数值分析计算方法复习提纲

合集下载

数值分析word复习纲要

数值分析word复习纲要

第1-3章 习题课 (绪论、插值、逼近)一、基本内容及基本要求 第一章、绪论1. 了解数值分析的研究对象与特点。

2. 了解误差来源与分类,会求有效数字;会简单误差估计。

3. 了解误差的定性分析及避免误差危害 第二章、插值法1. 了解插值的概念。

2. 掌握拉格朗日(Lagrange)插值法及其余项公式。

3. 了解均差的概念及基本性质,掌握牛顿插值法。

4. 了解差分的概念,会牛顿前插公式、后插公式。

5. 会埃尔米特(Hermite)插值及其余项公式。

6. 知道高次插值的病态性质,会分段线性插值和分段埃尔米特插值及其误差和收敛性。

7. 会三次样条插值,知道其误差和收敛性。

第三章、函数逼近与曲线拟合1. 了解函数逼近的基本概念,了解范数和内积空间。

2. 了解正交多项式的概念,了解切比雪夫多项式和勒让德多项式以及它们的性质,知道其他常用正交多项式。

3. 理解最佳一致逼近的概念和切比雪夫定理,掌握最佳一次一致逼近多项式的求法。

4. 理解最佳平方逼近的概念,掌握最佳平方逼近多项式的求法,了解用正交多项式做最佳平方逼近的方法。

5. 了解曲线拟合的最小二乘法并会计算,了解用正交多项式做最小二乘拟合。

6. 了解最小二乘三角逼近与快速傅里叶变换*。

二、练习.7321.1 ,7320.1 ,732.1 ,73.173********.131各有几位有效数字,问近似值、设 ==A .5,4,4,3 答:.1118 .01118 22准确无初始误差和假定系数、解二次方程=+-x x .6,992.117992.5859348059 1位有效数字有答:=+≈+=x ?008.0992.58592=-=x.1021,992.1171 )992.117(992.1171992.1171992.11711711212-⨯≤+=⎪⎭⎫ ⎝⎛+++=+==εεηηη x x .102.0 ,008475.0992.1171622-⨯≤+=εε.1021 ,008475.01621212112-⨯≤+≤+++==∴εεεεεεx x .008475.0112,有四位有效数字≈=⇒x x 说明什么?位数字求解,计算结果再用准确解位数字解方程组、用十进制6 )1,1( .127.0330.0457.0,217.0563.0780.0 33-==⎩⎨⎧=+=+y x y x y x.586.0217.0127.0)586.0563.0330.0( ,217.0563.0780.0 (1)⎩⎨⎧⨯-=⨯-=+y y x 解: .00 ,217.0563.0780.0 ⎩⎨⎧==+y y x..585897.0217.0127.0)585897.0563.0330.0( ,217.0563.0780.0 (2)⎩⎨⎧⨯-=⨯-=+y y x .00014.000014.0-=y ,127140.0127.0)329860.0330.0(-=-y 00000.1,00000.1=-=x y ).30()30( )1ln()( *42-++=f f x x x f 和计算,试用六位函数表设反双曲正弦、P19, 5,9..3)()()(*)()(,34)(3p C R V R V R R R R V R V R V R R V =='≈∆-=π %.3.0%33.0≤∆≤∆RRR R ,或只需%.1%,1)(*)()(≤∆-∴RRC R V R V R V V p 只需为的相对误差限要使,)()( 5M x f h x f ≤''在节点上造表,且有以等距假设对、;:)1( 21Mh 性插值误差不超过任意相邻两节点上的线证明.10,sin )()2( 621-⨯≤=差取多大能使线性插值误问设h x x f .102 ),2(5 3-⨯≤h 答:.,2),(21 0.5 1 0 12)( 63.02并估计误差的近似值用以求建立二次插值多项式::的函数表试由、x p y x x f x -=;2475.1)3.0(2 ;175.025.0)( 23.02 2=≈++=p x x x p or 牛拉答:.03030.0)13.0)(03.0)(13.0()3.0(2 !36660.023.0=--+≤-p6660.0)2(ln 2)(max 311=='''≤≤-x f x保证两位有效数字∴P59, 6,8.7、P59, 4.].2,,2,2[]2,,2,2[,13)( 871061046 f f x x x x f 和求设、+++=.0 )2( ,1 )1( 答:).()12(3);()(2)()(2);()]([1)( 922x T x T x T x T x T x T x T x T T k x T n n n m n m n m mn n m k =-=+=-+)()()(明次切比雪夫多项式,证是设、.[-1,1]53)( 102多项式上的线性最佳一致逼近在求、-+=x x x f .293)(21)()( )(21)()(解2*12*1-=-==-x x T x f x p x T x p x f ,:).7([-1,1]arcsin )( 11==n x x f 上的切比雪夫级数在求、[-1,1],,)(2)( 7107∈+=∑=x x T a a x p j j j 解:0,d 1arcsin )(211222奇其中=-=⎰-x xxx T a k k πxxxx T a k k d 1arcsin )(21121212⎰-++-=πθθθθπθππd )sin (sin )2]()12(cos[2 0⎰--+=k .)12(4d 1)sin(2k )12(2 2+=++=⎰k k πθθππ[-1,1].,)(491)(251)(91)(4)( 75317∈⎥⎦⎤⎢⎣⎡+++=x x T x T x T x T x p πP115,1,4(2),6,8,13,15,17(1),19,按基本方法即可,[-1,1].,4964175288315248105764)( 7537∈⎥⎦⎤⎢⎣⎡+-+=x x x x x x p π一、数值积分与数值微分第4-5章 习题课(数值积分和数值微分,解线性方程组的直接法).d )( :0∑⎰=≈nk k k baf w x x f 求积公式.,1, m次代数精度称该求积公式具有则成立次的多项式等式不准确而对于某一个成立的多项式都准确对于所有次数不超过若一个求积公式+m m.d )( ,d )( )( )( 0称为插值型求积公式,其中,得到求积公式由拉格朗日插值⎰∑⎰∑=≈===bak k nk k k bak nk k n x x l w f w x x f f x l x L [].d )()!1()(d )()(][ :0)1(x x x n f x x L x f f R banj j n b an ⎰∏⎰=+-+=-=ξ余项.d )( 0它是插值型求积公式次代数精度至少具有求积公式⇔≈∑⎰=n f w x x f nk k k ba定理.C ,C )(d )(,],[)(0)(Cotes系数Cotes公式-Newton 称为,称为上的插值型求积公式在等距节点等分,步长做将求积区间n k nk k n k bak f a b x x f kh a x nab h n b a ∑⎰=-≈+=-= .d )()!(!)1(d C0000)(⎰∏⎰∏≠=-≠=---=---=+=n n kj j kn n n kj j n kt j t k n nk t j k j t a b h th a x ,则有作变换 )],()([2d )( ,1n b f a f ab T x x f ba +-=≈=⎰得到梯形公式时当(2.3) )]()2(4)([6d )( , ,2n ,也称为得到抛物线公式时当b f ba f a f ab S x x f b a+++-=≈=⎰n)公式辛普森(Simpso )4.2( .4,)],(7)(32)(12)(32)(7[90,443210ab h kh a x x f x f x f x f x f ab C n k -=+=++++-==其中得到时当公式柯特斯(cotes).,C 8)(公式不稳定出现负值时柯特斯系数表C N n n k -≥ .].,[ ),(12)(][ ],[)(3b a f a b T I f R b a x f T ∈''--=-=''ηη则梯形公式的余项为 上连续,在若 ].,[),(2 180 )]()2(4)([6d )(][ 辛普森 ,],[)()4(4)4(b a f a b a b b f ba f a f ab x x f S I f R b a x f baS ∈⎪⎭⎫ ⎝⎛---=+++--=-=⎰ηη公式的余项为则上连续在若.)]()(2)([2)]()([2 1101∑∑-=-=+++=+=n i i n i i i n b f x f a f hx f x f h T ).(12)(12)](121[2313ηηηf h a b f h n f h T I n i i n ''--=''-=''-=-∑-=)].()(2)(4)([6101121b f x f x f a f hS n i n i i i n +++=∑∑-=-=+).,( ),(8802)(2180)4(410)4(4b a f h a b f h h S I n i i n ∈--=⎪⎭⎫ ⎝⎛-=-∑-=ηηη)].()([2)1(1b f a f ab T +-=初值.)(221 ),2,1,0( 2)2(1221∑-=++==-=n i i n n i x f h T T i ab h 计算,令 .63/ ,15/C ,3/ )3(222222)()()(求加速值n n n n n n n n n n n n C C C R S S S T T T S -+=-+=-+=).2( )4(否则,转满足精度要求;., ,12,)(d )()( ,010 高斯求积公式高斯点求积公式为并称此则称此组节点为次代数精度具有使插值型求积公式若一组节点+≈≤<<<≤∑⎰=n x f w x x f x b x x x a ni i i ban ρ0.d )()()( ,)()()())(()( 110110=---=⇔≤<<<≤⎰++ba n n n n x x P x x x x P n x x x x x x xb x x x a ωρρω即正交带权的多项式不超过与任何次数高斯点是插值型求积公式的节点 定理 .],[ ,d )()()!22()( ][21)22(b a x x x n f f R b a n n n ∈+=⎰++ηρωη[]),(2)()(1)(010ξf h x f x f h x f ''--='[]).(2)()(1)(011ξf hx f x f h x f ''+-='),(3)]()(4)(3[21)(22100ξf h x f x f x f h x f '''+-+-='),(6)]()([21)(2201ξf h x f x f h x f '''-+-=').(3)](3)(4)([21)(22102ξf h x f x f x f h x f '''++-=').(12)]()(2)([1)()4(221021ξf h x f x f x f h x f -+-=''基本内容及基本要求1. 了解数值求积的基本思想、代数精度的概念、插值型求积公式及其代数精度、求积公式的收敛性和稳定性。

数值分析复习提纲

数值分析复习提纲
数值分析复习提纲
标注页码均为《应用数值分析》第三版页码
一、基本概念
1. 绝对误差和相对误差 定义:设数 a 是准确值,x 是 a 的一个近似值,则
记 e a x 为近似值 x 的绝对误差, er a x / a e / a 为近似值 x 的相对误差,由于
有些情况下准确值 a 未知,实际计算中相对误差可改用式 er a x / x e / x 。
P 67 例 2-35
基本原理:应用定理 2-9,对列分块的矩阵 A 作初等反射变换将其化简为上三角阵。

-2
例:已知矛盾方程组
Ax=b,其中
A=

1

2

1
1
0

,b

1
,用
Householder
方法求矩阵
-
10

1
11
A 的正交分解,即 A QR 。
若 e a x x ,称x 为数 a 的近似值 x 的绝对误差限;若 er a x / x r x ,称 r x
为相对误差限,显然有 r x x / x 。
2. 有效数字
先做绝对误差运算 e a x ,然后得到使 e 1 10n 成立的最大整数值 n。 2


0 a12



,U





ann1 0

a1n

an
1n

0


迭代分量形式:
xik 1


bi

n
aij
x
j
k

数值分析复习提纲(修改完)

数值分析复习提纲(修改完)

第一章 绪论【考点1】绝对误差概念。

近似数的绝对误差(误差):()a =x a E -,如果()δa E ≤则称δ为a 的绝对误差限(误差限)。

【考点2】相对误差限的概念。

近似数a 的相对误差:()()/x a x =a E r -,实际运算()()/a a x a E r -=,a r /δδ=。

【考点3】有效数字定义。

设*x 的近似值a 可表示为n m a a .a a= 21010⨯±,m 为整数,其中1a 是1到9中的一个整数,n a a 2为0到9中的任意整数,若使()n m a||=|x a |E -*⨯≤-1021成立,则a 称近似*x 有位有效数字。

例:设256010002560,00256702.×=.a .=x -*=,则4-10×21=0.00005a -x ≤*。

因为,2-m=所以2n=,a 有2位有效数字。

若257.01000257.02⨯==-a ,则5102100000500000030-≤×=..=x-a ,因为2-=m ,所以3=n ,a 有3位有效数字。

例:设000018.x=,则00008.a=具有五位有效数字。

41021000010-≤×.=x-a ,因为1=m ,所以5=n ,即a 具有五位有效数字。

例:若3587.64=x *是x 的具有六位有效数字的近似值,求x 的绝对误差限。

410×0.358764=x *,即4=m ,6=n ,0.005=1021x -x 6-4⨯≤*【考点4】四舍五入后得到的近似数,从第一位非零数开始直到末位,有几位就称该近似数有几位有效数字。

【考点5】有效数字与相对误差的关系。

设x 的近似数为n m a a .a ×a= 21010±,)(a 01≠如果a 具有n 位有效数字,则的相对误差限为()111021--≤n r ×a δ,反之,若a 的相对误差限为()()1110121--+≤n r ×a δ,则a 至少具有n 位有效数字。

(完整)数值计算方法复习

(完整)数值计算方法复习

2016计算方法复习务必通过本提纲例子和书上例子掌握如下书本内容:1. 会高斯消去法;会矩阵三角分解法;会Cholesky 分解的平方根法求解方程组2. 会用插值基函数;会求Lagrange, 会计算差商和Newton 插值多项式和余项3. 会Jacobi 迭代、Gauss —Seidel 迭代的分量形式,迭代矩阵,谱半径,收敛性4. 会写非线性方程根的Newton 迭代格式;斯蒂芬森加速5. 会用欧拉预报-校正法和经典四阶龙格—库塔法求解初值问题6. 会最小二乘法多项式拟合7. 会计算求积公式的代数精度;(复化)梯形公式和(复化)辛普生公式求积分;高斯-勒让德求积公式第1章、数值计算引论(一)考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;误差的传播。

(二) 复习要求1。

了解数值分析的研究对象与特点。

2。

了解误差来源与分类,会求有效数字; 会简单误差估计. 3.了解误差的定性分析及避免误差危害。

(三)例题例1. 设x =0.231是精确值x *=0。

229的近似值,则x 有2位有效数字。

例2. 为了提高数值计算精度, 当正数x 充分大时, 应将)1ln(2--x x 改写为)1ln(2++-x x .例3. 3*x 的相对误差约是*x 的相对误差的1/3 倍.第2章、非线性方程的数值解法(一)考核知识点对分法;不动点迭代法及其收敛性;收敛速度; 迭代收敛的加速方法;埃特金加速收敛方法;Steffensen 斯特芬森迭代法;牛顿法;弦截法. (二) 复习要求1.了解求根问题和二分法.2。

了解不动点迭代法和迭代收敛性;了解收敛阶的概念和有关结论。

3。

理解掌握加速迭代收敛的埃特金方法和斯蒂芬森方法。

4。

掌握牛顿法及其收敛性、下山法, 了解重根情形. 5.了解弦截法. (三)例题1。

为求方程x 3―x 2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )(A )11,1112-=-=+k k x x x x 迭代公式 (B )21211,11kk x x x x +=+=+迭代公式(C ) 3/12123)1(,1k k x x x x +=+=+迭代公式 (D )231x x =-迭代公式11221+++=+k k kk x x x x 解:在(A)中,2/32)1(21)(,11)(,11--='-=-=x x x x x x ϕϕ2/3)16.1(21->=1.076故迭代发散。

数值计算方法复习提纲

数值计算方法复习提纲

i0
i0
2) 解之即得(1)的最小二乘解
2021/3/1
-14-
14
02:59
❖ 一般曲线拟合
利用最小二乘原理求矛盾方程组的最小二乘解(会 计算) (★)
❖ 插值条件、插值点
❖ 插值多项式
插值多项式的存在、唯一性:
❖ 故Ln(x)与Nn(x)等价
Lagrang插值多项式(★)
❖ 构造
f (
x)
n
lk (
k0
x )yk
n
(
k0
n i0
(x ( xk
xi xi
) )
yk
ik
❖ 余项
n
lk ( x ) 1
k0
❖ 线性插值、抛物插值公式及其截断误差
复习
2021/3/1
-1-
1
02:59
第一章 绪论及误差估计
误差的来源、分类(★) 误差的估计(★)
❖ 绝对误差、绝对误差限 ❖ 相对误差、相对误差限 ❖ 有效数字 ❖ 和、差、积、商的误差
数值计算(近似计算)的基本原则(★)
2021/3/1
-2-
2
02:59
第2章 非线性方程求根
非线性方程求根的基本步骤(★)
第5章 最小二乘法与曲线拟合
最小二乘原理及正规方程组的构造(计算) (★)
❖ 多项式拟合: y=a0+a1x+…+amxm (1)
1) 对应的正规方程组:CTCa=CTy
n
n
xi
CTC
i0 n
xi2
i0
....
n
xim
n
xi
i0 n
xi2

数值计算方法重点复习内容

数值计算方法重点复习内容
及其收敛性判定;
Newton迭代方法求非线性方程组的迭代格式。
➢第七章
最小二乘问题的定义、思想及其求法;
❖广义逆矩阵 A和 最小二乘解的关系;
Householder变换的定义、性质、求法及应用;
Givens变换的定义、性质、求法及应用;
➢第八章
幂法的迭代格式及其应用; ❖反幂法的迭代格式及其应用; QR方法的思想。
《数值计算方法》重点复习内容 ➢第一章
基本概念:误差的分类、绝对误差和相对误差、
有效字;
❖误差分析的原则:避免相近的数相减等。
➢第二章
二分法及对分次数的计算; ❖不动点迭代:几何意义、迭代函数的构造、迭代
格式的收敛性判定方法。
Newton迭代及其收敛性。
➢第三章
代数插值函数的定义、存在唯一性、误差估计式; ❖Lagrange插值多项式、n次Lagrange插值基函数
➢第九章
单步法的构造方法:Taylor展开法; ❖Euler公式、 Euler预报-校正公式
和经典4阶Runge-Kutta公式及其应用;
单步法的局部截断误差、收敛阶的定义;
梯形公式、Simpson公式及其余项;
复化梯形公式、复化Simpson公式及其余项; Gauss型求积公式的定义及其特点。 数值微分的三点公式计算近似导数定理。
➢第五章
常用的向量范数和矩阵范数的定义及求法;
❖列主元Gauss消去法、Doolittle分解方法;
条件数的定义及其计算。
➢第六章
了解向量序列和矩阵序列的定义、收敛性; ❖一般迭代法的形式、收敛性判定; Jacobi、Gauss-Seidel迭代格式(包括分量形式)
的性质(习题4-4)、Newton插值多项式

数值计算方法总结计划复习总结提纲.docx

数值计算方法总结计划复习总结提纲.docx

数值计算方法复习提纲第一章数值计算中的误差分析12.了解误差 ( 绝对误差、相对误差 )3.掌握算法及其稳定性,设计算法遵循的原则。

1、误差的来源模型误差观测误差截断误差舍入误差2误差与有效数字绝对误差E(x)=x-x *绝对误差限x*x x*相对误差E r (x) ( x x* ) / x ( x x* ) / x*有效数字x*0.a1 a2 ....a n10 m若x x*110m n ,称x*有n位有效数字。

2有效数字与误差关系( 1)m 一定时,有效数字n 越多,绝对误差限越小;( 2)x*有 n 位有效数字,则相对误差限为E r (x)110 (n 1)。

2a1选择算法应遵循的原则1、选用数值稳定的算法,控制误差传播;例I n 11n xdxex eI 0 11I n1nI n1e△ x n n! △x02、简化计算步骤,减少运算次数;3、避免两个相近数相减,和接近零的数作分母;避免第二章线性方程组的数值解法1.了解 Gauss 消元法、主元消元法基本思想及算法;2.掌握矩阵的三角分解,并利用三角分解求解方程组;(Doolittle 分解; Crout分解; Cholesky分解;追赶法)3.掌握迭代法的基本思想,Jacobi 迭代法与 Gauss-Seidel4.掌握向量与矩阵的范数及其性质, 迭代法的收敛性及其判定。

本章主要解决线性方程组求解问题,假设n 行 n 列线性方程组有唯一解,如何得到其解?a11x1a12x2...a1nxn b1a21x1a22x2...a2nxn b2...an1x1an 2x2...annxn b n两类方法,第一是直接解法,得到其精确解;第二是迭代解法,得到其近似解。

一、Gauss消去法1、顺序G auss 消去法记方程组为:a11(1) x1a12(1) x2... a1(1n) x n b1(1)a21(1) x1a22(1) x2... a2(1n) x n b2(1)...a n(11) x1a n(12) x2... a nn(1) x nb n(1)消元过程:经n-1步消元,化为上三角方程组a11(1) x1b1(1)a 21(2) x1a22(2 ) x2b2( 2 )...a n(1n) x1a n(n2) x2...a nn(n ) x nb n( n )第k步若a kk(k)0( k 1)( k)a ik(k )(k )( k 1)( k )a ik(k )( k)aij aij a kk(k )akj bi b i a kk(k )b k k 1,...n 1 i, j k 1,....,n回代过程:x n b n(n)/ a nn(n)nx i (b i(i )a ij(i ) x j ) / a ii(i)(i n 1, n 2,...1)j i 12、G auss—Jordan消去法避免回代,消元时上下同时消元3、G auss 列主元消去法例:说明直接消元,出现错误0.00001x12x22x1x23由顺序G auss 消去法,得x21, x10 ;Ga uss 列主元消去法原理:每步消元前,选列主元,交换方程。

数值分析期末复习

数值分析期末复习

《数值分析》期末复习提纲第一章数值分析中的误差(一) 考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。

误差的定性分析(二)复习要求1. 知道产生误差的主要来源。

2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。

3. 知道四则运算中的误差传播公式。

4. 避免误差危害的若干原则第二章插值法(一) 考核知识点插值函数,插值多项式,被插值函数,节点;拉格朗日插值多项式:插值基函数;均差及其性质,牛顿插值多项式;分段线性插值、线性插值基函数。

(二)复习要求1. 了解插值函数,插值节点等概念。

2. 熟练掌握拉格朗日插值多项式的公式,知道拉格朗日插值多项式余项。

3. 掌握牛顿插值多项式的公式,了解均差概念和性质,掌握均差表的计算,知道牛顿插值多项式的余项。

4. 掌握分段线性插值的方法和线性插值基函数的构造。

第三章函数逼近(一) 考核知识点函数逼近的基本概念,内积,范数,勒让德与切比雪夫正交多项式,最佳一次一致逼近,最佳平方逼近,曲线拟合的最小二乘法(二)复习要求1. 熟练掌握内积,范数等基本概念。

2. 熟练掌握勒让德与切比雪夫正交多项式的性质。

3. 掌握用多项式做最佳平方逼近的方法。

4. 最小二乘法及其计算方法。

第四章数值积分与数值微分(一) 考核知识点数值求积公式,求积节点,求积系数,代数精度;插值型求积公式,牛顿―科特斯求积公式,牛顿―科特斯系数及其性质,(复合)梯形求积公式,(复合)Simpson求积公式;高斯型求积公式,高斯点,(二点、三点)高斯―勒让德求积公式;(二) 复习要求1. 熟练掌握数值积分和代数精度等基本概念。

2. 熟练掌握牛顿−科特斯求积公式和科特斯系数的性质。

熟练掌握并推导(复合)梯形求积公式和(复合)Simpson求积公式。

3. 知道高斯求积公式和高斯点概念。

会用高斯−勒让德求积公式求定积分的近似值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析总复习提纲数值分析课程学习的内容看上去比较庞杂,不同的教程也给出了不同的概括,但总的来说无非是误差分析与算法分析、基本计算与基本算法、数值计算与数值分析三个基本内容。

在实际的分析计算中,所采用的方法也无非是递推与迭代、泰勒展开、待定系数法、基函数法等几个基本方法。

一、误差分析与算法分析误差分析与算法设计包括这样几个方面: (一)误差计算 1、截断误差的计算截断误差根据泰勒余项进行计算。

基本的问题是(1)1()(01)(1)!n n f x x n,已知ε求n。

例1.1:计算e 的近似值,使其误差不超过10-6。

解:令f(x)=e x ,而f (k)(x)=e x ,f (k)(0)=e 0=1。

由麦克劳林公式,可知211(01)2!!(1)!n x xn x x e e x x n n当x=1时,1111(01)2!!(1)!e e n n故3(1)(1)!(1)!n e R n n 。

当n=9时,R n (1)<10-6,符合要求。

此时, e≈2.718 285。

2、绝对误差、相对误差及误差限计算绝对误差、相对误差和误差限的计算直接利用公式即可。

基本的计算公式是:①e(x)=x *-x =△x =dx② *()()()ln r e x e x dxe x d x x x x③(())()()()e f x f x dx f x e x ④(())(ln ())r e f x d f x⑤121212121122121122((,))(,)(,)(,)()(,)()x x x x e f x x f x x dx f x x dx f x x e x f x x e x ⑥121212((,))((,))(,)f x x f x x f x x⑦ x注意:求和差积商或函数的相对误差和相对误差限一般不是根据误差的关系而是直接从定义计算,即求出绝对误差或绝对误差限,求出近似值,直接套用定义式()()r e x e x x或x, 这样计算简单。

例1.2:测得圆环的外径d 1=10±0.05(cm),内径d 2=5±0.1(cm)。

求其面积的近似值和相应的绝对误差限、相对误差限。

解:圆环的面积公式为: 2212()4S d d所以,圆环面积的近似值为 222(105)58.905()4S cm由上述讨论,面积近似值的绝对误差限为112211222()(2()2())(()())42(100.0550.1)21.57()S d d d d d d d d cm相对误差为() 1.57()100% 2.7%58.905S S S相对误差要化成百分数。

3、绝对误差、相对误差、有效数字的关系计算绝对误差、相对误差、有效数字的关系依据如下结论讨论: ①如果一个数*1231110.(0)n n n x a a a a a a a其近似值12310.n n x a a a a a是对x*的第n+1位进行四舍五入后得到的,则x 有n 位有效数字,且其绝对误差不超过 1102n ,即 1*102n x x 。

②如果一个数*1231110.10(0)m n n n x a a a a a a a的近似值12310.10m n n x a a a a a是对x*的第n+1位进行四舍五入后得到的,则x 有n 位有效数字,且其绝对误差不超过 1102m n ,即 1*102m n x x 。

③设12310.10m n n x a a a a a 是x*的具有n 位有效数字的近似值,则其相对误差限为111102n a反之,若x 的相对误差限111102(1)n a则x 至少具有n 位有效数字。

例的近似值,使其绝对误差不超过31102。

解:因为12所以,化成12310.10m n n x a a a a a 的形式,有11,1a m 。

而31411101022,所以,由定理2,n=4,所以近似值应保留4位有效数字。

1.732 。

例的近似值的相对误差不超过410 ,应取几位有效数字?(5%)解:设取n 个有效数字可使相对误差小于410 ,则 141110102n a ,而34 ,显然13a ,此时,114111101010223n n a ,即14110106n , 也即561010n 所以,n=5。

例1.5:已知近似数x 的相对误差限为0.3%,问x 至少有几个有效数字? 解:设x 有n 位有效数字,其第一位有效数字按最不利情况取为9,则11311110.3%10101010002(91)2102210n n n n由上可得6101000n ,n≈2.2,所以取n=2。

指出:也可以按首位为1,9分别计算,取较小者。

4、计算方法的余项计算各种计算方法的余项的计算根据相应的余项定理进行。

(二)误差分析精度水平的分析主要依据两个结论: 相对误差越小,近似数的精确度越高。

一个近似数的有效数字越多,它的相对误差越小,也就越精确。

反之亦然。

例1.6: 测量一个长度a 为400米,其绝对误差不超过0.5米,测量另一长度b 为20米,其绝对误差不超过0.05米。

问,哪一个测量的更精确些?解:0.50.125%4000.050.25%20aa bb ab显然,δa < δb 所以测值a 更准确一些。

答:测值a 更准确一些。

指出:衡量测量工作的好坏用相对误差。

解决这样的题目就是三个步骤: 第一,求出两个相对误差。

第二,比较两个相对误差的大小。

第三,结论。

(三)算法分析 1、稳定性分析算法的稳定性通过对计算的误差的扩缩情况进行分析。

例1.7:设近似值T 0=S 0=35.70具有四位有效数字,计算中无舍入误差,试分析分别用递推式15142.8i i T T 和11142.85i i S S计算T 20和S 20所得结果是否可靠。

解:设计算T i 的绝对误差为e(T i )=T i *-T i ,其中计算T 0的误差为ε,那么计算T 20的误差为e(T 20)=T 20*-T 20=(5T 19*-142.8)-(5T 19-142.8)=5(T 19*-T 19) =5e(T 19)=52e(T 18)=……=520e(T 0) 显然误差被放大,结果不可靠。

同理,202001()()5e S e S,误差缩小,结果可靠。

指出:注意理论分析,因此初始近似值本身是不必要的。

2、收敛性分析算法的收敛性分析主要是迭代法解方程的收敛性分析和迭代法解方程组的收敛性分析,其他计算方法的收敛性分析一般在具体计算过程中体现。

(1)迭代法收敛性判定的基本结论是:定理(迭代法基本定理):对于任意的f∈R n ,和任意的初始向量x (0)∈R n ,迭代法x (k+1)=Bx (k)+f(k=0,1,2,…)收敛的充分必要条件是迭代矩阵B 的谱半径ρ(B)<1。

推论:若1B ,则迭代格式x (k+1)=Bx (k)+f(k=0,1,2,…)收敛。

(2)判定雅可比迭代法、高斯—赛德尔迭代法收敛的基本依据是: 定理: 设线性方程组Ax=b,其系数矩阵为111212122212(0)n n ii n n nn a a a a a a A a a a a则雅可比迭代法迭代矩阵的特征值满足如下条件:1112121222120nnn n nn a a a a a a a a a;高斯-赛德尔迭代法迭代矩阵的特征值满足如下条件:1112121222120nnn n nna a a a a a a a a。

(3)系数矩阵为严格对角占优矩阵的方程组的迭代法收敛性:定理:系数矩阵为严格对角占优的线性方程组,它的雅可比迭代和高斯-赛德尔迭代都是收敛的。

指出:迭代法基本定理是一般结论,对任意迭代法的收敛性都能分析。

限定雅可比迭代法和高斯-赛德尔迭代法则不必应用基本定理,以回避求迭代矩阵。

例1.8:已知线性方程组1231231232211221x x x x x x x x x求解这个方程组的雅可比迭代法和高斯—赛德尔迭代法是否收敛? 解:122111221A ,令2211022,则312300 , 所以ρ(B J )=0<1所以雅可比迭代法收敛。

而21232210(2)00,222, 所以ρ(B G-S )=2>1所以高斯—赛德尔迭代法发散。

二、基本计算与基本算法 (一)秦九韶算法秦九韶算法是一种求多项式的值的计算方法。

对任意给定的x,计算代数多项式1110()n n n n n P x a x a x a x a的值,可以利用下面的方法计算:1210()((()))n n n n P x a x a x a x a x a这种算法就是著名的秦九韶算法。

是我国宋朝伟大的数学家秦九韶的伟大发现。

秦九韶算法可以写成递推的形式:10(1,2,1,0)()n n k k kn s a s xs a k n p x s具体计算式,递推格式是采用如下表格形式进行计算:1232101123211123210()knn n n k nn n k k k n n n n n a a a a a a a a x xs xs xs xs xs xs xs s a xs s a s s s s s s 根据递推规则,计算的过程是要把横线上面每一竖列的两个数相加得横线下的数。

其中a k 由多项式给出,而每一个xs k+1则由前一列中的s k+1与已知数x 相乘得出。

所以可以由最前一列逐步递推计算出最后结果。

例2.1:用秦九韶算法计算多项式 76432()23461p x x x x x x x 在x=2处的值p(2)。

解:将所给多项式的系数按降幂排列,缺项系数为0。

1203416122006410810032549计算过程如下: ①s 7=a 7=1。

②x .s 7=2。

③s 6=a 6+xs 7=-2+2=0(竖向相加) ④重复以上过程。

⑤s 0=-1-8=-9。

所以,p(2)=-9。

(二)有效的基本算法所谓有效的基本算法是指,根据算法设计的原则,设计出的一些求值计算的基本算法,这些算法避免了两个相近的数相减、较小的数作除数等使得计算误差增大的问题,减少了计算次数,通过调整计算顺序避免了大数吃小数。

例2.2:指出下列各题的合理计算途径(对给出具体数据的,请算出结果) [1]1-cos1○(三角函数值取四位有效数字)[2]ln(30 (对数函数值取六位有效数字)[3]1cos sin x x(其中x 的绝对值很小)[4]x 127[5]10011(1)n n n解:[1]201cos 2sin ,sin 0.50.00872xx[2]300.01667,ln(30 4.09414[3] 1cos sin tan sin 1cos 2x x xx x[4]x 127=x·x 2·x 4·x 8·x 16·x 32·x 64[5]由小到大依次相加。

相关文档
最新文档