的是()A.B.C.D.5.下列运算正确的是()A.B.C.D.6.下列二次根式中,与可以合并的是()A.B.C.D.7.计算3﹣2的结果是()A.B.2C.3D.68.如图所示:数轴上点A所表示的数为a,则a的值是()A.+1B.﹣+1C.D.﹣19.如图,一棵大树被大风刮断后,折断处离地面8m,树的顶端离树根6m,则这棵树在折断之前的高度是()A.18m B.10m C.14m D.24m10.把中根号外面的因式移到根号内的结果是()A.B.C.D.11.如图,矩形ABCD的对角线AC=10,边BC=8,则图中五个小矩形的周长之和为()A.14B.16C.20D.2812.已知,则的值为()A.B.±2C.±D.二、填空题(共18分)。
13.使有意义的x的取值范围是.14.已知Rt△ABC两直角边长为5,12,则斜边长为.15.计算:5÷×所得的结果是.16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为9cm,则正方形A,B,C,D的面积之和为cm2.17.若y=,则x+y=.18.在直线l上依次摆放着七个正方形(如图),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=.三、解答题(共46分)19.计算:(1),(2).20.如图,已知在△ABC中,CD⊥AB于D,AC=12,BC=10,DB=6.(1)求CD的长.(2)求AB的长.21.在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)22.如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=13,DC=12,求四边形ABCD 的面积.23.已知a、b、c满足.(1)求a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,请求出三角形的周长,若不能,请说明理由.24.小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解答的:∵a===2﹣,∴a﹣2=﹣,∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1.∴2a2﹣8a+1=2(a2﹣4a)+1=2(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:若a=,求4a2﹣8a﹣3的值.参考答案一、选择题(共36分)1.解:A、是二次根式,故本选项不符合题意;B、是二次根式,故本选项不符合题意;C、是二次根式,故本选项不符合题意;D、不是根式,故本选项符合题意.故选:D.2.解:A、∵3+5=8<9,∴不能组成三角形,故A不符合题意;B、∵42+62=52,82=64,∴42+62≠82,∴不能组成直角三角形,故B不符合题意;C、∵12+()2=4,22=4,∴12+()2=22,∴能组成直角三角形,故C符合题意;D、∵()2+()2=8,()2=6,∴()2+()2≠()2,∴不能组成直角三角形,故D不符合题意;故选:C.3.解:=5.故选:B.4.解:因为==2,因此不是最简二次根式.故选:B.5.解:A、与不能合并,所以A选项错误;B、原式=6×2=12,所以B选项错误;C、原式==2,所以C选项准确;D、原式=2,所以D选项错误.故选:C.6.解:A、==2,与不能合并,本选项不符合题意;B、=,与可以合并,本选项符合题意;C、==3,与不能合并,本选项不符合题意;D、==,与不能合并,本选项不符合题意;故选:B.7.解:原式=(3﹣2)=.故选:A.8.解:图中直角三角形的两直角边为1,2,∴斜边长为=,那么﹣1和A之间的距离为,那么a的值是:﹣1,故选:D.9.解:如图:∵BC=8米,AC=6米,∵∠C=90°,∴AB2=AC2+BC2,∴AB=10米,∴这棵树在折断之前的高度是18米.故选:A.10.解:根据被开方数非负数得,﹣>0,解得a<0,﹣a==.故选:A.11.解:∵矩形ABCD的对角线AC=10,BC=8,∴AB===6,由平移的性质可知:五个小长方形的周长和=2×(AB+BC)=2×14=28.故选:D.12.解:∵,∴(x+)2=7∴x2+=5(x﹣)2=x2+﹣2=5﹣2=3,x﹣=±.故选:C.二、填空题(共18分)。
二次根式测试题及答案

二次根式测试题及答案
一、选择题
1. 以下哪个选项不是二次根式?
A. √3
B. √x
C. √x^2
D. √x^3
答案:D
2. 计算√(4×9)的结果是什么?
A. 6
B. 12
C. √36
D. √4×√9
答案:B
3. 以下哪个表达式等于√(2x)?
A. √2x
B. √x×√2
C. √2×√x
D. √2+√x
答案:C
二、填空题
1. 计算√(25)的结果是______。
答案:5
2. 如果√(a+b) = √a + √b,那么a和b的值分别是______。
答案:0
三、解答题
1. 化简下列二次根式:
√(32) = ______。
答案:4√2
2. 解方程:
√x + 3 = 7。
答案:x = 16
四、证明题
1. 证明√2是一个无理数。
答案:略
五、应用题
1. 一个正方形的面积是50平方厘米,求这个正方形的边长。
答案:边长为√50厘米,即5√2厘米。
六、综合题
1. 一个直角三角形的两条直角边分别为3厘米和4厘米,求斜边的长度。
答案:斜边长度为5厘米,根据勾股定理,√(3^2 + 4^2) = √(9
+ 16) = √25 = 5。
七、附加题
1. 如果一个数的平方根等于这个数本身,这个数是多少?
答案:0或1(因为√0 = 0,√1 = 1)
请注意,以上测试题及答案仅供参考,具体题目和答案应根据实际教学大纲和教材内容进行调整。
2018-2019学年初中数学二次根式、勾股定理、平行四边形一次函数和数据的分析中考模拟考试测试题

②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?
(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.
24.某初中在“读书共享月”活动中.学生都从家中带了图书到学校给大家共享阅读.经过抽样调查得知,初一人均带了2册;初二人均带了3.5册:初三人均带了2.5册.已知各年级学生人数的扇形统计图如图所示,其中初三共有210名学生.请根据以上信息解答下列问题:
(1)扇形统计图中,初三年级学生数所对应的圆心角为°;
28.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于 BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.
(1)根据条件与作图信息知四边形ABEF是
A.非特殊的平行四边形
B.矩形
C.菱形
D.正方形
(2)设AE与BF相交于点O,四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.
22.随着”互联网+“时代的到来,利用网络呼叫专车的打车方式深受大众欢迎.据了解,在非高峰期时,某种专车所收取的费用y(元)与行驶里程x(km)的函数图象如图所示.请根据图象,回答下列问题:
(1)当x≥5时,求y与x之间的函数关系式;
(2)若王女士有一次在非高峰期乘坐这种专车外出,共付费47元,求王女士乘坐这种专车的行驶里程.
【详解】
∵EF∥BC,GH∥AB,
∴四边形HPFD、BEPG、AEPH、CFPG为平行四边形,
∴S△PEB=S△BGP,
八年级下数学质量检测——二次根式与勾股定理综合测试

___中学2017—2018学年下八年级数学质量检测试卷(一)一、选择题(每小题3分,共30分)1、下列计算正确的是()A、x 6 = 3B、J—9 = -3C、Y9 = 3D、3 9 = 32、下列各式是二次根式的是()A、v―7B、<mC、a a 2 +1D、v33、要使式子、.■中3有意义,字母x的取值必须满足()3 23A、%>0B、x>—C、x>—D、x>——2 3 24、下列各组数为勾股数的是()A、6,12,13B、15,17,8C、3,4,7D、8,15,165、三角形的一边长是、:8cm,这边上的高是<12cm,则这个三角形的面积是()A、2P6cm2B、4V6cm2C、<96cm2D、<20cm26、<6F是经过化简的二次根式,且与是同类二次根式,则x为()A、2B、-2C、4D、-47、下列命题中,其逆命题不成立的是().A、同旁内角互补,两直线平行;8、在角的内部,到角的两边距离相等的点在角平分线上;C、如果两个实数相等,那么它们的平方相等;D、如果三角形的三边长a,b,c满足a2 + b2 = c2,那么这个三角形是直角三角形.8、等腰直角三角形的直角边为2,则斜边的长为()A. 22B. 2 x/2C. 1D. 29、观察下组数据,寻找规律:0、百、<6、3、2吞、<15……那么第10个数据是()A. 2 v6B. 3、.;3 C.7 D. \'而13、三角形的三边长分别为v45cm ,<80cm ,、;50cm ,则这个三角形的周长为cm 。
14、已知直角三角形的两条边长为3和4 ,则第三条边长为15、如图,NACB = 90° ,AB=10,分别以AC 、BC 为直径作半圆,面积分别记为S 1, S 2,则 S 1 + S 2 =16、如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.第16题10、已知长方形ABCD 中,AB = 3, AD = 9, 为EF 。
二次根式与勾股定理测试题(附答案)

二次根式及勾股定理习题满分: 时间:一、选择题(每题3分,共30分) 1.2x )A .0x ≥ <0 ≠0 ≤0 2.2(3)- )A .-3 3下列运算正确的是( )2323+= B. 3a-a=3 C. 233= D. ()325a a =4.23 )|A 5 B. 32 C.6 D. 35.下列根式中,最简二次根式是( ) A 4 B.12C. 2xD. 26. 2合并的是( ) A 5 B. 32 C. 6 D. 37.下列计算正确的是( )①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-;A .1个B .2个C .3个D .4个 8. 一直角三角形的两直角边长分别为3和4.则第三边的长为( ) (A 5 B.7 C. 57 D. 59.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为( )A .4 B. 6 C. 16 D. 55 10. 一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为( ) A .10米 B. 15米 米 D. 30米二、填空题(每题4分,共24分) 11.二次根式1x -在实数范围内有意义,则x 的取值范围是 。
12.已知221y x x =-+-+,则y x = 。
13. 把下列二次根式化成最简二次根式 》125= 0.01=14. 如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,则点C 的坐标为 。
15. 能够成为直角三角形三条边长的正整数,称为勾股 数.请你写出一组勾股数: 。
16. 若三角形三条边长a 、b 、c 满足2a 512c 130b -+-+-=(),则△ABC 是三角形。
人教版八年级下《二次根式》与《勾股定理》综合测试A卷(含答案)

《二次根式》和《勾股定理》综合测试A一、选择(每小题3分,共36分)1.使有意义的x的取值范围是()A. x≥1B. x≥0C. x>1D. x≠12.下列二次根式中能与合并的二次根式是()A. B. C. D.3.以下列各组数为边长的三角形是直角三角形的是()A. 1、2、3B. 9、12、15C. 1、1、D. 6、7、84.如果,那么x取值范围是()A. x≤2B. x<2C. x≥2D. x>25.若是正整数,最小的整数n是()A. 6B. 3C. 48D. 26.下列运算和化简,不正确的是()A. =0.5B.C.D.7.计算﹣的结果正确的是()A. B. C. D. 08.如图,已知两正方形的面积分别是25和169,则字母B所代表的正方形的面积是()A. 12B. 13C. 144D. 1949.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m,若公园到超市的距离为500m,则公园在医院的()A. 北偏东75°的方向上B. 北偏东65°的方向上C. 北偏东55°的方向上D. 无法确定10.设,则代数式a2+2a﹣10的值为()A. B. C. ﹣3 D. ﹣411.如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A. 8米B. 10米C. 12米D. 14米12.如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为()A. 11cmB. 12cmC. 13cmD. 14cm二、填空(每小题3分,共18分)13.要使式子在实数范围内有意义,则x的取值范围是.14.化简:= .15.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.16.计算:(+)2﹣= .17.有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为.18.如图所示,在高为3m,斜坡长为5m的楼梯表面铺地毯,至少需要地毯米.三、解答(8个小题,共66分)19.(6分)计算:(1);(2)﹣6+2.20.(8分)图①和图②均是边长为1的正方形网络,按要求用实线画出顶点在格点上的图形.(1)在图①中画出一个等腰三角形ABC,使其腰长是;(2)在图②中画出一个正方形ABCD,使其面积是5.21.(8分)计算:5+﹣×+÷.22.(8分)已知:如图,在△ABC,BC=2,S△ABC=3,∠ABC=135°,求AC、AB的长.23.(8分)某居民小区有一块长方形绿地,先进行如下改造:将长方形的长减少米,宽增加米,得到一块正方形绿地,它的面积是原长方形绿地的2倍,求改造后的正方形绿地的边长是多少米?(结果精确到1米)24.(9分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.25.(9分)阅读下列解题过程:,,请回答下列回题:(1)观察上面的解答过程,请直接写出= ;(2)根据上面的解法,请化简:.26.(10分)已知:如图,有一块Rt△ABC的绿地,量得两直角边AC=8m,BC=6m.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8m为直角边长的直角三角形,求扩充后等腰△ABD的周长.(1)在图1中,当AB=AD=10m时,△ABD的周长为;(2)在图2中,当BA=BD=10m时,△ABD的周长为;(3)在图3中,当DA=DB时,求△ABD的周长.参考答案一、1. A 2.C 3.B 4.A 5.B 6.D 7.A 8.C 9.B 10.D 11.B 12.C二、13. x>3 14.-1 15.76 16.5 17.或3 18.7三、19. 解:(1)原式=3×5÷=15÷=15.(2)原式=2=220.解:(1)、(2)如图所示:21.解:原式=+﹣+3÷=2﹣1+3=2+2.22.解:如图,过点A作AD⊥BC交CB的延长线于D,在△ABC中,∵S△ABC=3,BC=2,∴AD===3,∵∠ABC=135°,∴∠ABD=180°﹣135°=45°,∴AB=AD=3,BD=AD=3,在Rt△ADC中,CD=2+3=5,由勾股定理得,AC===.23.解:设改造后正方形绿地的边长为a米,则改造前长方形绿地的长为(a+)米,宽为(a﹣)米,由题意得,a2=2(a+)(a﹣),整理,得a2=68,a=2(取正).答:改造后正方形绿地的边长为2米.24.解:如图,连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.25.解:(1)=﹣;(2)+++…++,=﹣1+﹣+﹣+…+﹣+﹣,=﹣1,=10﹣1,=9.26.解:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴DC==6(m),则△ABD的周长为:10+10+6+6=32(m).故答案为:32m;(2)如图2,当BA=BD=10m时,则DC=BD﹣BC=10﹣6=4(m),故AD==4(m),则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;故答案为:(20+4)m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC2+AC2=AD2,即x2+82=(6+x)2,解得;x=,∵AC=8m,BC=6m,∴AB=10m,∴△ABD的周长为:AD+BD+AB=2(+6)+10=(m).。
新人教版八年级下册二次根式及勾股定理测试题

二次根式与勾股定理测试题一、选择题1. 若为二次根式, 则m 的取值为 ( )A. m ≤3B. m <3C. m ≥3D. m >32. 下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸;⑹)(11>-x x ;⑺322++x x . A. 2个 B. 3个 C. 4个 D. 5个3.当有意义时, a 的取值范围( )A .a ≥2 B .a >2 C .a ≠2 D .a ≠-24. 下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-;A. 1个B. 2个C. 3个D. 4个 5.对于二次根式, 以下说法不正确的是 ( ) A. 它是一个正数 B. 是一个无理数C. 是最简二次根式 D. 它的最小值是3 6. 把分母有理化后得( )A. B. C. D. 7.下列二次根式中, 最简二次根式是( )A . B . C . D . 8. 化简二次根式得( )A. B. C. D. 309.下列几组数中, 不能作为直角三角形三边长度的是( ) A.1.5, 2, 2.5 B.3, 4, 5 C.5, 12, 13 D.20, 30, 4010、如图, 在Rt△ABC中, ∠B=90°, BC=15, AC=17, 以AB为直径作半圆, 则此半圆的面积为(). A. 16π B. 12π C. 10π D. 8π11.已知直角三角形两边的长为3和4, 则此三角形的周长为().A. 12B. 7+C. 12或7+D. 以上都不对12.如图, 梯子AB靠在墙上, 梯子的底端A到墙根O的距离为2m, 梯子的顶端B到地面的距离为7m, 现将梯子的底端A向外移动到A′, 使梯子的底端A′到墙根O的距离等于3m. 同时梯子的顶端B下降至B′, 则BB′(). A. 小于1m B. 大于1m C. 等于1m D. 小于或等于1m 13.将一根24cm的筷子, 置于底面直径为15cm, 高8cm的圆柱形水杯中, 如图所示, 设筷子露在杯子外面的长度为hcm, 则h的取值范围是().A. h≤17cmB. h≥8cmC. 15cm≤h≤16cmD. 7cm≤h≤16cm14. 、如图, , 且, , , 则线段AE的长为();A. B、 C、 D、(第14题)15.如图, 一块直角三角形的纸片, 两直角边AC=6㎝, BC=8㎝, 现将直角边AC沿直线AD折叠, 使它落在斜边AB上, 且与AE重合, 则CD等于();A.2㎝B.3㎝C.4㎝D.5㎝16、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF ,则△ABE 的面积为( )...A 、6cm2 B 、8cm2C 、10cm2D 、12cm2二、填空题1. 当x___________时, 在实数范围内有意义. 当x 时,式子有意义2. 比较大小: ______;3. ____________;__________.4. 当a=时, 则______;5. 若成立, 则x 满足___________. 6、如图, 矩形零件上两孔中心A 、B 的距离是_____(精确到个位).7、如图, △ABC 中, AC =6, AB =BC =5, 则BC 边上的高AD =______. 7.已知: , 则 。
勾股定理及二次根式综合复习(含答案)

勾股定理及⼆次根式综合复习(含答案)勾股定理及⼆次根式复习⼀、知识梳理:(⼀)勾股定理:1、勾股定理定义:如果直⾓三⾓形的两直⾓边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直⾓三⾓形两直⾓边的平⽅和等于斜边的平⽅勾:直⾓三⾓形较短的直⾓边股:直⾓三⾓形较长的直⾓边弦:斜边勾股定理的逆定理:如果三⾓形的三边长a ,b ,c 有下⾯关系:a 2+b 2=c 2,那么这个三⾓形是直⾓三⾓形。
2. 勾股数:满⾜a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。
) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15;5,12,13 3. 判断直⾓三⾓形:如果三⾓形的三边长a 、b 、c 满⾜a 2+b 2=c 2 ,那么这个三⾓形是直⾓三⾓形。
(经典直⾓三⾓形:勾三、股四、弦五)其他⽅法:(1)有⼀个⾓为90°的三⾓形是直⾓三⾓形;(2)有两个⾓互余的三⾓形是直⾓三⾓形。
⽤它判断三⾓形是否为直⾓三⾓形的⼀般步骤是:(1)确定最⼤边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直⾓的三⾓形;若a 2+b 2<c 2,则此三⾓形为钝⾓三⾓形(其中c 为最⼤边);若a 2+b 2>c 2,则此三⾓形为锐⾓三⾓形(其中c 为最⼤边)4.注意:(1)直⾓三⾓形斜边上的中线等于斜边的⼀半(2)在直⾓三⾓形中,如果⼀个锐⾓等于30°,那么它所对的直⾓边等于斜边的⼀半。
(3)在直⾓三⾓形中,如果⼀条直⾓边等于斜边的⼀半,那么这条直⾓边所对的⾓等于30°。
5. 勾股定理的作⽤:(1)已知直⾓三⾓形的两边求第三边;(2)已知直⾓三⾓形的⼀边,求另两边的关系;(3)⽤于证明线段平⽅关系的问题;(4)利⽤勾股定理,作出长为n 的线段. (⼆)⼆次根式:1.⼆次根式的概念:形如a (a≥0)的式⼦叫做⼆次根式(⼆次根式中,被开⽅数⼀定是⾮负数,否则就没有意义,并且根式a ≥0)2.最简⼆次根式:同时满⾜:①被开⽅数的因数是整数,因式是整式(分母中不含根号);②被开⽅数中不含能开得尽⽅的因数或因式.这样的⼆次根式叫做最简⼆次根式. 3. 同类⼆次根式:⼏个⼆次根式化成最简⼆次根式后,如果被开⽅数相同,这⼏个⼆次根式就叫同类⼆次根式. 4.⼆次根式的性质:①a a ≥≥00()②()a a a 20=≥()③a aa aaa a200==>=-<||()()()④ab a b a b=?≥≥(,)00⑤babaa b=>≥(,)005.分母有理化及有理化因式:把分母中的根号化去,叫做分母有理化;两个含有⼆次根式的代数式相乘,?若它们的积不含⼆次根式,则称这两个代数式互为有理化因式.6.⼆次根式的运算(1)因式的外移和内移:如果被开⽅数中有的因式能够开得尽⽅,那么,就可以⽤它的算术根代替⽽移到根号外⾯;如果被开⽅数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外⾯,反之也可以将根号外⾯的正因式平⽅后移到根号⾥⾯.(2)⼆次根式的加减法:先把⼆次根式化成最简⼆次根式再合并同类⼆次根式.(3)⼆次根式的乘除法:⼆次根式相乘(除),将被开⽅数相乘(除),所得的积(商)仍作积(商)的被开⽅数并将运算结果化为最简⼆次根式.(4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适⽤于⼆次根式的运算.7.使分母不带根号(分母有理化)常⽤⽅法:①化去分母中的根号关键是确定与分母相乘后,其结果不再含根号的因式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式与勾股定理测试题(一)
一、选择题(每小题3分,共33分)
1.若m -3为二次根式,则m 的取值为 ( )
A .m≤3 B.m <3 C .m≥3 D.m
>3
2.下列式子中二次根式的个数有 ( ) ⑴
3
1;⑵
3
-;⑶12+-
x ;⑷38;⑸
2
3
1)(-;⑹)(11>-x x ;
⑺
3
22++x x .
A .2个
B .3个
C .4个
D .5个 3.当2
2-+a a 有意义时,a 的取值范围是
( )
A .a≥2
B .a >2
C .a≠2
D .a≠-2
4.对于二次根式92+x ,以下说法不正确的是 ( )
A .它是一个正数
B .是一个无理数
C .是最简二次根式
D .它的最小值是3 5
.
把 化简后得
( )
A .b 4
B .b
2 C .
b 21 D .
b b
2
6.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m ,顶端离地面12m ,则梯子的长度为( )
ab
a
123
A .12m
B .13m
C .14m
D .15m 7.、如图,1====D
E CD BC AB ,且AB BC ⊥,AC CD ⊥,AD DE ⊥,
则线段的长为( ); A 、
2
3 B 、2 C 、25
D 、3
8.下列几组数中,不能作为直角三角形三边长度的是( );
A 、1.5,2,2.5
B 、3,4,5
C 、5,12,13
D 、20,30,40
9、如图,一块直角三角形的纸片,两直角边6㎝,8㎝,现将
直角边沿直线折叠,使它落在斜边上,且与重合,则等于( );
A 、2㎝
B 、3㎝
C 、4㎝
D 、5㎝
10、已知,如图长方形中,3,9,将此长方形折叠,使点B 与点
D 重合,折痕为,则△的面积为( ).
A 、62
B 、82
C 、102
D 、12
2
11、已知直角三角形两边的长为3和4,则此三角形的周长为( ). A .12 B .7+
7
C .12或7+
7
D .以上都不对
12、将一根24的筷子,置于底面直径为15,高8的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为,则h 的取值范围是( ).
A .h ≤17
B .h ≥8
C .15≤h ≤16
D .7≤h ≤16
二、填空题(每空3分,共24分)
A
C D B E
第9题图
A
B E
F D
C 第104
22--x x
13.当x 时,式子1+x 有意义,当x 时,式子
有意义 14.若
x
x x
x --=--3232
成立,则x 满足.
15.比较大小:23-32-.
16.已知:
()022
=+++y x x ,则=-xy x 2 。
17. 当x 时,()x x 21122
-=-。
18、如图是2002年北京第24届国际数学家大会会徽,由4个全
等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为 ;
19、如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 ,则正方形A 、
B 、
C 、
D 的面积的和是2cm ;
20、如图,△中,=6,==5,则边上的高=.
三.计算:(16分) 20、⑴))((36163--⋅-
; ⑵633
1
2⋅⋅
;
A
B
C
D
7 cm
D
C
B
A
(3)1(3122
48)233-+÷; (4).⋅++32
18121
四、 解答题(本大题共4小题,共27分.) 21、先化简,再求值:
,其中,.
22、如图所示,有一条小路穿过长方形的草地,若6084100m,•则这条小路的面积是多少?
23、已知,如图,在△中,∠90°,平分∠,1.5,2.5, 求的长.
C D
A
B
24、如图,折叠长方形一边,点D落在边的点F处,=10,=8,求:(1)的长;(2)的长.。