大学物理第10章题库

合集下载

大学物理第10章题解

大学物理第10章题解

⼤学物理第10章题解习题10.1 两平⾏⾦属板A 、B ,带有等量异号电荷,相距为5.0mm,两板的⾯积都是150cm 2,电荷量的⼤⼩都是2.66×10-8C ,A 板带正电荷并接地,设地的电势为零,并忽略边缘效应,求B 板的电势及A B 间离A 板1.0mm 处的电势。

解:因平⾏板间电荷的分布的电场是匀强电场,有由⾼斯定理得)(100.20.50.1100.10.1,)(100.11015010854.8100.51066.201)1(23341238V V Ed Ed U m m A B A V V Q d d B QPB p PA BABAA B U sU U s-=-=-=-=-=-=-=-=E -=?E -=?=?=E -----处的电势为:板间离板的电势为:)得由(εεεσ 10.2 如图所⽰,三块平⾏的⾦属板A 、B 和C ,⾯积都为200 cm 2,A 、B 相距4.0mm ,A 、C 相距2.0mm, B 和C 都接地。

如果使A 板带+3.0×10-7的电荷,略去边缘效应,问B 、C 两板上的感应电荷各是多少?以地的电势为零,A 板的电势为多少?)(100.1100.324210410987,,6e e e 5e 43201034123 70077770E EV V sA C C C C C AB AC A B A B A C B A d QddE U Q Qd ddQQ dd Qddd d d UU d d QQQ QQ ABBAB BABABAC AACABBACABCBAC AB C AB B AB AB AC C C BAC AB CAC AC AB ABACBACABCBAB BACCAC AB C B===-==-=-=-=+-=+===∴-==-==-==-=+--=+∴=+=+--------εεσσσεσεσεσεεεσσ)联⽴得:),(由()(两边乘以板的⾯积即得)()(得)(,则由间的距离为间的距离为,设)()(间的电场强度为:,指向量,从为垂直于板⾯的单位⽮式中)(间的电场强度为:,由⾼斯定理得)(的关系为:得三块板上电荷量两间两边乘以鞭的⾯积,便)()()(理得,则由对称性和⾼斯定和则由度分别为的两⾯上电荷量的⾯密和板向着,和10.3 半径为10cm 的⾦属球A 带电1.0×10-8C 。

大学物理下第10章例题

大学物理下第10章例题
P ( a , 1 , 2 )
x
求:
EP
2

xy
dE
解:建立坐标系 o

dq dx
dE dq 4 0 r
3
o

a
P
y
r
r
dq
1
大小:
dE
dx
4 0 r
2
方向:与+x 夹角为

5
各电荷元在P 点场强方向不同,应该用分量积分:
d E x d E cos
例 已知一杆电荷线密度为,长度为L,与杆 相距L的P点有一点电荷 q 0 求 点电荷两所受的电场力。
解 dq dx
dF q0 dx 4 0 x
2
dq
q0
x
2L
x
L
O
F
2L
q0 dx 4 0 x
2

q0
8 0
L
1
例 已知两杆电荷线密度为,长度为L,相距L
求 两带电直杆间的电场力。
解 dq dx
dq dx
dF
dq
dq
O
x
L
2L x
3L
x
dxdx
x) 2 4 0 ( x
3L L
F
2 L dx0
dx
2
4 0 ( x x )
2


2
4 0
ln
4 3
2
例1. 电偶极子的电场 1.轴线延长线上 A 的场强
q
L o
dy dE 2 o r
y
x
r
p .
dE
E

《大学物理》 第二版 课后习题答案 第十章

《大学物理》 第二版 课后习题答案 第十章

习题精解10-1 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是3,,,424λλλλ。

设振源的振动方程为cos 2y A t πω⎛⎫=+ ⎪⎝⎭ ,振动周期为T.(1)这4点与振源的振动相位差各为多少?(2)这4点的初相位各为多少?(3)这4点开始运动的时刻比振源落后多少? 解 (1) 122,2,2xxπϕπϕππλλ∆∆∆==∆==3432,222x x πϕπϕππλλ∆∆∆==∆== (2)112233440,,2223,222πππϕϕϕϕππϕϕπϕϕπ=-∆==-∆=-=-∆=-=-∆=-(3) 1212343411,,,24223,,,242t T T t T T t T T t T Tϕϕππϕϕππ∆∆∆==∆==∆∆∆==∆==10-2 波源做谐振动,周期为0.01s ,振幅为21.010m -⨯,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1400u m s -=∙的速度沿x 轴的正方向传播,试写出波动方程。

解 根据题意可知,波源振动的相位为32ϕπ= 2122200, 1.010,4000.01A m u m s T ππωπ--====⨯=∙ 波动方程231.010cos 2004002x y t m ππ-⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦10-3 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。

解 (1)比较系数法 将波动方程改写成0.05cos10 2.5x y t m π⎛⎫=-⎪⎝⎭与cos x y A t u ω⎛⎫=-⎪⎝⎭比较得1120.05;10;0.21015; 2.5;0.5A m T s v s u m s u T m Tπωππλ--=======∙=∙=(2)各质元的速度为()10.0510sin 410v x t m s πππ-=⨯-∙ 所以1max 0.0510 1.57()v m s π-=⨯=∙ 各质元的加速度为()220.05(10)cos 410a x t m s πππ-=-⨯-∙ 所以22max 0.05(10)49.3()a m s π-=⨯=∙10-4 设在某一时刻的横波波形曲线的一部分如图10.1所示。

大学物理分章节题库-有答案

大学物理分章节题库-有答案

大学物理力学部分:1.一个质点在做圆周运动时,则有(B )。

A .切向加速度一定改变,法向加速度也改变B .切向加速度可能不变,法向加速度一定改变C .切向加速度可能不变,法向加速度不变D .切向加速度一定改变,法向加速度不变2. 对功的概念有以下几种说法:(1)保守力作正功时,系统内相应的势能增加;(2)质点运动经一闭合路径,保守力对质点作的功为零;(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零。

下列说法正确的是(C )。

A .(1)(2)是正确的B .(2)(3)是正确的C .只有(2)是正确的D .只有(3)是正确的3. 下列情况不可能出现的是(D )。

A. 物体具有加速度而速度为零B. 物体速率恒定,但速度仍发生改变C. 物体速率恒定,但加速度却在变化D. 物体速度恒定,但速率却在变化4. 如图所示,在边长为a 的四边形顶点上,分别固定着质量为m 的四个质点,以 OZ 为转轴(转轴到四边形近边的距离为a ,且与四边形平面平行),该系统的转动惯量为:(D )。

A. 4ma 2B. 6ma 2C. 8ma 2D. 10ma 25. 质量为m 的质点在oxy 平面内运动,运动方程为cos()sin()r a t i b t j ωω=+,其中ω、、b a 为常数,则(C )。

A. 质点所受合力方向保持不变B. 质点所受到的合力始终背离原点C. 质点所受到的合力始终指向原点D. 无法确定质点所受合力的方向6. 对质点系中的内力以下说法正确的是(D )。

A. 任何性质的内力均会引起质点系机械能的改变B. 内力不引起质点系总动能的改变C. 内力成对出现、大小相等,故内力对质点系不作功D. 内力不引起质点系总动量的改变7. 飞轮作匀变速转动时,其边缘上的一点(D )。

A. 不具有向心加速度B. 不具有切向加速度C. 其加速度是个恒矢量D. 加速度随时间不断变化8. 一人手握哑铃坐在无摩擦的转台上,以一定的角速度转动。

张三慧《大学物理学:力学、电磁学》(第3版)(B版)(课后习题 静电场中的电介质)【圣才出品】

张三慧《大学物理学:力学、电磁学》(第3版)(B版)(课后习题 静电场中的电介质)【圣才出品】

第10章 静电场中的电介质10.1 在HCl 分子中,氯核和质子(氢核)的距离为0.128 nm ,假设氢原子的电子完全转移到氯原子上并与其他电子构成一球对称的负电荷分布而其中心就在氯核上。

此模型的电矩多大?实测的HCl 分子的电矩为3.4×10-30C·m ,HCl 分子中的负电分布的“重心”应在何处?(氯核的电量为17e )解:按假设模型计算,HCl 分子的电矩为此结果比实测数值大。

设如图10-1所示,在HCl分子中负电分布的“重心”在氯核与质子中间离氯核l 距离处。

这时HCL 分子的电矩应为图10-110.2 两个同心的薄金属球壳,内、外球壳半径分别为R1=0.02 m 和R2=0.06m 。

球壳间充满两层均匀电介质,它们的相对介电常量分别为εr1=6和εr2=3。

两层电介质的分界面半径R =0.04 m 。

设内球壳带电量Q =﹣6×10-8 C ,求:(1)D 和E 的分布,并画D-r ,E-r 曲线;(2)两球壳之间的电势差;(3)贴近内金属壳的电介质表面上的面束缚电荷密度。

解:(1)由D 的高斯定律可得再由,可得D-r 和E-r曲线如图10-2所示。

图10-2(2)两球壳之间的电势差为(3)10.3 两共轴的导体圆筒的内、外筒半径分别为R1和R2,R2<2R1。

其间有两层均匀电介质,分界面半径为r0。

内层介质相对介电常量为εr1,外层介质相对介电常量为εr2,εr2=εr1/2。

两层介质的击穿场强都是Emax 。

当电压升高时,哪层介质先击穿?两筒间能加的最大电势差多大?解:设内筒带电的线电荷密度为λ,则可导出在内外筒的电压为U 时,内层介质中的最大场强(在r =R L处)为而外层介质中的最大场强(在r =r 0处)为两结果相比由于r 0<R 2,且R 2<2R 1,所以总有E 2/E 1>0,因此当电压升高时,外层介质中先达到E max 而被击穿。

而最大的电势差可由E 2=Emax 求得为10.4 一平板电容器板间充满相对介电常量为εr 的电介质而带有电量Q 。

川师大学物理第十章 静电场中的导体和电介质习题解

川师大学物理第十章 静电场中的导体和电介质习题解

第十章 静电场中的导体和电介质10–1 如图10-1所示,有两块平行无限大导体平板,两板间距远小于平板的线度,设板面积为S ,两板分别带正电Q a 和Q b ,每板表面电荷面密度σ1= ,σ2= ,σ3= ,σ4= 。

解:建立如图10-2所示坐标系,设两导体平板上的面电荷密度分别为σ1,σ2,σ3,σ4。

由电荷守恒定律得12a S S Q σσ+= (1)34b S S Q σσ+= (2)设P ,Q 是分别位于二导体板内的两点,如图10-2所示,由于P ,Q 位于导板内,由静电平衡条件知,其场强为零,即3124000002222P E σσσσεεεε=---= (3)3124000002222Q E σσσσεεεε=++-= (4) 由方程(1)~(4)式得142abQ Q Sσσ+== (5) 232a bQ Q Sσσ-=-= (6) 由此可见,金属平板在相向的两面上(面2,3),带等量异号电荷,背向的两面上(面1,4),带等量同号电荷。

10–2 如图10-3所示,在半径为R 的金属球外距球心为a 的D 处放置点电荷+Q ,球内一点P 到球心的距离为r ,OP 与OD 夹角为θ,感应电荷在P 点产生的场强大小为 ,方向 ;P 点的电势为 。

解:(1)由于点电荷+Q 的存在,在金属球外表面将感应出等量的正负电荷,距+Q 的近端金属球外表面带负电,远端带正电,如图10-4所示。

P 点的场强是点电荷+Q 在P 点产生的场强E 1,与感应电荷在P 点产生的场强E 2的叠加,即E P =E 1+E 2,当静电平衡时,E P =E 1+E 2=0,由此可得21r 2204π(2cos )Qa r ar εθ=-=-+-E E e其中e r 是由D 指向P 点。

因此,感应电荷在P 点产生的场强E 2的大小为图10–4xσ2 4σQQ aQ b 图10-2σ1σ2 σ4σ3 Q a Q b图10-1图10-322204π(2cos )QE a r ar εθ=+-方向是从P 点指向D 点。

大学物理学 第10章_静电场 习题解答 [王玉国 康山林 赵宝群]

大学物理学 第10章_静电场 习题解答 [王玉国 康山林 赵宝群]

q 6 0 q ;如果它包含 q 所在 24 0
2 2
对于边长 a 的正方形,如果它不包含 q 所在的顶点,则 e 顶点则 e 0 .
(3) 因为通过半径为 R 的圆平面的电通量等于通过半径为 R x 的球冠面的电通 量,而球冠面积*
S 2π( R 2 x 2 )[1
P R q r P'
2q a O a 3q a
+Q q a
R
d

题 10-10 图
题 10-11 图
题 10-12 图
10-12 如图所示.试验电荷 q , 在点电荷 Q 产生的电场中,沿半径为 R 的整个圆弧 的 3/4 圆弧轨道由 a 点移到 d 点的过程中电场力做功多大?从 d 点移到无穷远处的过程中, 电场力做功为多少? 解:因为在点电荷 Q 产生的电场中, U a U d 。故试验电荷 q 在点电荷 Q 产生的电 场中, 沿半径为 R 的整个圆弧的 3/4 圆弧轨道由 a 点移到 d 点的过程中电场力做功 Aad 0 ; 从 d 点移到无穷远处的过程中,电场力做功为
q0 2.0 105 C .试求该点电荷所受的电场力。
点电荷所在处产生场强为: d E
dx
4 0 d x
2 l
。整个杆上电荷在该点的场强为:
E
4 0
d x
0
dxLeabharlann 2l4 0 d d l
点电荷 q0 所受的电场力大小为:
F
方向:沿 x 轴负向
A q U d U qU d
[或另解: A
qQ 4 0 R
]


R
qE d r

大学物理电磁学典型习题

大学物理电磁学典型习题

部分习题解答第一章 静止电荷的电场1、10 解:(一定要有必要的文字说明)在圆环上与角度θ相应的点的附近取一长度dl ,其上电量 dq =λdl =0λsinθdl ,该电荷在O 点产生的场强的大小为==204RdqdE πε2004sin R dl πεθλθπελsin 400R =θd dE 的方向与θ有关,图中与电荷 dq 对O 点的径矢方向相反。

其沿两坐标轴方向的分量分别为 θθθπελθd RdE dE x cos sin 4cos 00-=-=θθπελθd RdE dE y 200sin 4sin -=-=整个圆环上电荷在圆心处产生的场强的两个分量分别为==⎰x x dE E R004πελ-⎰=πθθθ200cos sin d==⎰Y y dE E R004πελ-⎰-=πελθθ200024sin Rd 所以圆心处场强为 E = E y j = R004ελ-j 1、11 解:先将带电系统看成一个完整的均匀带电圆环计算场强,然后扣除空隙处电荷产生的场强;空隙的宽度与圆半径相比很小,可以把空隙处的电荷看成点电荷。

空隙宽度m d 2102-⨯=,圆半径m r 5.0=,塑料杆长m d r l 12.32=-=π 杆上线电荷密度m C lq/1019-⨯==λ 一个均匀带电圆环,由于电荷分布关于圆心对称,环上对称的二电荷元在圆心处产生的场强互相抵消,因而整个圆环在圆心处的场强E 1= 0 空隙处点电荷设为q /,则q / =d λ,他在圆心处产生的场强m V rdr q E /72.0442020/2===πελπε 方向由空隙指向圆心。

空隙处的电荷实际上不存在,因此圆心处场强等于均匀带电圆环在该点产生的场强与空隙处电荷在该点产生的场强之差,故m V E E E /72.021-=-= 负号表示场强方向从圆心指向空隙。

1、12 解:设想半圆形线CAD 与半圆形线ABC 构成一个圆形如图,且圆上线电荷密度均为λ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章一、填空题易:1、质量为0.10kg 的物体,以振幅1cm 作简谐运动,其角频率为110s -,则物体的总能量为, 周期为 。

易:2、一平面简谐波的波动方程为y 0.01cos(20t 0.5x)ππ=-( SI 制),则它的振幅为 、角频率为 、周期为 、波速为 、波长为 。

易:3、一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的倔强系数为 ,振子的振动角频率为 。

易:4、一横波的波动方程是y = 0.02cos2π(100t – 0.4X )( SI 制)则振幅是_________,波长是_ ,频率是 ,波的传播速度是 。

易:5、两个谐振动合成为一个简谐振动的条件是 。

易:6、产生共振的条件是振动系统的固有频率与驱动力的频率 (填相同或不相同)。

易:7、干涉相长的条件是两列波的相位差为π的 (填奇数或偶数)倍。

难:8、频率为100HZ 的波,其波速为250m/s ,在同一条波线上,相距为0.5m 的两点的位相差为:易:9、作谐振动的小球,速度的最大值为,振幅为,则振动的周期为;加速度的最大值为.难:10、如图(20)所示,1S 和2S ,是初相和振幅均相同的相干波源,相距4.5λ,设两波沿1S 2S 连线传播的强度不随距离变化,则在连线上1S 左侧各点和2S 右侧各点是(填相长或相消)。

易:11、已知平面简谐波的波动方程式为图(20)则时,在X=0处相位为 ,在处相位为 。

易:12、若弹簧振子作简谐振动的曲线如下图所示,则振幅;圆频率;初相.中:13、一简谐振动的运动方程为2x 0.03cos(10t )3ππ=+( SI 制),则频率ν为 、周期T 为 、振幅A 为 ,初相位ϕ为 。

中:14、一质点同时参与了两个同方向的简谐振动,它们的震动方程分别为10.05cos(4)()x t SI ωπ=+和20.05cos(1912)()x t SI ωπ=+,其合成运动的方程x = ;中:15、A 、B 是在同一介质中的两相干波源,它们的位相差为π,振动频率都为100Hz ,产生的波以10.0m/s 的速度传播。

波源A 的振动初位相为3π,介质中的P 点与A 、B 等距离,如图(15)所示。

A 、B 两波源在P 点所引起的振动的振幅都为10.0210m -⨯。

则P 点的振动是 (填相长或相消)。

图(15)中:16、沿同一直线且频率相同的两个谐振动,,,A 1>A 2>0和的合振动的振幅为.中:17、一横波的波动方程为 若 ,则X=2处质点的位移为 ,该处质点的振动速度为 ,加速度为 。

难:18、一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示,若t =0时:(1)振子在负的最大位移处,则初位相为 ; (2)振子在平衡位置向正方向运动,则初位相为 ; (3)振子在位移为2A处,且向负方向运动,则初位相为 ;二、选择题易:1、下列叙述中的正确者是 ( ) (A )机械振动一定能产生机械波;(B )波动方程中的坐标原点一定要设在波源上; (C )波动传播的是运动状态和能量; (D )振动的速度与波的传播速度大小相等。

易:2、一列机械波从一种介质进入另一种介质,下列说法正确的是( ) (A )波长不变; (B )频率不变; (C )波速不变; (D )以上说法都不正确。

易:3、一平面简谐波在弹性介质中传播,在介质质元从平衡位置运动到最大位移处的过程中( )(A)它的动能转换成势能; (B)它的势能转换成动能;(C)它从相邻的一段质元获得能量,其能量逐渐增大; (D)它把自己的能量传给相邻的一段质元,其能量逐渐减小。

易:4、频率为100Hz,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为31,则此两点相距 ( )(A )2m ; (B)2.19m ;(C) 0.5m; (D)28.6m。

易:5、人耳能辨别同时传来的不同的声音,是由于()A.波的反射和折射; B.波的干涉;C.波的独立传播特性;D.波的强度不同。

易:6、一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的14时,其动能为振动势能的()(1)916;(2)1116;1316;(4)15。

(3)易:7、一单摆装置,摆球质量为m .摆的周期为T。

对它的摆动过程,下述哪个说法是错误的?(设单摆的摆动角很小) ()(A) 摆线中的最大张力只与振幅有关,而与m无关;(B)周期T与m无关;(C)T与振幅无关(D)摆的机械能与m和振幅都有关。

易:8、一弹簧振子作简谐振动,当其偏离平衡位置的位移大小为振幅的1/4时,其势能为振动总能量的()A.1/16 ; B.15/16 ;C.9/16 ;D.13/16。

易:9、对于机械横波,在波峰处相应质元的能量为()(A)动能为零,势能最大;(B)动能为零,势能最零;(C)动能最大,势能为零;(D)动能最大,势能最大。

易:10、一平面简谐波在弹性媒质中传播时,在波线上某质元正通过平衡位置,则此质元的能量是()(A)动能为零,势能为零;(B)动能为零,势能最大;(C)动能最大,势能最大;(D)动能最大,势能为零。

易:11、人耳能辨别同时传来的不同频率的声音,这是因为()(A)波的反射和折射;(B)波的干涉;(C)波的强度不同;(D)波的叠加原理。

易:12、一质点作简谐振动x=6cos。

某时刻它在处,图16且向x 轴负向运动,它要重新回到该位置至少需要经历的时间为( )(A) (B)(C) (D)易:13、一质点以周期T 作谐振动,试从下列所给数值中找出质点由平衡位置到最大位移一半处的时间为( )(A) (B)(C) (D)易:14、两个小球1与2分别沿轴作简谐振动,已知它们的振动周期各为,在时,小球2的相位超前小球1的相位。

当时,两球振动的相位差为( )(A) (B)(C)(D)难:15、质点作简谐振动,震动方程为cos()x A t ωφ=-,当时间12t T=(T 为周期)时,质点的速度为: ( )(1)sin A ωφ-; (2) sin A ωφ; (3)cos A ωφ-; (4)cos A ωφ。

中:16、横波以波速υ沿x 轴负向传播,t 时刻波形曲线如图16,则该时刻( ) (1)A 点振动速度大于零;(2)B 点静止不动;(3)C 点向下运动;(4)D 点振动速度小于零;中:17、有两个沿X 轴作谐振动的质点,它们的频率ν,振幅A 都相同。

当第一个质点自平衡位置向负向运动时,第二个质点在X=-A /2处也向负向运动,则两者的相位为( )A.π/2;B.2π/3;C.π/6;D.5π/6 。

中:18、一远洋货轮,质量为m ,浮在水面时其水平截面积为S 。

设在水面附近货轮的水平截面积近似相等,设水的密度为ρ,且不计水的粘滞阻力。

货轮在水中作振幅较小的竖直自由运动是简谐运动,则振动周期为( )(1)2m gsρπ; (2)m gsρπ21 (3)gs mρπ2 ; (4)gsmρπ21中:19、两个质点各自作简谐振动,它们的振幅相同,周期相同,第一个质点的震动方程为1cos()x A t ωα=+,当第一个质点从平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为:( )(1)21cos()2x A t ωαπ=++; (2)21cos()2x A t ωαπ=+-; (3)23cos()2x A t ωαπ=--; (4)2cos()x A t ωαπ=-+; 中:21、一平面简谐波表达式为0.05sin (12)()y x SI π=--,则该波的频率、波速及波线上各点的振幅依次为( )(1)11,,0.0522-; (2)1,1,0.052-; (3)11,,0.0522; (4)2,2,0.05;中:22、在波动方程中,表示( )(A )波源振动相位; (B )波源振动初相;(C )X 处质点振动相位; (D )X 处质点振动初相。

难:23、一质点沿X 轴作简谐振动,振动方程为:))(212cos(1042SI t X ππ+⨯=-,从t=0时刻起,到质点位置在x=-2cm 处,且向x 轴正方向运动的最短时间间隔为 ( )(A )18s ; (B )14s; (C )512s ; (D )13s。

难:24、一平面谐波沿X 轴负方向传播。

已知处质点的振动方程为,波速为 ,则波动方程为( )三、判断题易:1、篮球在泥泞的地面上的跳动是简谐振动。

( )易:2、波动图像的物理意义是表示介质中的各个质点在不同时刻离开平衡位置的情况。

( )易:3、作简谐振动的弹簧振子,在平衡位置时速度具有最大值。

( ) 易:4、 手机发出的电磁波和光波一样,是典型的横波;( ) 易:5、波动过程是振动状态和能量的传播过程。

( )易:7、 实验室里的任何两列机械波都可以产生干涉现象;( ) 易:8、只要有波源,就可以产生机械波;( )易:9、人能够同时听到不同方向传来的声音是因为声音具有独立传播特性;( ) 四、计算 题易:1、一轻弹簧的下端挂一重物,上瑞固定在支架上,弹簧伸长了9.8l cm =,如果给物体一个向下的瞬时冲击力,使它具有11m s -⋅的向下的速度,它就上下振动起来。

试证明物体作简谐振动。

易:2、 如图(计算题2图)所示为弹簧振子的x-t 图线,根据图中给出的数据,写出其运动方7题图计算题5图程。

易:3、两分振动分别为1cos x t ω=(m )和23cos 2x t πω⎛⎫=+ ⎪⎝⎭(m ),若在同一直线上合成,求合振动的振幅A 及初相位ϕ。

易:4、一平面简谐波的波动表达式为⎪⎭⎫⎝⎛-=1010cos 01.0x t y π (SI )求:(1)该波的波速、波长、周期和振幅; (2)x =10m 处质点的振动方程及该质点在t =2s 时的振动速度; (3)x =20m ,60m 两处质点振动的相位差。

易:5、某平面简谐波在t=0和t=1s 时的波形如(计算题5图)图所示,试求:(1)波的周期和角频率;(2)写出该平面简谐波的表达式。

易:6、质量m 0.02kg =的小球作简谐振动,速度的最大值max 0.04m/s υ=,振幅A=0.02m ,当t 0=时,υ=-0.04m/s 。

试求:(1) 振动的周期;(2) 谐振动方程.易:7、一平面简谐波沿x 轴正向传播,波速υ=6m/s .波源位于x 轴原点处,波源的振动曲线如(计算题9图)图中所示。

求:(1)波源的振动方程;(2)波动方程.(图14)12题易:8、平面简谐波的振幅为3.0cm ,频率为50H Z ,波速为200m/s ,沿X 轴负方向传播,以波源(设在坐标原点O)处的质点在平衡位置且正向y 轴负方向运动时作为计时起点.求:(1)波源的振动方程;(2)波动方程。

相关文档
最新文档