钢构焊缝计算(受力)
钢结构的连接焊缝

3.2 焊接方法和焊缝连接形式
3.2.2 焊缝连接形式及焊缝形式 3.2.2.2 焊缝形式
焊缝形式:主要有对接焊缝和角焊缝(连续角焊缝和间断续角
焊缝)。
对接焊缝:分为正对接焊缝[图3.5(a)]和斜对接焊缝[图3.5(b)]。
角焊缝:可分为正面角焊缝、侧面角焊缝和斜焊缝[图3.5(c)] 。
3.2 焊接方法和焊缝连接形式
3.2.1 钢结构常用焊接方法 3.2.1.3 气体保护焊
气体保护焊:利用二氧化碳气体或其他惰性气体
作为保护介质的一种电弧熔焊方法。它直接依靠保护 气体在电弧周围造成局部的保护区,以防止有害气体 的侵入并保证了焊接过程中的稳定性。
特点:气体保护焊的焊缝熔化区没有熔渣,焊工能
3.4(a)所示为采用对接焊缝的对接连接,由于相互连接的两构件在 同一平面内,因而传力均匀平缓,没有明显的应力集中,且用料经济, 但是焊件边缘需要加工,被连接两板的间隙和坡口尺寸有严格的要求。
3.2 焊接方法和焊缝连接形式
3.2.2 焊缝连接形式及焊缝形式 3.2.2.1 焊缝连接形式
角焊缝的对接连接:图3.4(b)所示为用双层盖板和角焊缝
3.2.4 焊缝代号(参考p195~197《焊缝符号表示方法》GB324-88)
《建筑结构制图标准》规定:焊 缝代号由引出线、图形符号和辅 助符号三部分组成。引出线由横 线和带箭头的斜线组成。箭头指 到图形上的相应焊缝处,横线的 上面和下面用来标注图形符号和 焊缝尺寸。
3.2 焊接方法和焊缝连接形式
倾斜角焊缝受力状态:
而斜焊缝的受力性能和强度值介于正面角焊缝和侧面 角焊缝之间。
3.3 角焊缝的构造与计算
对接焊缝的构造与计算

1.1 ftw
应力分布
第三章 钢结构的连接
3、牛腿焊接 弯矩M和剪力V共同作用的对接焊缝
焊缝截面
a
应力分布
c
tw
简化计算:梁柱连接处(牛腿处)剪力
V
Aw
对接焊缝的计算除考虑焊缝长度是否减少,焊缝强度要否
折减外,对接焊缝的计算方法与母材的强度计算完全相同。
第三章 钢结构的连接
【例1】牛腿与柱采用对接焊缝(质量等级三级), 钢材Q235B,焊条为E43型。其它数值如图,采用 引弧板焊接,验算该节点的强度。
钢结构设计原理
Design Principles of Steel Structure
钢结构课程组
钢结构
第三章 钢结构的连接
土木工程学院钢结构课程组
3.4 对接焊缝的构造与计算 3.4.1 坡口形式
第三章 钢结构的连接
直边缝 板厚手工焊t < 6 mm
埋弧焊 t ≤10mm
单边V形缝
双边V形缝
板厚 t = 10 ~ 20 mm
验算截面
max
M Wx
1
M
Ww
h0 h
ftw
1
VS1 I wt
max
VSw Iwtw
f
w v
zs
2 1
3
2 1
1.1 ftw
第三章 钢结构的连接
2、梁的拼接(3) 弯矩M剪力V轴力N共同作用的对接焊缝
max
VSw Iwtw
f
w v
M σmax Wx
N A
ftw
zs
2 1
3
2 1
第三章 钢结构的连接
3.4.5 对接焊缝计算步骤
钢结构角焊缝强度计算与匹配分析

N w
=
βf
f
w f
he
lw
。
母材可承受拉力为 :
NB
=
f
B u
lB
t
式中
f
B u
———母材屈服抗拉强度设计值 ;
t ———母材承力截面厚度较小值 ;
lB ———母材承力截面宽度 。
采用等强度设计时 ,焊缝承受载荷能力与母材
相等 N w = NB , 可得
钢结构角焊缝强度计算与匹配分析 ———王 庆 ,等
Abstract :The strengt h of fillet welding joint is related not only to t he fillet weld size ,but also depends on t he base metal strengt h matching1 The influences of strengt h matching on fillet weld were analyzed1 The relationships among fillet weld size ,t hickness of base metal and matching coefficient of strengt h were established1 The results may be a references for design strengt h and calculation of steel structures1 Keywords :fillet weld strengt h design matching
图 2 角焊缝受力分析
σ2⊥+ 3 (τ2⊥+ τ2∥)
≤
3
钢结构焊接和计算

4.3.1.2 对接焊缝的计算
(2) 同时受弯 、受剪的对接焊缝计算公式
2)工字形截面
max
M Ww
ftw
max
VSw I w t
f
w v
2 1
3 12
1.1 ftw
例1:设计500×14钢板的对接焊缝连接。钢 板承受轴向拉力,其中恒荷载和活荷载标准 值引起的轴心拉力值分别为700kN和400kN, 相应的荷载分项系数为1.2和1.4。已知钢材为 Q235-B.F ( A3F ) , 采 用 E43 型 焊 条 手 工 电 弧焊,三级质量标准,施焊时未用引弧板。
解 思路: 效应S < 抗力R
( 即 S= N <
lwt
R ftw )
1.焊缝承受的轴心拉力设计值为:
N 7001.2 4001.4 1400kN
2.三级对接焊缝抗拉强度设计值
ftw 185N / mm 2
3.先考虑用直焊缝验算其强度
N / lwt 1400103 /[(500 10) 14]
4.3.2 角焊缝的构造和计算
4.3.2.1、 角焊缝的构造
①自动焊: hf=hfmin-1(mm); ②T形连接的单面角焊缝:hf=hfmin+1(mm); ③当t <4mm时,hfmin= t (mm);
④当t ≤6mm时,hfmax ≤t (mm); 当t >6mm
时,hfmax= t-(1~2) (mm);
( 1 )轴心受力的对接焊缝计算公式:
4.3.1.2 对接焊缝的计算
( 1 )轴心受力的对接焊缝计算公式:
N lwt
f
t
钢结构焊缝重量计算

钢结构焊缝重量计算
钢结构焊缝重量计算是衡量钢结构设计质量与经济性的重要指标
之一。
通常情况下,焊缝的重量大小取决于钢结构的设计要求、焊缝
类型、材质及其厚度等因素。
而焊缝重量计算的精确度直接影响到钢
结构施工质量与成本。
焊缝重量计算的一般方法是,根据设计要求和焊缝类型选择不同
的计算公式,分别计算长度和截面积,再乘以密度即可得到焊缝的重量。
常用的计算公式包括直角角焊缝、对接焊缝、角接固定焊缝、角
接不固定焊缝等。
其中,直角角焊缝的计算公式为:总重量=长度×截
面积×密度;对接焊缝的计算公式为:总重量=长度×宽度×厚度×密度;角接固定焊缝的计算公式为:总重量=焊缝长度×焊缝截面面积×
密度;角接不固定焊缝的计算公式为:总重量= (之前三个焊缝重量
相加)。
需要注意的是,在进行焊缝重量计算时,应根据具体情况合理选
择密度值,以确保计算结果的精确性。
同时,在实际的钢结构施工中,还应该结合焊缝的使用条件、施工难度和材料成本等因素,综合考虑,为钢结构的设计和制造提供更加合理的方案和方法。
钢构焊缝计算(受力)

钢构焊缝计算(受力)钢结构的焊接连接钢结构的连接方法可分为焊缝连接、螺栓连接和铆钉连接三种。
焊接连接是现代钢结构最主要的连接方法。
它的优点是:(1)焊件间可直接相连,构造简单,制作加工方便;(2)不削弱截面,用料经济;(3)连接的密闭性好,结构刚度大;(4)可实现自动化操作,提高焊接结构的质量。
缺点是:(1)在焊缝附近的热影响区内,钢材的材质变脆;(2)焊接残余应力和变形使受压构件承载力降低;(3)焊接结构对裂纹很敏感,低温时冷脆的问题较为突出。
一、焊缝的形式1.角焊缝图 1 直角角焊缝截面图 2 斜角角焊缝截面角焊缝按其截面形式可分为直角角焊缝和斜角角焊缝。
两焊脚边的夹角为90°的焊缝称图4 最大焊角尺寸(3)角焊缝的最小计算长度侧面角焊缝或正面角焊缝的计算长度不得小于8h f 和40mm 。
(4) 侧面角焊缝的最大计算长度侧面角焊缝在弹性阶段沿长度方向受力不均匀,两端大而中间小,可能首先在焊缝的两端破坏,故规定侧面角焊缝的计算长度l w ≤60h f 。
若内力沿侧面角焊缝全长分布,可不受上述限制。
(5)搭接连接的构造要求当板件端部仅有两条侧面角焊缝连接时,应使每条侧焊缝的长度不宜小于两侧焊缝之间的距离。
两侧面角焊缝之间的距离也不宜大于16t (t >12mm )或190mm (t ≤12mm ),t 为较薄焊件的厚度。
搭接连接中,当仅采用正面角焊缝时,其搭接长度不得小于焊件较小厚度的5倍,也不得小于25mm。
图5 焊缝长度及两侧焊缝间距图6 搭接连接(6)间断角焊缝的构造要求间断角焊缝只能用于一些次要构件的连接或受力很小的连接中。
间断角焊缝的间断距离l不宜过长,以免连接不紧密。
一般在受压构件中应满足l≤15t;在受拉构件中l≤30t,t为较薄焊件的厚度。
图7 连续角焊缝和间断角焊缝(7)减小角焊缝应力集中的措施杆件端部搭接采用三面围焊时,所有围焊的转角处必须连续施焊。
对于非围焊情况,当角焊缝的端部在构件转角处时,可连续地作长度为2h f的绕角焊。
《钢结构设计原理》3-1 钢结构的连接-焊缝连接

8
3.1.3 螺栓连接 普通螺栓连接和高强度螺栓连接两种。 1 普通螺栓连接 普通螺栓分为A、B、C三级。 A与B级为精制螺栓,C级为粗制螺栓。 A级和B级螺栓材料性能等级则为5.6级或8.8级。 C级螺栓材料性能等级为4.6级或4.8级。 小数点前面的数字表示螺栓成品的抗拉强度不 小于400N/mm2,小数点及小数点以后数字表示 其屈强比为0.6或0.8。
焊件常需做成坡口,焊缝金属填充在坡口内。
坡口形式与焊件厚度有关:
焊件厚度很小(小于等于10mm):直边缝。
一般厚度(t=10~20mm) :具有斜坡口的单边V形或V形焊
缝。
斜坡口和离缝b共同组成一个焊条能够运转的施焊空间,
使焊缝易于焊透;钝边p有托住熔化金属的作用。
较厚的焊件(t>20mm),则采用U形、K形和X形坡口。 V形缝和U形缝需对焊缝根部进行补焊。
16
3.2焊缝和焊接连接形式
3.2.2 焊接连接的形式
1.焊接连接形式
被连接板件的相互位置:对接、搭接、T形连接和角部
连接四种。
连接所采用的焊缝主要有坡口焊缝和角焊缝。
对接连接:主要用于厚度相同或接近相同的两构件的
相互连接。
采用对接焊缝,两构件在同一平面内,传力均匀平缓,
没有明显的应力集中,用料经济,但是焊件边缘需要
围焊缝 正面、侧面、斜焊缝组成的混合焊缝。
2021年8月30日
第六届全国混凝土结构基本理论及 工程应用学术会议
25
侧面角焊缝 主要承受剪 应力,塑性较好,弹性模 量低,强度也较低。
传力线通过时产生弯折, 应力沿焊缝长度方向的分 布不均匀,呈两端大而中 间小的状态。
焊缝越长,应力分布不均 匀性越显著,但在届临塑 性工作阶段时,产生应力 重分布,可使应力分布的 不均匀现象渐趋缓和。
钢结构角焊缝的构造与计算课件

角焊缝有效截面上的应力
合应力σf:
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
➢斜些焊,缝但: 塑受性力差性能和强度介于两者之间
二、角焊缝的构造要求
三、直角角焊缝强度计算的基本公式
当角焊缝的两焊脚边夹角为90°时, 称 为直角角焊缝, 即一般所指的角焊缝
有效厚度he=0.7hf为焊 缝横截面的内接等腰三 角形的最短距离, 即不 考虑熔深和凸度
角焊缝截面
式和强度
➢ 按截面形式可分为直角角焊缝和斜角角焊缝 直角角焊缝
斜角角焊缝
➢ 侧面角焊缝: 焊缝长度方 向与受力方向平行,主 要承受剪应力,其特点 为应力分布简单些,但 分布并不均匀,剪应力 两端大,中间小。弹模 低强度低,但塑性较好
➢ 正面角焊缝: 焊缝垂直于 受力方向,其特点为受 力后应力状态较复杂, 应力集中严重,焊缝根 部形成高峰应力,易于 开裂。破坏强度要高一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢结构的焊接连接钢结构的连接方法可分为焊缝连接、螺栓连接和铆钉连接三种。
焊接连接是现代钢结构最主要的连接方法。
它的优点是:(1)焊件间可直接相连,构造简单,制作加工方便;(2)不削弱截面,用料经济;(3)连接的密闭性好,结构刚度大;(4)可实现自动化操作,提高焊接结构的质量。
缺点是:(1)在焊缝附近的热影响区内,钢材的材质变脆;(2)焊接残余应力和变形使受压构件承载力降低;(3)焊接结构对裂纹很敏感,低温时冷脆的问题较为突出。
一、焊缝的形式1.角焊缝图 1 直角角焊缝截面图 2 斜角角焊缝截面角焊缝按其截面形式可分为直角角焊缝和斜角角焊缝。
两焊脚边的夹角为90°的焊缝称为直角角焊缝,直角边边长h f 称为角焊缝的焊脚尺寸,h e =0.7h f 为直角角焊缝的计算厚度。
斜角角焊缝常用于钢漏斗和钢管结构中。
对于夹角大于135°或小于60°的斜角角焊缝,不宜用作受力焊缝(钢管结构除外)。
2.对接焊缝对接焊缝的焊件常需加工成坡口,故又叫坡口焊缝。
焊缝金属填充在坡口内,所以对接焊缝是被连接件的组成部分。
坡口形式与焊件厚度有关。
当焊件厚度很小(手工焊≤t 6mm ,埋弧焊≤t 10mm )时,可用直边缝。
对于一般厚度(t=10~20mm )的焊件可采用具有斜坡口的单边V 形或V 形焊缝。
斜坡口和离缝c 共同组成一个焊条能够运转的施焊空间,使焊缝易于焊透;钝边p 有托住熔化金属的作用。
对于较厚的焊件(t>20mm),则采用U形、K形和X形坡口。
对于V形缝和U形缝需对焊缝根部进行补焊。
对接焊缝坡口形式的选用,应根据板厚和施工条件按现行标准《建筑结构焊接规程》的要求进行。
凡T形,十字形或角接接头的对接焊缝称之为对接与角接组合焊缝。
图3 对接焊缝的坡口形式3.焊缝质量检验《钢结构工程施工质量验收规范》规定焊缝按其检验方法和质量要求分为一级、二级和三级。
三级焊缝只要求对全部焊缝作外观检查且符合三级质量标准;一级、二级焊缝则除外观检查外,还要求一定数量的超声波检验并符合相应级别的质量标准。
焊缝质量的外观检验检查外观缺陷和几何尺寸,内部无损检验检查内部缺陷。
二、直角角焊缝的构造与计算角焊缝按其与作用力的关系可分为正面角焊缝、侧面角焊缝和斜焊缝。
正面角焊缝的焊缝长度方向与作用力垂直,侧面角焊缝的焊缝长度方向与作用力平行,斜焊缝的焊缝长度方向与作用力倾斜,由正面角焊缝、侧面角焊缝和斜焊缝组成的混合,通常称作围焊缝。
侧面角焊缝主要承受剪力,塑性较好,强度较低。
应力沿焊缝长度方向的分布不均匀,呈两端大而中间小的状态。
焊缝越长,应力分布不均匀性越显著。
正面角焊缝受力复杂,其破坏强度高于侧面角焊缝,但塑性变形能力差。
斜焊缝的受力性能和强度值介于正面角焊缝和侧面角焊缝之间。
1.角焊缝的构造要求(1)最小焊脚尺寸t(1)h f≥1.52式中t2—较厚焊件厚度,单位为mm。
计算时,焊脚尺寸取整数。
自动焊熔深较大,可减小1mm ;T 形连接的单面角焊缝,应增加1mm ;当焊件厚度小于或等于4mm 时,则取与焊件厚度相同。
(2)最大焊脚尺寸12.1t h f (2)式中 t 1—较薄焊件的厚度,单位为mm 。
对板件边缘的角焊缝,当板件厚度t >6mm 时,取h f ≤t -(1~2)mm ;当t ≤6mm 时,取h f ≤t 。
图4 最大焊角尺寸(3)角焊缝的最小计算长度侧面角焊缝或正面角焊缝的计算长度不得小于8h f 和40mm 。
(4) 侧面角焊缝的最大计算长度侧面角焊缝在弹性阶段沿长度方向受力不均匀,两端大而中间小,可能首先在焊缝的两端破坏,故规定侧面角焊缝的计算长度l w ≤60h f 。
若内力沿侧面角焊缝全长分布,可不受上述限制。
(5)搭接连接的构造要求当板件端部仅有两条侧面角焊缝连接时,应使每条侧焊缝的长度不宜小于两侧焊缝之间的距离。
两侧面角焊缝之间的距离也不宜大于16t (t >12mm )或190mm (t ≤12mm ),t 为较薄焊件的厚度。
搭接连接中,当仅采用正面角焊缝时,其搭接长度不得小于焊件较小厚度的5倍,也不得小于25mm 。
图5 焊缝长度及两侧焊缝间距 图6 搭接连接(6) 间断角焊缝的构造要求间断角焊缝只能用于一些次要构件的连接或受力很小的连接中。
间断角焊缝的间断距离l 不宜过长,以免连接不紧密。
一般在受压构件中应满足l ≤15t ;在受拉构件中l ≤30t ,t 为较薄焊件的厚度。
图7 连续角焊缝和间断角焊缝 (7) 减小角焊缝应力集中的措施杆件端部搭接采用三面围焊时,所有围焊的转角处必须连续施焊。
对于非围焊情况,当角焊缝的端部在构件转角处时,可连续地作长度为2h f 的绕角焊。
2. 直角角焊缝强度计算的基本公式f w f f f f ≤+⎪⎪⎭⎫ ⎝⎛τβσ22(3) 式中 σf —垂直于焊缝长度方向的应力;τf —平行于焊缝长度方向的应力;βf —正面角焊缝的强度增大系数,βf =1.22;直接承受动力荷载结构中的角焊缝,βf =1.0;w f f —角焊缝的强度设计值。
式(3)为角焊缝的基本计算公式。
只要将焊缝应力分解为垂直于焊缝长度方向的应力σf 和平行于焊缝长度方向的应力τf ,上述基本公式可适用于任何受力状态。
对正面角焊缝,τf =0,得σf =l h N we f wf f β≤ (4) 对侧面角焊缝,σf =0,得τf =l h N we f w f ≤ (5) 式中 h e —直角角焊缝的有效厚度,h e = 0.7h f ;l w —焊缝的计算长度,考虑起灭弧缺陷,按各条焊缝的实际长度每端减去h f 计算。
3.角焊缝连接的计算(1)承受轴心力作用的角焊缝连接计算1)采用盖板连接当轴心力通过连接焊缝中心时,可认为焊缝应力是均匀分布的。
图8 承受轴心力的盖板连接当只有侧面角焊缝时 τf =l h N we f w f ≤ 当只有正面角焊缝时 σf =l h N w e f wf f β≤ 当采用三面围焊时,先计算正面角焊缝所承担的内力 ∑=11w e w f f l h f N β 式中 ∑1w l —连接一侧正面角焊缝计算长度的总和。
再计算侧面角焊缝的强度 w f we f f l h N N ≤∑-=1τ式中 ∑w l —连接一侧正面角焊缝计算长度的总和。
2)承受斜向轴心力图9 承受斜向轴心力将N 力分解为垂直于焊缝和平行于焊缝的分力θsin N N x =; θcos N N y = ⎪⎪⎭⎪⎪⎬⎫==∑∑w e f w e f l h N l h N θτθσcos sin 代入式(3)验算角焊缝的强度f w f f f f ≤+⎪⎪⎭⎫ ⎝⎛τβσ223)承受轴心力的角钢角焊缝计算钢桁架中角钢腹杆与节点板的连接焊缝一般采用两面侧焊或三面围焊,特殊情况也可采用L 形围焊。
腹杆受轴心力作用,为了避免焊缝偏心受力,焊缝所传递的合力的作用线应与角钢杆件的轴线重合。
图10 角钢与节点板的连接对于三面围焊,可先假定正面角焊缝的焊脚尺寸3f h ,求出正面角焊缝所分担的轴心力3N 。
当腹杆为双角钢组成的T 形截面,且肢宽为b 时,3N =2×0.73f h b f βw f f (6) 由平衡条件(∑M =0)可得:1N =b e b N )(--23N =1k N-23N (7) 2N =b Ne -23N =2k N-23N (8) 式中 1N 、2N ——角钢肢背和肢尖的侧面角焊缝所承受的轴力;e ——角钢的形心距;1k 、2k ——角钢肢背和肢尖焊缝的内力分配系数,可查表得到。
对于两面侧焊,因3N =0,则:1N =1k N (9)2N =2k N (10)求得各条焊缝所受的内力后,按构造要求假定肢背和肢尖焊缝的焊脚尺寸,即可求出焊缝的计算长度。
对双角钢截面1w l =wf f f h N 117.02⨯ (11) 2w l =w f f f h N 227.02⨯ (12) 式中 1f h 、1w l ——一个角钢肢背上的侧面角焊缝的焊脚尺寸及计算长度;2f h 、2w l ——一个角钢肢尖上的侧面角焊缝的焊脚尺寸及计算长度。
实际焊缝长度为计算长度加2f h 。
对于三面围焊,焊缝实际长度为计算长度加f h ;对于采用绕角焊的侧面角焊缝实际长度等于计算长度(绕角焊缝长度2f h 不进入计算)。
当杆件受力很小时,可采用L 形围焊。
由于只有正面角焊缝和角钢肢背上的侧面角焊缝,令2N =0,得:3N =22k N (13)1N =N-3N (14)角钢端部的正面角焊缝的长度已知,可按下式计算其焊脚尺寸:3f h =wf f w f l N β337.02⨯ (15) 式中,3w l =b -f h 。
(2)承受弯矩、轴心力或剪力共同作用的角焊连连接计算 图11 承受偏心斜拉力的角焊缝 图11所示的双面角焊缝连接承受偏心斜拉力N 作用,计算时,可将作用力N 分解为N x 和N y 两个分力。
角焊缝同时承受轴心力N x 和剪力N y 和弯矩M=N x ·e 的共同作用。
焊缝计算截面上的应力分布如图所示,图中A 点应力最大为控制设计点。
此处垂直于焊缝长度方向的应力由两部分组成,即由轴心拉力N x 产生的应力:N σ=e x A N =we x l h N 由弯矩M 产生的应力: M σ=e W M =26we l h M 这两部分应力由于在A 点处的方向相同,可直接叠加,故A 点垂直于焊缝方向的应力为f σ=w e x l h N 2+226we l h M 剪力N y 在A 点处产生平行于焊缝长度方向的应力f τ=e y A N =w e y l h N 2 则焊缝的强度计算式为:f w ff f f ≤+⎪⎪⎭⎫ ⎝⎛τβσ22当连接直接承受动力荷载作用时,取f β=1.0。
工字形和H 形截面梁(或牛腿)与钢柱翼缘的角焊缝连接,通常承受弯矩M 和剪力V 的共同作用。
计算时通常假设腹板焊缝承受全部剪力,弯矩则由全部焊缝承受。
图12 工字形梁(或牛腿)的脚焊缝连接翼缘焊缝的最大弯曲应力发生在翼缘焊缝的最外纤维处,此应力满足角焊缝的强度条件1f σ=w I M ·2h ≤f βw f f 式中 M ——全部焊缝所承受的弯矩;I w ——全部焊缝有效截面对中和轴的惯性矩。
腹板焊缝承受两种应力的共同作用,即弯曲应力和剪应力,设计控制点为翼缘焊缝与腹板焊缝的交点处A ,此处的弯曲应力和剪应力分别按下式计算:2f σ=w I M·22hf τ=()∑22w e l h V 式中 ()∑22w e l h ——腹板焊缝有效截面之和。
则腹板焊缝在A 点的强度验算式为: f w f f f f ≤+⎪⎪⎭⎫ ⎝⎛τβσ222 (3)承受扭矩或扭矩与剪力共同作用的角焊缝连接计算1)环形角焊缝承受扭矩T在有效截面的任一点上所受切线方向的剪应力f τ,应按下式计算:f τ=pI r T ⨯﹤w f f (16) 式中 r ——圆心至焊缝有效截面中线的距离;p I ——焊缝有效截面的惯性矩,p I =32r h e π。