2020年数学中考第一次模拟试卷(及答案)
2020年山东省青岛市中考数学模拟试卷(一)(有答案)

2019年山东省青岛市中考数学模拟试卷(一)题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.√2的相反数是()A. 1√2B. −√2 C. −1√2D. √22.既是轴对称图形又是中心对称图形的是()A. 等腰梯形B. 菱形C. 平行四边形D. 等边三角形3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.计算(−4m2)·(3m+2)的结果是()A. −12m3+8m2B. 12m3−8m2C. −12m3−8m2D. 12m3+8m25.如图,在Rt△ABC中,∠A=90°,BC=4,以BC的中点O为圆心分别与AB,AC相切于D、E两点,则DE⏜的长为()A. √2π4B. π2C. √2π2D. √2π6.如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(−1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A. (2,2)B. (1,2)C. (−1,2)D. (2,−1)7.如图,△ABC中,AB=AC,AD=DE,∠BAD=18°,∠EDC=12°,则∠DAE的度数是()A. 52°B. 58°C. 60°D. 62°8.已知函数y=−(x−m)(x−n)(其中m<n)的图象如图的所示,则一次函数y=mx+n与反比例函数y=m+nx图象可能是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)9.计算:√32−√8=______.√210.一元二次方程2x2+bx+1=0有两个相等的实数根,则b=______.11.学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是______分.12.如图,正五边形ABCDE为内接于⊙O的,则∠ABD=________.13.如图,将正方形ABCD沿EF折叠,使得AD的中点落在点C处,若正方形边长为2,则折痕EF的长为______.14. 从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为______. 三、计算题(本大题共1小题,共8.0分) 15. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.四、解答题(本大题共9小题,共70.0分) 16. 已知,∠α求作:∠AOB =2∠α.(保留作图痕迹,不写作法)17. 甲、乙两个人进行游戏:在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲得1分;否则乙得1分.这是个公平的游戏吗?请说明理由;若不公平,请你修改规则使该游戏对双方公平.18. 青岛市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据绘成如下表格.请回答下列问题:时间第一天 7:00—8:00 第二天 7:00—8:00 第三天 7:00—8:00 第四天 7:00—8:00 第五天7:00—8:00 需要租用自 行车却未租 到车的人数1500 1200 1300 1300 1200(1)表格中的五个数据(人数)的中位数是多少⊕(2)由随机抽样估计,平均每天在7:00−8:00需要租用公共自行车的人数是多少⊕19.如图,方特欢乐园中有飞越极限、恐龙危机、海螺湾三处游乐设施,分别记为A,B,C.已知AB=1400米,AC=1000米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求△ABC的面积.(2)景区规划在恐龙危机和海螺湾的中点D处修建一个游客休息中心,并修建观景栈道AD,试求A,D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,√2≈1.414)20.某地发生了地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?21.如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F在AC上,且AE=CF,EF=BD.求证:四边形EBFD是矩形.22.某文具店购进一批单价为10元的学生用品,如果以单价12元售出,那么一个月内可售200件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少10件,当售价提高多少元时,可在一个月内获得最大的利润?最大利润是多少23.如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.(1)一个5×2的矩形用不同的方式分割后,小正方形的个数可以是______个,最少是______个;(2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是______个,最少是______个;(3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是______个;最少是______个.(n是正整数)24.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E、F分别是AC、BC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动;同时,点Q从点E 出发,沿EB方向匀速运动,两者速度均为1cm/s;当其中一点停止运动时,另外一点也停止运动.连接PQ、PF,设运动时间为ts(0<t<4).解答下列问题:(1)当t为何值时,△EPQ为等腰三角形?(2)如图①,设四边形PFBQ的面积为ycm2,求y与t之间的函数关系式;(3)当t为何值时,四边形PFBQ的面积与△ABC的面积之比为2:5?(4)如图②,连接FQ,是否存在某一时刻,使得PF与QF互相垂直?若存在,求出此时t的值;若不存,请说明理由.答案和解析1.【答案】B【解析】解:√2的相反数是−√2,故选:B.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:轴对称图形有:等腰梯形,菱形,等边三角形;中心对称图形有菱形,平行四边形;∴既是轴对称图形又是中心对称图形的式菱形,故选B.根据轴对称图形和中心对称图形的定义判断即可.本题主要考查对中心对称图形和轴对称图形的理解和掌握,能正确判断一个图形是否是中心对称图形和轴对称图形是解此题的关键.3.【答案】C【解析】解:380000=3.8×105故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】【分析】本题主要单项式乘以多项式的法则和单项式乘以单项式的法则.掌握相关法则是解题的关键.【解答】解:(−4m2)·(3m+2)=(−4m2)×3m+(−4m2)×2=−12m3−8m2.故选C.5.【答案】C【解析】解:连接OE、OD,设半径为r,∵⊙O分别与AB,AC相切于D,E两点,∴OE⊥AC,OD⊥AB,∵O是BC的中点,∴OD是中位线,∴OD=AE=1AC,2∴AC=2r,同理可知:AB=2r,∴AB=AC,∴∠B=45°,∵BC=4,∴由勾股定理可知AB=2√2,∴r=√2,∴DE⏜=90π×√2180=√22π,故选:C.连接OE、OD,由切线的性质可知OE⊥AC,OD⊥AB,由于O是BC的中点,从而可知OD是中位线,所以可知∠B=45°,从而可知半径r的值,最后利用弧长公式即可求出答案.本题考查切线的性质,解题的关键是连接OE、OD后利用中位线的性质求出半径r的值,本题属于中等题型.6.【答案】A【解析】解:∵点C的坐标为(−1,0),AC=2,∴点A的坐标为(−3,0),如图所示,将Rt△ABC先绕点C顺时针旋转90°,则点A′的坐标为(−1,2),再向右平移3个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.根据旋转变换的性质得到旋转变换后点A的对应点坐标,根据平移的性质解答即可.本题考查的是坐标与图形变化旋转和平移,掌握旋转变换、平移变换的性质是解题的关键.7.【答案】C【解析】【分析】本题主要考查等腰三角形的性质,设∠ADE=x°,则∠B+18°=x°+12°,可用x表示出∠B和∠C,进而可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和可求得x.【解答】解:设∠ADE=x°,且∠BAD=18°,∠EDC=12°,∴∠ADB=180°−∠ADC=180°−(x°+12°)=168°−x°∴∠B=180°−(∠ADB+∠BAD)=180°−(168°−x°+18°)=x°−6°,∵AB=AC,∴∠C=∠B=x°−6°,∴∠DEA=180°−∠DEC=180°−(180°−∠C−∠EDC)=180°−(180°−x°+6°−12°)=x°+6°,∵AD=DE,∴∠DEA=∠DAE=x°+6°,在△ADE中,由三角形内角和定理可得x+x+6+x+6=180,解得x=56,即∠ADE=56°,∴∠DAE=56°+6°=62°.故选C.8.【答案】C【解析】【分析】根据二次函数图象判断出m<−1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键.【解答】解:由图可知,m<−1,n=1,所以m+n<0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=m+nx的图象位于第二四象限,纵观各选项,只有C选项图形符合.故选C.9.【答案】2【解析】【分析】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.首先化简二次根式,进而求出答案.【解答】解:原式=√2−2√2√2=√2√2=2.故答案为2.10.【答案】±2√2【解析】【分析】本题主要考查了一元二次方程的根的判别式,熟练掌握“当△=0时,方程有两个相等的实数根”是解题的关键.根据方程有两个相等的实数根结合根的判别式即可得出关于b的一元二次方程,解之即可得出结论.【解答】解:∵方程2x2+bx+1=0有两个相等的实数根,∴△=b2−2×4×1=b2−8=0,解得:b=±2√2.故答案为:±2√2.11.【答案】9.1【解析】【分析】此题主要考查了加权平均数以及条形统计图,正确掌握加权平均数求法是解题关键.直接利用条形统计图以及结合加权平均数求法得出答案.【解答】解:该班的平均得分是:120×(5×8+8×9+7×10)=9.1(分).故答案为9.1.12.【答案】72°【解析】【分析】本题考查了圆周角定理,正多边形的性质,熟记定理并作辅助线构造出弧AD所对的圆心角是解题的关键.连接AO、DO,根据正五边形的性质求出∠AOD,再根据同弧所对的圆周角等于圆心角的一半列式计算即可得解.【解答】解:如图,连接AO、DO,∵五边形ABCDE是正五边形,∴∠AOD=25×360°=144°,∴∠ABD=12∠AOD=12×144°=72°;故答案为72°.13.【答案】√5【解析】解:连结CE,过E点作EG⊥CD于G,设BE为x,在Rt△CA′E中,CE=√(2−x)2+(2÷2)2,在Rt△CBE中,CE=√x2+22,√(2−x)2+(2÷2)2=√x2+22,解得x=14∴CG=14,在Rt△CD′F中,CF2=FD′2+CD′2,即CF2=(2−CF)2+(2÷2)2,解得CF=54.∴GF=54−14=1,在Rt△EFG中,EF=√22+12=√5.故答案为:√5.连结CE,过E点作EG⊥CD于G,设BE为x,根据勾股定理在Rt△CA′E中先求出CE,进一步在Rt△CBE中求出CE,列出方程求出x,可得CG,根据勾股定理在Rt△CD′F中求出CF,可求GF,再根据勾股定理在Rt△EFG中求出折痕EF的长.本题考查了翻折变换(折叠问题)、正方形的性质、勾股定理,对综合的分析问题、解决问题的能力提出了较高的要求.14.【答案】24【解析】解:挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24.故答案为:24.根据几何体表面积的计算公式,从正方体毛坯一角挖去一个小正方体得到的零件的表面积等于原正方体表面积,即可得出答案.此题考查了几何体的表面积,本题有多种解法,一种是把每个面的面积计算出来然后相加,这样比较麻烦,另一种算法就是解答中的这种,这种方法的关键是能想象出得到的图形与原图形表面积相等.15.【答案】解:由①得4x+4+3>x解得x>−73,由②得3x−12≤2x−10,解得x≤2,∴不等式组的解集为−73<x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.16.【答案】解:如图,∠AOB为所求.【解析】利用基本作图(作一个角等于已知)先作出∠AOC=∠α,再作∠COB=∠α,则∠AOB=2∠α.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中数字之和为3,6的情况有5种,∴P(和为3的倍数)=516,∴P(和不为3的倍数)=1−516=1116,∵5≠11∴该游戏不公平,故可以这样修改游戏规则:数字之和为奇数甲获胜,之和为偶数乙获胜.【解析】列表得出所有等可能的情况数,找出之和为6的情况数,即可求出所求的概率,找出数字之和为3的倍数的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.【答案】解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300.(2)平均每天需要租用自行车却未租到车的人数是(1500+1200+1300+1300+ 1200)÷5=1300,∵YC市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=2000.【解析】本题考查了中位数,平均数以及用样本估计总体.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷总个数.(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;(2)根据平均数等于数据之和除以总个数求出平均每天需要租用自行车却未租到车的人数,再加上700即可.19.【答案】解:(1)作CE⊥BA于E.在Rt△AEC中,∠CAE=180°−60.7°−66.1°=53.2°,∴CE=AC⋅sin53.2°≈1000×0.8=800米.∴S△ABC=12⋅AB⋅CE=12×1400×800=560000平方米.(2)连接AD,作DF⊥AB于F.,则DF//CE.∵BD=CD,DF//CE,∴BF=EF,∴DF=12CE=400米,∵AE=AC⋅cos53.2°≈600米,∴BE=AB+AE=2000米,∴AF=12EB−AE=400米,在Rt△ADF中,AD=√AF2+DF2=400√2≈565.6米,答:A,D间的距离为565.6m.【解析】(1)作CE⊥BA于E.在Rt△ACE中,求出CE即可解决问题;(2)接AD,作DF⊥AB于F.,则DF//CE.首先求出DF、AF,再在Rt△ADF中求出AD 即可.本题考查解直角三角形−方向角问题,勾股定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.【答案】解:①设乙工厂每天可加工生产x顶帐篷,则甲工厂每天可加工生产1.5x顶帐篷,根据题意得:240 x −2401.5x=4,解得:x=20,经检验x=20是原方程的解,则甲工厂每天可加工生产1.5×20=30(顶),答:甲、乙两个工厂每天分别可加工生产30顶和20顶帐篷;②设甲工厂加工生产y天,根据题意得3y+2.4×550−30y20≤60解得:y≥10,则至少应安排甲工厂加工生产10天.答:至少应安排甲工厂加工生产10天.【解析】本题考查了分式方程的应用和一元一次不等式的应用有关知识.①先设乙工厂每天可加工生产x顶帐篷,则甲工厂每天可加工生产1.5x顶帐篷,根据加工生产240顶帐篷甲工厂比乙工厂少用4天列出方程,求出x的值,再进行检验即可求出答案;②设甲工厂加工生产y天,根据加工生产总成本不高于60万元,列出不等式,求出不等式的解集即可.21.【答案】证明:∵平行四边形ABCD,∴AB=CD,AB//CD,∴∠BAE=∠DCF,∠ABO=∠CDO,在△ABE与△CDF中{AB=DC∠BAE=∠DCF AE=CF,∴△ABE≌△CDF(SAS),∴BE=DF,∠BAE=∠CDF,∴∠ABO−∠BAE=∠CDO−∠CDF,即∠EBO=∠DFO,∴BE//DF,∴四边形EBDF是平行四边形,∵EF=BD,∴平行四边形EBDF是矩形.【解析】根据矩形的判定和平行四边形的性质证明即可.此题考查矩形的判定,关键是根据全等三角形的判定得出△ABE≌△CDF.22.【答案】解:设销售单价提高x元,销售利润为y元,根据题意可得:y=(x+2)(200−10x)=−10x2+180x+400=−10(x−9)2+1210,∵−10<0,∴x=9时,y有最大值,最大值为1210,答:当售价提高9元时,可在一个月内获得最大的利润,最大利润是1210元.【解析】直接利用总利润=销量×每件利润,进而得出关系式求出答案.此题主要考查了二次函数的应用,正确得出函数关系式是解题关键.23.【答案】(1)10;4;(2)14;5;(3)4n+2;n+2.【解析】解:(1)一个5×2的矩形最少可分成4个正方形,最多可分成10个正方形;(2)一个7×2的矩形最少可分成5个正方形,最多可分成14个正方形;(3)第一个图形:是一个3×2的矩形,最少可分成1+2个正方形,最多可分成1×4+2个正方形;第二个图形:是一个5×2的矩形,最少可分成2+2个正方形,最多可分成2×4+2个正方形;第三个图形:是一个7×2的矩形,最少可分成3+2个正方形,最多可分成3×4+2个正方形;…第n个图形:是一个(2n+1)×2的矩形,最多可分成n×4+2=4n+2个正方形,最少可分成n+2个正方形.故答案为:(1)10;4;(2)14;5;(3)4n+2;n+2.【分析】(1)一个5×2的矩形最少可分成4个正方形,最多可分成10个正方形;(2)一个7×2的矩形最少可分成5个正方形,最多可分成14个正方形;(3)根据上述结果找出其中的规律,然后用含字母n的式子表示这一规律即可.本题主要考查的是探究图形的变化规律,找出图形的变化规律是解题的关键.24.【答案】解:(1)∠C=90°,AC=6cm,BC=8cm,∴AB=10cm,由题意得:DP=EQ=t,∵D为AC的中点,E为BC的中点,∴DE=12AB=5cm,当EP=EQ时,5−t=t,t=52,即当t=52时,△EPQ为等腰三角形;(2)如图②,过P作PH⊥BC于H,连接PE,sin∠PEH=PHPE=DCDE,∴PH5−t =35,∴PH=3(5−t)5,设△DCE中,DE边上的高为h,1 2×3×4=12×5ℎ,ℎ=125,∴y=S△PEF+S△EFB−S△EQP,=12×125PE+12×125FB−12EQ⋅PH,=65(5−t)+65×5−12t ⋅3(5−t)5,=3t 210−2710t +12;(3)∵S 四边形PFBQS △ABC=25,∴5S 四边形PFBQ =2S △ABC , ∴5(3t 210−2710t +12)=2×12×6×8,t 2−9t +8=0, t 1=1,t 2=8(舍);(4)如图③,过P 作PG ⊥AB 于G ,过Q 作QH ⊥AB 于H ,过D 作DM ⊥AB 于M , 由(3)知:PG =DM =125,Rt △ADM 中,∵AD =3, ∴AM =√32−(125)2=95,∴FG =5−95−t =165−t ,Rt △QHB 中,BQ =4−t , sin ∠B =QH4−t =610, ∴QH =3(4−t)5,∴BH =4(4−t)5,∴FH =5−BH =9+4t 5,∵PF ⊥FQ ,易得△PGF∽△FHQ , ∴PG GF=FH QH,∴PG ⋅QH =FH ⋅GF , ∴125⋅3(4−t)5=(165−t)⋅9+4t 5,4t 2−11t =0, t 1=0(舍),t 2=114.∴当t =114时,PF 与QF 互相垂直.【解析】(1)根据EP =EQ 列方程可得t 的值;(2)如图②,作辅助线,构建高线PH ,先根据三角函数或相似表示PH 的长,利用面积法求h 的值,最后利用面积差可得y 与t 的关系式;(3)根据已知得:5S 四边形PFBQ =2S △ABC ,代入列一元二次方程解出可得t 的值,并根据0<t <4这一取值进行取舍;(4)如图③,作辅助线,构建直角三角形,证明△PGF∽△FHQ,列比例式可得t的值.本题是动点型综合题,解题关键是掌握动点运动过程中的图形形状、图形面积的表示方法.所考查的知识点涉及到勾股定理、相似三角形的判定与性质、三角形中位线定理、解方程(包括一元一次方程和一元二次方程)等,有一定的难度.注意题中求时间t的方法:最终都是转化为一元一次方程或一元二次方程求解,属于中考压轴题.。
2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案2020年九年级数学中考模拟试题第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列实数中,无理数是()。
A。
$\sqrt{2}$。
B。
$-2$。
C。
$\dfrac{1}{2}$。
D。
$0.5$2.(3分)下列图形中,既是轴对称又是中心对称图形的是()。
A。
菱形。
B。
等边三角形。
C。
平行四边形。
D。
等腰梯形3.(3分)图中立体图形的主视图是()。
A。
B。
C。
D。
4.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()。
A。
$10\%x=330$。
B。
$(1-10\%)x=330$。
C。
$(1-10\%)2x=330$。
D。
$(1+10\%)x=330$5.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()。
A。
平均数。
B。
中位数。
C。
众数。
D。
方差6.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间。
A。
B与C。
B。
C与D。
C。
E与F。
D。
7.(3分)若代数式 $A=\dfrac{x+1}{x-1}$,$B=\dfrac{2x-1}{x-2}$ 有意义,则实数x的取值范围是()。
A。
$x\geq1$。
B。
$x\geq2$。
C。
$x>1$。
D。
$x>2$8.(3分)下列曲线中不能表示y是x的函数的是()。
A。
B。
C。
D。
9.(3分)某校美术社团为练素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本。
求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()。
A。
$120=\dfrac{(x+20)\times(4x-480)}{4x-480-20}$。
B。
$120=\dfrac{(x+20)\times(4x-480)}{4x-480}$C。
陕西省2020年中考数学第一次模拟检测试卷(含解析)

2020年中考数学第一次模拟检测试卷一、选择题1.的倒数是()A.B.C.D.2.如图,将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是()A.B.C.D.3.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°5.某校给足球队的十一位运动员每人购买了一双运动鞋.尺码及购买数量如下表:尺码/码40 41 42 43 44购买数量/双 2 4 2 2 1则这十一双运动鞋尺码的众数和中位数分别为()A.40,41 B.41,41 C.41,42 D.42,436.若正比例函数的图象经过(﹣3,2),则这个图象一定经过点()A.(2,﹣3)B.C.(﹣1,1)D.(2,﹣2)7.如图,在菱形ABCD中,∠ABC=60°,AB=4.若点E、F、G、H分别是边AB、BC、CD、DA的中点,连接EF、FG、GH、HE,则四边形EFGH的面积为()A.8 B.6C.4D.68.如果点A(m,n)、B(m+1,n+2)均在一次函数y=kx+b(k≠0)的图象上,那么k的值为()A.2 B.1 C.﹣1 D.﹣29.如图,在矩形ABCD中,AB=3.4,BC=5,以BC为直径作半圆O,点P是半圆O上的一点,若PB=4,则点P到AD的距离为()A.B.1 C.D.10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距10个单位长度.若其中一条抛物线的函数表达式为y=x2+6x+m,则m的值是()A.﹣4或﹣14 B.﹣4或14 C.4或﹣14 D.4或14二、填空题(共4小题)11.在,﹣1,,π这四个数中,无理数有个.12.不等式+2>x的正整数解为.13.如图,在x轴上方,平行于x轴的直线与反比例函数y=和y=的图象分别交于A、B两点,连接OA、OB,若△AOB的面积为6,则k1﹣k2=.14.如图,在半圆⊙O中,AB是直径,CD是一条弦,若AB=10,则△COD面积的最大值是.三、解答题(共11小题)15.计算:×﹣2×|﹣5|+(﹣)﹣2.16.解方程:﹣=1.17.如图,已知锐角△ABC,点D是AB边上的一定点,请用尺规在AC边上求作一点E,使△ADE与△ABC相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)18.在正方形ABCD中,M、N分别是边CD、AD的中点,连接BN,AM交于点E.求证:AM⊥BN.19.为了庆祝六一儿童节,红旗中学七年级举办了文艺演出,该校学生会为了了解学生最喜欢演出中的哪类节目,对这个年级的学生进行了抽样调查.我们根据调查结果绘制了两幅统计图.请依据以下两幅统计图提供的相关信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该校七年级有800名学生,求这些学生中最喜欢歌唱类节目的人数.20.小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O 为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)21.某市为了倡导居民节约用水,生活用自来水按阶梯式水价计费.如图是居民每户每月的水(自来水)费y(元)与所用的水(自来水)量x(吨)之间的函数图象.根据下面图象提供的信息,解答下列问题:(1)当17≤x≤30时,求y与x之间的函数关系式;(2)当一户居民在某月用水为15吨时,求这户居民这个月的水费;(3)已知某户居民上月水费为91元,求这户居民上月用水量多少吨?22.甲、乙两人利用五个小球做“找象限”游戏,这五个小球的球面上分别标有数字﹣2、﹣1、1、2、3,这些小球除球面上数字不同外其他完全相同.他们俩约定:把这五个小球放在一个不透明的口袋中,甲先从口袋中任摸一个小球,记下数字作为一点的横坐标,再将这个小球放回这个袋中摇匀,接着乙从口袋中任摸一个小球,记下数字作为这个点的纵坐标,这样就得到坐标平面上的一个点,若此点在第一、三象限,则甲胜,否则乙胜.这样的游戏对甲、乙双方公平吗?为什么?23.如图,⊙O是△ABC的外接圆,过点A、B两点分别作⊙O的切线PA、PB交于一点P,连接OP(1)求证:∠APO=∠BPO;(2)若∠C=60°,AB=6,点Q是⊙O上的一动点,求PQ的最大值.24.如图,在平面直角坐标系中,点A(﹣1,0),B(0,2),点C在x轴上,且∠ABC =90°.(1)求点C的坐标;(2)求经过A,B,C三点的抛物线的表达式;(3)在(2)中的抛物线上是否存在点P,使∠PAC=∠BCO?若存在,求出点P的坐标;若不存在,说明理由.25.问题探究(1)如图①,在Rt△ABC中,∠B=90°,请你过点A作一条直线AD,其中点D为BC 上一点,使直线AD平分△ABC的面积;(2)如图②,点P为▱ABCD外一点,AB=6,BC=12,∠B=45°,请过点P作一条直线l,使其平分▱ABCD的面积,并求出▱ABCD的面积;问题解决(3)如图③,在平面直角坐标系中,四边形OABC是李爷爷家一块土地的示意图,其中OA∥BC,点P处有一个休息站点(占地面积忽略不计),李爷爷打算过点P修一条笔直的小路l(路的宽度不计),使直线l将四边形OABC分成面积相等的两部分,分别用来种植不同的农作物.已知点A(8,8)、B(6,12)、P(3,6).你认为直线1是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.的倒数是()A.B.C.D.解:根据倒数的定义得:﹣的倒数是﹣;故选:A.2.如图,将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是()A.B.C.D.解:将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是圆锥,故选:B.3.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a 解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选:B.5.某校给足球队的十一位运动员每人购买了一双运动鞋.尺码及购买数量如下表:尺码/码40 41 42 43 44 购买数量/双 2 4 2 2 1 则这十一双运动鞋尺码的众数和中位数分别为()A.40,41 B.41,41 C.41,42 D.42,43 解:由表可知41出现次数最多,所以众数为41,因为共有2+4+2+2+1=11个数据,所以中位数为第6个数据,即中位数为41,故选:B.6.若正比例函数的图象经过(﹣3,2),则这个图象一定经过点()A.(2,﹣3)B.C.(﹣1,1)D.(2,﹣2)解:设正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过(﹣3,2),∴﹣3k=2,解得k=﹣,∴正比例函数的解析式为:y=﹣x.A、∵当x=2时,y=﹣×2=﹣≠﹣3,∴此点不在函数图象上,故本选项错误;B、∵当x=时,y=﹣×=﹣1,∴此点在函数图象上,故本选项正确;C、∵当x=﹣1时,y=﹣×(﹣1)=≠1,∴此点不在函数图象上,故本选项错误;D、∵当x=2时,y=﹣×2=﹣≠﹣2,∴此点不在函数图象上,故本选项错误.故选:B.7.如图,在菱形ABCD中,∠ABC=60°,AB=4.若点E、F、G、H分别是边AB、BC、CD、DA的中点,连接EF、FG、GH、HE,则四边形EFGH的面积为()A.8 B.6C.4D.6解:连接AC、BD交于O,∵四边形ABCD是菱形,∴AC⊥BD,∵点E、F、G、H分别是边AB、BC、CD和DA的中点,∴EH∥BD,FG∥BD,EF∥AC,HG∥AC,∴EH∥FG,EF∥HG,∴四边形EFGH是平行四边形,∵AC⊥BD,∴∠AOB=90°,∴∠BAO+∠ABO=90°,∵∠AEO=∠ABO,∠BEF=∠EAO,∴∠AEO+∠BEF=90°,∴∠HEF=90°,∴四边形EFGH是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=4,BD=4,∴EF=AC=2,∴EH=BD=2,∴四边形EFGH的面积为2×=4,故选:C.8.如果点A(m,n)、B(m+1,n+2)均在一次函数y=kx+b(k≠0)的图象上,那么k的值为()A.2 B.1 C.﹣1 D.﹣2解:∵点A(m,n)、B(m+1,n+2)均在一次函数y=kx+b(k≠0)的图象上,∴,解得:k=2.故选:A.9.如图,在矩形ABCD中,AB=3.4,BC=5,以BC为直径作半圆O,点P是半圆O上的一点,若PB=4,则点P到AD的距离为()A.B.1 C.D.解:如图,连接PC,作PE⊥AD于E,直线PE交BC于F,∵AD∥BC,∴PF⊥BC,∵BC为直径,∴∠BPC=90°,∴PC==3,∵PF•BC=PB•PC,∴PF==2.4,易得四边形ABFE为矩形,∴EF=AB=3.4,∴PE=3.4﹣2.4=1.故选:B.10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距10个单位长度.若其中一条抛物线的函数表达式为y=x2+6x+m,则m的值是()A.﹣4或﹣14 B.﹣4或14 C.4或﹣14 D.4或14解:∵一条抛物线的函数表达式为y=x2+6x+m,∴这条抛物线的顶点为(﹣3,m﹣9),∴关于x轴对称的抛物线的顶点(﹣3,9﹣m),∵它们的顶点相距10个单位长度.∴|m﹣9﹣(9﹣m)|=10,∴2m﹣18=±10,当2m﹣18=10时,m=14,当2m﹣18=﹣10时,m=4,∴m的值是4或14.故选:D.二、填空题(共4小题,每小题3分,计12分)11.在,﹣1,,π这四个数中,无理数有2个.解:在,﹣1,,π这四个数中,无理数有和π共2个.故答案为:212.不等式+2>x的正整数解为1,2.解:+2>x,去分母,得:x﹣1+6>3x,移项,得:x﹣3x>1﹣6,合并同类项,得:﹣2x>﹣5,系数化成1得:x<2.5.则正整数解是:1,2.故答案是:1,2.13.如图,在x轴上方,平行于x轴的直线与反比例函数y=和y=的图象分别交于A、B两点,连接OA、OB,若△AOB的面积为6,则k1﹣k2=﹣12.解:∵AB∥x轴,∴设A(x,),B(,)∴AB=﹣x,∵△AOB的面积为6,∴(﹣x)•=6,∴k1﹣k2=﹣12,故答案为:﹣12.14.如图,在半圆⊙O中,AB是直径,CD是一条弦,若AB=10,则△COD面积的最大值是12.5.解:如图,作DH⊥CO交CO的延长线于H.∵S△COD=•OC•DH,∵DH≤OD,∴当DH=OD时,△COD的面积最大,此时△COD是等腰直角三角形,∠COD=90°,此时面积的最大值为:×5×5=12.5,故答案为:12.5.三、解答题(共11小题,计78分,解答应写出过程)15.计算:×﹣2×|﹣5|+(﹣)﹣2.解:原式=﹣2×10+9=2﹣10+9=2﹣1.16.解方程:﹣=1.解:去分母得:x(x﹣1)﹣2=x2﹣3x,去括号得:x2﹣x﹣2=x2﹣3x,移项合并得:2x=2,解得:x=1,经检验x=1是分式方程的解.17.如图,已知锐角△ABC,点D是AB边上的一定点,请用尺规在AC边上求作一点E,使△ADE与△ABC相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)解:如图,点E即为所求作的点.18.在正方形ABCD中,M、N分别是边CD、AD的中点,连接BN,AM交于点E.求证:AM⊥BN.【解答】证明:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠BAN=∠ADM=90°,∵M、N分别是边CD、AD的中点,∴AN=AD,DM=CD,∴AN=DM,在△ABN和△DAM中,,∴△ABN≌△DAM(SAS),∴∠ABN=∠DAM,∵∠DAM+∠BAE=90°,∴∠ABN+∠BAE=90°,∴∠AEB=90°,∴AM⊥BN.19.为了庆祝六一儿童节,红旗中学七年级举办了文艺演出,该校学生会为了了解学生最喜欢演出中的哪类节目,对这个年级的学生进行了抽样调查.我们根据调查结果绘制了两幅统计图.请依据以下两幅统计图提供的相关信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该校七年级有800名学生,求这些学生中最喜欢歌唱类节目的人数.解:(1)本次抽样调查的学生人数:12÷10%=120(名);(2)舞蹈类人数:120×35%=42(名),歌唱类的百分比:×100%=30%,小品类的百分比:×100%=20%.补全两幅统计图如图所示:(3)800×30%=240(名).答:最喜欢歌唱类节目的人数为240名.20.小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O 为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)解:如图,过E点作EF⊥OB于F,过D点作DG⊥EF于G.在Rt△CEF中,CF=EF•tan50°=AB•tan50°=35.76m,在Rt△DEG中,DG=EG•tan60°=EG,设热气球的直径为x米,则35.76+x=(30﹣x),解得x≈11.9.故热气球的直径约为11.9米.21.某市为了倡导居民节约用水,生活用自来水按阶梯式水价计费.如图是居民每户每月的水(自来水)费y(元)与所用的水(自来水)量x(吨)之间的函数图象.根据下面图象提供的信息,解答下列问题:(1)当17≤x≤30时,求y与x之间的函数关系式;(2)当一户居民在某月用水为15吨时,求这户居民这个月的水费;(3)已知某户居民上月水费为91元,求这户居民上月用水量多少吨?解:(1)y与x之间的函数关系式为:y=kx+b,由题意得:∴∴y与x之间的函数关系式为:y=5x﹣34;(2)当x=17吨时,y=5×17﹣34=51元,∴当0≤x<17时,y与x之间的函数关系式为:y=3x,∴当x=15吨时,y=45元,答:这户居民这个月的水费45元;(3)当y=91元>51元,∴91=5x﹣34x=25答:这户居民上月用水量25吨.22.甲、乙两人利用五个小球做“找象限”游戏,这五个小球的球面上分别标有数字﹣2、﹣1、1、2、3,这些小球除球面上数字不同外其他完全相同.他们俩约定:把这五个小球放在一个不透明的口袋中,甲先从口袋中任摸一个小球,记下数字作为一点的横坐标,再将这个小球放回这个袋中摇匀,接着乙从口袋中任摸一个小球,记下数字作为这个点的纵坐标,这样就得到坐标平面上的一个点,若此点在第一、三象限,则甲胜,否则乙胜.这样的游戏对甲、乙双方公平吗?为什么?解:画树状图如下:共有25种情况,其中此点在第一、三象限的有13种结果,此点在第二、四象限的有12种结果,∴甲获胜的概率为,乙获胜的概率为,∵>,∴这样的游戏对甲、乙双方不公平.23.如图,⊙O是△ABC的外接圆,过点A、B两点分别作⊙O的切线PA、PB交于一点P,连接OP(1)求证:∠APO=∠BPO;(2)若∠C=60°,AB=6,点Q是⊙O上的一动点,求PQ的最大值.【解答】(1)证明:连接OA、OB,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,在RT△PAO和RT△PBO中,,∴RT△PAO≌RT△PBO(HL),∴∠APO=∠BPO;(2)解:∵PA、PB是⊙O的切线,∴∠PAB=∠PBA=∠C=60°,OP⊥AB,∴△PAB为等边三角形,延长PO交⊙O于Q,连接AQ、BQ,则此时PQ最大,∵∠APB=60°,∴∠APO=∠BPO=30°∴PQ=2×AP=2×AB=2××6=6.24.如图,在平面直角坐标系中,点A(﹣1,0),B(0,2),点C在x轴上,且∠ABC =90°.(1)求点C的坐标;(2)求经过A,B,C三点的抛物线的表达式;(3)在(2)中的抛物线上是否存在点P,使∠PAC=∠BCO?若存在,求出点P的坐标;若不存在,说明理由.解:(1)设C点坐标为(x,0)(x>0),则AC=x+1,AB=,BC=,由勾股定理可得(x+1)2=5+()2,解得x=4.故点C的坐标为(4,0);(2)设经过A,B,C三点的抛物线的表达式为y=ax2+bx+c,依题意有,解得.故经过A,B,C三点的抛物线的表达式为y=﹣x2+x+2;(3)∵∠PAC=∠BCO,∴tan∠PAC=tan∠BCO,设P点坐标为(x,y),tan∠BCO=,P点在x轴上方时,y>0,tan∠PAC=,联立,﹣x2+3x+4=x+1,x2﹣2x﹣3=0,(x﹣3)(x+1)=0,∵y>0,∴x=3,∴点P的坐标为(3,2);P点在x轴下方时;y<0,x>0,tan∠PAC=﹣,联立,x2﹣3x﹣4=x+1,x2﹣4x﹣5=0,(x﹣5)(x+1)=0,∵x>0,∴x=5,∴点P的坐标为(5,﹣3).综上可得,点P的坐标为(3,2)或(5,﹣3).25.问题探究(1)如图①,在Rt△ABC中,∠B=90°,请你过点A作一条直线AD,其中点D为BC 上一点,使直线AD平分△ABC的面积;(2)如图②,点P为▱ABCD外一点,AB=6,BC=12,∠B=45°,请过点P作一条直线l,使其平分▱ABCD的面积,并求出▱ABCD的面积;问题解决(3)如图③,在平面直角坐标系中,四边形OABC是李爷爷家一块土地的示意图,其中OA∥BC,点P处有一个休息站点(占地面积忽略不计),李爷爷打算过点P修一条笔直的小路l(路的宽度不计),使直线l将四边形OABC分成面积相等的两部分,分别用来种植不同的农作物.已知点A(8,8)、B(6,12)、P(3,6).你认为直线1是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.解:(1)如图1,点D为BC的中点,作直线AD,直线AD则平分△ABC的面积;(2)如图2,连接AC、BD,AC与BD交于点O,则点O为平行四边形ABCD的对称中心,作直线OP,直线OP即为所求;如图3,过A作AE⊥BC于E,∵∠ABC=45°,∴△ABE是等腰直角三角形,∴AE===3,∵BC=12,∴▱ABCD的面积=BC•AE=12×3=36;(3)∵A(8,8),∴直线OA的解析式为:y=x,过点B作BD⊥x轴于点D,交AO于E,连接OB,则E(6,6),∵B(6,12),点P(3,6),∴点P为线段OB的中点.∵OA∥BC,BE∥OC,∴四边形OEBC是平行四边形.∴点P是平行四边形OEBC的对称中心,∴过点P的直线平分平行四边形OEBC.∴过点P的直线PF只要平分△BEA的面积即可.设直线PF的表达式为y=kx+b,且过点P(3,6),∴3k+b=6,即b=6﹣3k,∴y=kx+6﹣3k.设直线AB的表达式为y=mx+n,且过点B(6,12),A(8,8),则,解得:,∴直线AB的函数表达式为y=﹣2x+24.∴,解得:x=,∴F的横坐标为,把x=6代入y=kx+6﹣3k得y=3k+6,∴G(6,3k+6)同理得直线AP的解析式为y=x+,当x=6时,y=,∴<3k+6<12,解得<k<2,∵S△BFG=BG•(F x﹣6)=(12﹣3k﹣6)(﹣6)=(8﹣6)(12﹣6),解得k=或k=4(舍去),∴直线l的表达式为y=x+4.。
广东省深圳市2020年中考数学暨初中学业水平测试模拟试卷(含解析)

深圳市2020年中考数学暨初中学业水平测试模拟试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-2020的相反数的倒数是( )2020.A 2020.-B20201.C 20201.-D 2.(2019·绵阳)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.000 2米.将数0.000 2用科学记数法表示为( )A .0.2×10-3B .0.2×10-4C .2×10-3D .2×10-43.如图,直线a ∥b ,直角三角形如图放置,∠DCB =90°,若∠1+∠B =65°,则∠2的度数为( )A .20°B .25°C .30°D .35°4.(2019·深圳)下列哪个图形是正方体的展开图( )5.若分式xx -2在实数范围内有意义,则x 的取值范围是( )A .x≠0B .x≠2C .x =0D .x≠2且x≠0 6.(2019·张家界)下列说法正确的是( )A .打开电视机,正在播放“张家界新闻”是必然事件B .天气预报说“明天的降水概率为65%”,意味着明天一定下雨C .两组数据平均数相同,则方差大的更稳定D .数据5,6,7,7,8的中位数与众数均为77.如图,在直角梯形ABCD 中,AD∥BC,AB⊥BC,AD =2,BC =3,将腰CD 以D 为中心逆时针旋转90°至ED ,连AE ,CE ,则△ADE 的面积是( )A .1B .2C .3D .不能确定8.(2019·广州)若点A (-1,y 1),B (2,y 2),C (3,y 3)在反比例函数y =6x的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3<y 2<y 1B .y 2<y 1<y 3C .y 1<y 3<y 2D .y 1<y 2<y 39.2018-2019赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为( )A.12x (x -1)=380 B .x (x -1)=380C.12x (x +1)=380 D .x (x +1)=380 10.(2019潍坊 中考)如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD ,过点D 作DE ⊥AB 于点E ,连接AC 交DE 于点F .若sin∠CAB =,DF =5,则BC 的长为( )A .8B .10C .12D .1611.(2019潍坊 中考)抛物线y =x 2+bx +3的对称轴为直线x =1.若关于x 的一元二次方程x 2+bx +3﹣t =0(t 为实数)在﹣1<x <4的范围内有实数根,则t 的取值范围是( ) A .2≤t <11 B .t ≥2C .6<t <11D .2≤t <612.如图,四边形OABC 是矩形,等腰△ODE 中,OE =DE ,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点B 、E 在反比例函数y =的图象上,OA =5,OC =1,则△ODE的面积为( )A .2.5B .5C .7.5D .10第Ⅱ卷(共90分)二、填空题(每题3分,满分12分,将答案填在答题纸上) 13.分解因式:a 3-2a 2b +ab 2= .14.对于实数a ,b ,定义运算“*”,a *b =⎩⎪⎨⎪⎧a 2-ab (a >b ),ab -b 2(a≤b),例如4*2,因为4>2,所以4*2=42-4×2=8,若x 1,x 2是一元二次方程x 2-9x +20=0的两个根,则x 1*x 2= .15.(2019·黄冈)如图,AC ,BD 在AB 的同侧,AC =2,BD =8,AB =8.点M 为AB 的中点.若∠CMD =120°,则CD 的最大值为 .16.(2019聊城 中考)数轴上O ,A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点A 1处,第2次从A 1点跳动到A 1O 的中点A 2处,第3次从A 2点跳动到A 2O 的中点A 3处,按照这样的规律继续跳动到点A 4,A 5,A 6,…,A n .(n ≥3,n 是整数)处,那么线段A n A 的长度为 (n ≥3,n 是整数).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(2019山西 中考)(本题共2个小题,每小题5分,共10分) (1)计算:02)2020(60tan 3)21(27-+︒--+-π(2)解方程组:⎩⎨⎧=+-=-②02①823y x y x18. 先化简,再求值:2221111x x x x x ++⎛⎫-+ ⎪--⎝⎭,其中2x =.19.为了实现伟大的强国复兴梦,全社会都在开展“扫黑除恶”专项斗争,某区为了解各学校老师对“扫黑除恶”应知应会知识的掌握情况,对甲、乙两个学校各180名老师进行了测试,从中各随机抽取30名教师的成绩(百分制),并对成绩(单位:分)进行整理、描述和分析,给出了部分成绩信息.甲校参与测试的老师成绩在96≤x<98这一组的数据是:96,96.5,97,97.5,97,96.5,97.5,96,96.5,96.5甲、乙两校参与测试的老师成绩的平均数、中位数、众数如下表:学校平均数中位数众数甲校96.35 m99乙校95.85 97.5 99根据以上信息,回答下列问题:(1)m=________;(2)在此次随机抽样测试中,甲校的王老师和乙校的李老师成绩均为97分,则他们在各自学校参与测试的老师中成绩的名次相比较更靠前的是________(选填“王”或“李”)老师,请写出理由;(3)在此次随机测试中,乙校96分以上(含96分)的总人数比甲校96分以上(含96分)的总人数的2倍少100人,试估计乙校96分以上(含96分)的总人数.20.如图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC 于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.21.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2 000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3 780元,则该水果每千克售价至少为多少元?22. 如图在O中,2,BC AB AC==,点D为AC上的动点,且10 cos B=.(1)求AB的长度;(2)求AD AE⋅的值;(3)过A点作AH BD⊥,求证:BH CD DH=+.点C (0,-3),与抛物线L 2:y =-12x 2-32x +2的一个交点为A ,且点A 的横坐标为2,点P ,Q 分别是抛物线L 1、抛物线L 2上的动点.(1)求抛物线L 1对应的函数表达式;(2)若以点A ,C ,P ,Q 为顶点的四边形恰为平行四边形,求出点P 的坐标; (3)设点R 是抛物线L 1上另一个动点,且CA 平分∠PCR ,若OQ ∥PR ,求出点Q 的坐标.参考答案深圳市2020年中考数学暨初中学业水平测试模拟试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-2020的相反数的倒数是( )2020.A 2020.-B 20201.C 20201.-D【分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,再结合倒数的定义进而得出答案.【解答】解:-2020的相反数是2020,2020的倒数是1.故选:C.2.(2019·绵阳)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.000 2米.将数0.000 2用科学记数法表示为( D )A.0.2×10-3B.0.2×10-4C.2×10-3D.2×10-43.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为( B )A.20°B.25°C.30°D.35°4.(2019·深圳)下列哪个图形是正方体的展开图( B )5.若分式xx-2在实数范围内有意义,则x的取值范围是( B )A.x≠0 B.x≠2 C.x=0 D.x≠2且x≠06.(2019·张家界)下列说法正确的是( D )A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为77.如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE,CE,则△ADE的面积是( A )A .1B .2C .3D .不能确定8.(2019·广州)若点A (-1,y 1),B (2,y 2),C (3,y 3)在反比例函数y =6x的图象上,则y 1,y 2,y 3的大小关系是( C )A .y 3<y 2<y 1B .y 2<y 1<y 3C .y 1<y 3<y 2D .y 1<y 2<y 39.2018-2019赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为( B )A.12x (x -1)=380 B .x (x -1)=380C.12x (x +1)=380 D .x (x +1)=380 10.(2019潍坊 中考)如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD ,过点D 作DE ⊥AB 于点E ,连接AC 交DE 于点F .若sin∠CAB =,DF =5,则BC 的长为( C )A .8B .10C .12D .1611.(2019潍坊 中考)抛物线y =x 2+bx +3的对称轴为直线x =1.若关于x 的一元二次方程x 2+bx +3﹣t =0(t 为实数)在﹣1<x <4的范围内有实数根,则t 的取值范围是( D )A .2≤t <11B .t ≥2C .6<t <11D .2≤t <612.如图,四边形OABC 是矩形,等腰△ODE 中,OE =DE ,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点B 、E 在反比例函数y =的图象上,OA =5,OC =1,则△ODE的面积为()A.2.5 B.5 C.7.5 D.10【分析】过E作EF⊥OC于F,由等腰三角形的性质得到OF=DF,于是得到S△ODE=2S△OEF,由于点B、E在反比例函数y=的图象上,于是得到S矩形ABCO=k,S△OEF=k,即可得到结论.【解答】解:过E作EF⊥OC于F,∵OE=DE,∴OF=DF,∴S△ODE=2S△OEF,∵点B、E在反比例函数y=的图象上,∴S矩形ABCO=k,S△OEF=k,∴S△ODE=S矩形ABCO=5×1=5,故选:B.【点评】本题考查反比例函数系数k的几何意义,等腰三角形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.第Ⅱ卷(共90分)二、填空题(每题3分,满分12分,将答案填在答题纸上)13.分解因式:a3-2a2b+ab2= a(a-b)2 .14.对于实数a ,b ,定义运算“*”,a*b =⎩⎪⎨⎪⎧a 2-ab (a >b ),ab -b 2(a≤b),例如4*2,因为4>2,所以4*2=42-4×2=8,若x 1,x 2是一元二次方程x 2-9x +20=0的两个根,则x 1*x 2= ±5 . 15.(2019·黄冈)如图,AC ,BD 在AB 的同侧,AC =2,BD =8,AB =8.点M 为AB 的中点.若∠CMD=120°,则CD 的最大值为 14 .16.(2019聊城 中考)数轴上O ,A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点A 1处,第2次从A 1点跳动到A 1O 的中点A 2处,第3次从A 2点跳动到A 2O 的中点A 3处,按照这样的规律继续跳动到点A 4,A 5,A 6,…,A n .(n ≥3,n 是整数)处,那么线段A n A 的长度为 4﹣(n ≥3,n 是整数).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(2019山西 中考)(本题共2个小题,每小题5分,共10分) (1)计算:02)2020(60tan 3)21(27-+︒--+-π【解析】原式=5133433=+-+ (3)解方程组:⎩⎨⎧=+-=-②02①823y x y x【解析】(2)①+②得:84-=x ,解得2-=x ,将2-=x 代入②得:022=+-y ,解得1=y ∴原方程组的解为⎩⎨⎧=-=12y x18. 先化简,再求值:2221111x x x x x ++⎛⎫-+ ⎪--⎝⎭,其中2x =.解:原式21(1)(1)11(1)1x x x x x x x -++-=⋅=-++把2x =代入得:原式13= 19.为了实现伟大的强国复兴梦,全社会都在开展“扫黑除恶”专项斗争,某区为了解各学校老师对“扫黑除恶”应知应会知识的掌握情况,对甲、乙两个学校各180名老师进行了测试,从中各随机抽取30名教师的成绩(百分制),并对成绩(单位:分)进行整理、描述和分析,给出了部分成绩信息.甲校参与测试的老师成绩在96≤x<98这一组的数据是:96,96.5,97,97.5,97,96.5,97.5,96,96.5,96.5甲、乙两校参与测试的老师成绩的平均数、中位数、众数如下表:学校 平均数 中位数 众数 甲校 96.35 m 99 乙校95.8597.599根据以上信息,回答下列问题: (1)m =________;(2)在此次随机抽样测试中,甲校的王老师和乙校的李老师成绩均为97分,则他们在各自学校参与测试的老师中成绩的名次相比较更靠前的是________(选填“王”或“李”)老师,请写出理由;(3)在此次随机测试中,乙校96分以上(含96分)的总人数比甲校96分以上(含96分)的总人数的2倍少100人,试估计乙校96分以上(含96分)的总人数.解:(1)96.5;(2)王;(3)甲校96分以上的人数为20×6=120(人),∴乙校的96分以上的人数为2×120-100=140(人).21.如图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC 于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.解:(1)∵四边形AB′C′D′是菱形,∴AB′=B′C′=C′D′=AD′,∵∠B′AD′=∠B′C′D′=60°,∴△AB′D′,△B′C′D′是等边三角形,∵MN∥B′C′,∴∠C′MN=∠C′B′D′=60°,∠CNM=∠C′D′B′=60°,∴△C′MN是等边三角形,∴C′M=C′N,∴MB′=ND′,∵∠AB′M=∠AD′N=120°,AB′=AD′,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠CAD=∠BAD=30°,∠DAD′=15°,∴α=15°.(2)∵∠C′B′D′=60°,∴∠EB′G=120°,∵∠EAG=60°,∴∠EAG+∠EB′G=180°,∴四边形EAGB′四点共圆,∴∠AEB′=∠AGD′,∵∠EAB′=∠GAD′,AB′=AD′,∴△AEB′≌△AGD′(AAS),∴EB′=GD′,AE=AG,∵AH=AH,∠HAE=∠HAG,∴△AHE≌△AHG(SAS),∴EH=GH,∵△EHB′的周长为2,∴EH+EB′+HB′=B′H+HG+GD′=B′D′=2,∴AB′=AB=2,∴菱形ABCD的周长为8.21.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2 000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3 780元,则该水果每千克售价至少为多少元?解:(1)设水果店第一次购进水果x 元,第二次购进水果y 元, 由题意得⎩⎪⎨⎪⎧x +y =2 000,y 4-1=2×x 4,解得⎩⎪⎨⎪⎧x =800y =1 200. ∴水果店第一次购进水果800元,第二次购进水果1 200元. (2)设该水果每千克售价为m 元,第一次购进800÷4=200(千克), 第二次购进1 200÷3=400(千克),由题意[200×(1-3%)+400×(1-4%)]m -2 000≥3 780. 解得m≥10.∴该水果每千克售价为10元.22. 如图在O 中,2,BC AB AC ==,点D 为AC 上的动点,且10cos B =. (1)求AB 的长度; (2)求AD AE ⋅的值;(3)过A 点作AH BD ⊥,求证:BH CD DH =+.22.解:(1)作AM BC⊥,,2AB AC AM BC BC =⊥=112BM CM BC ===10cos BM B AB ==,在Rt AMB ∆中,1BM = 10cos 110AB BM B ∴=÷=÷=. (2)连接DC AB AC =ACB ABC ∴∠=∠∵四边形ABCD 内接于圆O ,180ADC ABC ∴∠+∠=,180ACE ACB ∠+∠=,ADC ACE ∴∠=∠CAE ∠公共EAC CAD ∴∆∆∽AC AEAD AC∴=()221010AD AE AC ∴⋅===.(3)在BD 上取一点N ,使得BN CD =在ABN ∆和ACD ∆中31AB AC BN CD =⎧⎪∠=∠⎨⎪=⎩()ABN ACD SAS ∴∆≅∆AN AD∴=,AN AD AH BD =⊥NH HD ∴=,BN CD NH HD ==BN NH CD HD BH ∴+=+=.23.(2019·连云港)如图,在平面直角坐标系xOy 中,抛物线L 1=y =x 2+bx +c 过点C(0,-3),与抛物线L 2:y =-12x 2-32x +2的一个交点为A ,且点A 的横坐标为2,点P ,Q 分别是抛物线L 1、抛物线L 2上的动点.(1)求抛物线L 1对应的函数表达式;(2)若以点A ,C ,P ,Q 为顶点的四边形恰为平行四边形,求出点P 的坐标; (3)设点R 是抛物线L 1上另一个动点,且CA 平分∠PCR,若OQ∥PR,求出点Q 的坐标. 解:(1)将x =2代入y =-12x 2-32x +2,得y =-3,故点A 的坐标为(2,-3),将A(2,-3),C(0,-3)代入y =x 2+bx +c ,得⎩⎪⎨⎪⎧-3=22+2b +c ,-3=0+0+c.解得⎩⎪⎨⎪⎧b =-2,c =-3.所以抛物线L 1对应的函数表达式为y =x 2-2x -3;(2)设点P 的坐标为(x ,x 2-2x -3).第一种情况:AC 为平行四边形的一条边.①当点Q 在点P 右侧时,则点Q 的坐标为(x +2,x 2-2x -3).将Q(x +2,x 2-2x -3)代入y =-12x 2-32x +2,得x 2-2x -3=-12(x +2)2-32(x +2)+2,整理得x 2+x =0,解得x 1=0,x 2=-1.因为x =0时,点P 与点C 重合,不符合题意,所以舍去,此时点P 的坐标为(-1,0);②当点Q 在点P 左侧时,则点Q 的坐标为(x -2,x 2-2x -3).将Q(x -2,x 2-2x -3)代入y =-12x 2-32x +2,得x 2-2x -3=-12(x -2)2-32(x -2)+2,整理得3x 2-5x -12=0,解得x 1=3,x 2=-43.此时点P 的坐标为(3,0)或⎝ ⎛⎭⎪⎫-43,139.第二种情况:当AC为平行四边形的一条对角线时.由AC 的中点坐标为(1,-3),得PQ 的中点坐标为(1,-3),故点Q 的坐标为(2-x ,-x 2+2x -3).将Q(2-x ,-x 2+2x -3)代入y =-12x 2-32x +2,得-x 2+2x -3=-12(2-x)2-32(2-x)+2,整理得x 2+3x =0,解得x 1=0,x 2=-3.因为x =0时,点P 与点C 重合,不符合题意,所以舍去,此时点P 的坐标为(-3,12).综上所述,点P 的坐标为(-1,0)或(3,0)或⎝ ⎛⎭⎪⎫-43,139或(-3,12);(3)点Q 坐标为(-7+652,-7+65)或(-7-652,-7-65)。
2020中考数学模拟试卷1+参考答案+评分标准

2020中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1. 在-4,2,-1,3这四个数中,比-2小的数是( )A. -4B. 2C. -1D. 32. 计算 8×2的结果是( )A. 10B. 4C. 6D. 23. 移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A. 1.62×104B. 162×106C. 1.62×108D. 0.162×109 4. 下列几何体中,俯视图是矩形的是( )5. 与1+5最接近的整数是( )A. 4B. 3C. 2D. 16. 我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x ,则下列方程正确的是( )A. 1.4(1+x )=4.5B. 1.4(1+2x )=4.5C. 1.4(1+x )2=4.5D. 1.4(1+x )+1.4(1+x )2=4.57. 某校九年级(1)班全体学生2015年初中毕业体育学业考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数2566876根据上表中的信息判断,下列结论中错误..的是( ) A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是45分C. 该班学生这次考试成绩的中位数是45分D. 该班学生这次考试成绩的平均数是45分8. 在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A. ∠ADE =20° B. ∠ADE =30° C. ∠ADE =12∠ADC D. ∠ADE =13∠ADC9. 如图,矩形ABCD 中,AB =8,BC =4,点E 在AB 上,点F 在CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是( )第9题图A. 25B. 35C. 5D. 610. 如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能为( )二、填空题(本大题共4小题,每小题5分,满分20分)11. -64的立方根是________.12. 如图,点A 、B 、C 在⊙O 上,⊙O 的半径为9,AB ︵的长为2π,则∠ACB 的大小是________.第12题图13. 按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的关系式是________.14. 已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则1a +1b=1;②若a =3,则b +c =9; ③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是________.(把所有正确结论的序号都选上) 三、(本大题共2小题,每小题8分,满分16分)15. 先化简,再求值:(a 2a -1+11-a )·1a ,其中a =-12.16. 解不等式:x3>1-x -36.四、(本大题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.第17题图18. 如图,平台AB 高为12米,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度.(3≈1.7)第18题图五、(本大题共2小题,每小题10分,满分20分)19. A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20. 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图①,当PQ∥AB时,求PQ长;(2)如图②,当点P在BC上移动时,求PQ长的最大值.第20题图六、(本题满分12分)21. 如图,已知反比例函数y=k1x与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=k1x图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.第21题图七、(本题满分12分)22. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度是x 米,矩形区域ABCD 的面积为y 平方米.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 取何值时,y 有最大值?最大值是多少?第22题图八、(本题满分14分)23. 如图①,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接GA 、GB 、GC 、GD 、EF ,若∠AGD =∠BGC .(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图②,若AD 、BC 所在直线互相垂直,求ADEF的值.图① 图②第23题图参考答案与试题解析1. A 【解析】把-4,2,1,3和-2在数轴上分别表示出来如解图,由数轴上左边的数总比右边的数小,即-4<-2,故选A.第1题解图2. B 【解析】根据二次根式的运算法则可得8×2=8×2=16=4. 【一题多解】对于二次根式的运算,也可以先将二次根式化为最简二次根式,然后进行计算.8×2=22×2=22×2=24=4.3. C 【解析】大数的科学记数法的表示形式为a ×10n ,其中1≤a <10,n 的值等于原数的整数位数减1.含计数单位的数用科学记数法表示时,要把计数单位转化为数字.因为1亿=108,所以1.62亿=1.62×108.4. B 【解析】选项 逐项分析正误 A 圆锥的俯视图是带圆心的圆 B 水平放置的圆柱的俯视图是矩形 √ C 三棱柱的俯视图是三角形D球的俯视图是圆5. B 【解析】∵5≈2.236,∴1+5≈3.236,即1+5介于整数3和4之间,且距离3较近,故选B.【一题多解】∵22<5<32,∴2<5<3,∵(5)2=5,(52)2=6.25,∴5<52,1+5<72,∴1+5距离3较近.6. C 【解析】根据题意可知,2014年与2015年这两年的平均增长率均为x ,所以2014年的快递业务量为1.4(1+x ) 亿件,2015年的快递业务量1.4(1+x )(1+x )亿件,即1.4(1+x )2=4.5 亿件,故选C .选项 逐项分析正误 A 把表格中的人数相加,得:2+5+6+6+8+7+6=40,所以该班一共有40名同学 √ B由表格可知,这7列数据中成绩45出现的次数最多,出现了8次,所以众数是45分 √C中位数是把这7列数据中的分数按照从小到大的顺序排列,位于最中间的两个数(第20,21个数)的平均数,所以中位数为45+452=45分√ D平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425分≠45分× =120°-x ,而在四边形ABCD 中,∠ADC =360°-∠A -∠B -∠C =360°-3x ,∵120°-x =13(360°-3x ),∴∠ADE =13∠ADC .第8题解图9. C 【解析】如解图①,连接EF ,交AC 于点O ,由四边形EGFH 是菱形,可得FH =GE ,FH ∥GE ,∴∠FHG =∠EGH ,所以∠AGE =∠CHF , 在矩形ABCD 中,AB =8,BC =4,则由勾股定理得AC =82+42=4 5.由矩形性质,可得∠GAE =∠HCF ,则△GAE ≌△HCF (AAS),∴AG =CH ,由菱形的对角线 EF 垂直平分GH ,可得OG =OH ,EO ⊥AC .∴AG +OG =CH +OH ,即OA =OC .∴AO =12AC =25,∵∠B =∠AOE =90°,∠BAC =∠OAE ,∴Rt △AOE ∽Rt △ABC .则AO AB =AE AC ,即258=AE45,解得AE =5.第9题解图① 第9题解图②【一题多解——最优解】如解图②,设G 点和A 点重合,H 点和C 点重合,设AE =x ,则CE =x ,EB =8-x ,在Rt △BCE 中,有x 2=42+(8-x )2,解得x =5,∴AE =5.10. A 【解析】本题考查二次函数与一元二次方程的关系.根据一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象在第一象限相交于P 、Q 两点,观察图象可知一元二次方程ax 2+bx +c = x 的根为两个正根,即关于x 的一元二次方程ax 2+bx +c -x =0有两个正实数根,故函数y =ax 2+(b -1)x +c 的图象与x 轴交点的横坐标均为正数,故选A.第10题解图11. -4 【解析】∵(-4)3=-64 ,∴-64的立方根是-4.12. 20° 【解析】如解图,连接OA 、OB ,由已知可得:l AB ︵=n πr 180=n π×9180=2π,解得n =40,即∠AOB=40°,∴∠ACB =12∠AOB =20°.第12题解图13. xy =z 【解析】观察这一列数可得:23=21·22,25=22·23,28=23·25,213=25·28,…,即从第三个数起每个数都等于前两个数之积 ,由x 、y 、z 表示这列数中的连续三个数,则有xy =z .序号 逐个分析正误 ①若c ≠0,则a ≠0,b ≠0,对于a +b =ab 两边同除以ab ,可得1b +1a=1√ ② 若a =3,则3+b =3b ,则b =32,c =ab =92, b +c =32+92=6× ③若a =b =c ,则2c =c 2=c ,所以c =0,则a =b =0, 则abc =0 √④ 若a 、b 、c 中只有两个数相等,假设a =b ≠c ,则c =b 2=2b ,有b =2,则a =2,c =4, 则a +b +c =8;若b =c ≠a ,a +c =ac =c ,由ac =c 可得a =1,由a +c =c ≠b ,可得a =0,矛盾;同理若a =c ≠b ,可得b =0,b =1,矛盾.故只能是a =b√15. 解:原式=(a 2a -1 - 1a -1)·1a=a 2-1a -1·1a.............(3分) =(a +1)(a -1)a -1·1a =a +1a. ......................(6分) 当a =-12时,原式=a +1a =-12+1-12=-1. ............(8分)16. 解:去分母得:2x >6-(x -3), .........(3分) 去括号得:2x >6-x +3,移项、合并同类项得:3x >9, 系数化为1得:x >3,所以,不等式的解集为x >3. .............(8分)17. (1)解:△A 1B 1C 1如解图①所示. ...................(4分)第17题解图①(2)解:线段A 2C 2和△A 2B 2C 2如解图②所示(符合条件的△A 2B 2C 2不唯一)......(8分)第17题解图②18. 解:如解图,作BE ⊥CD 于点E ,则CE =AB =12.在Rt △BCE 中,BE =CE tan ∠CBE =12tan30°=12 3. ...........(3分)第18题解图在Rt △BDE 中,∵∠DBE =45°,∠DEB =90°, ∴∠BDE =45°,∴DE =BE =123, ..............(5分) ∴CD =CE +DE =12+123≈32.4,∴楼房CD 的高度约为32.4米. ............(8分)19. (1)解:根据题意画树状图如解图①所示: .............(3分)第19题解图①由树状图知,两次传球共有4种等可能的情况,球恰在B 手中的情况只有一种, 所以两次传球后,球恰在B 手中的概率为:P =14 . .................(5分)(2)解:根据题意画树状图如解图②所示: .................(7分)第19题解图②由树状图知,三次传球共有8种等可能的情况,球恰在A 手中的情况有2种, 所以三次传球后,球恰在A 手中的概率为:P =28=14. .........(10分)20. (1)解:∵OP ⊥PQ ,PQ ∥AB ,∴OP ⊥AB .在Rt △OPB 中,OP =OB ·tan ∠ABC =3·tan30°= 3. ............(3分) 如解图①,连接OQ ,在Rt △OPQ 中,PQ =OQ 2-OP 2=32-(3)2= 6. ..........(5分) (2)解:如解图②,连接OQ ,∵OP ⊥PQ , ∴△OPQ 为直角三角形, ∴PQ 2=OQ 2-OP 2=9-OP 2,∴当OP 最小时,PQ 最大,此时OP ⊥BC . ..........(7分)OP =OB·sin ∠ABC =3·sin30°=32.∴PQ 长的最大值为9-(32)2=332. ...........(10分)图① 图②第20题解图21. (1)解:把A (1,8),代入y =k 1x ,得k 1=8,∴y =8x ,将B (-4,m )代放y =8x,得m =-2.∵A (1,8),B (-4,-2)在y =k 2x +b 图象上,∴⎩⎪⎨⎪⎧k 2+b =8-4k 2+b =-2, 解得k 2=2,b =6. ................(4分)(2)解:设直线y =2x +6与x 轴交于点C ,当y =0时,x =-3, ∴OC =3.∴S △AOB =S △AOC +S △BOC =12×3×8+12×3×2=15. ....................(8分)(3)解:点M 在第三象限,点N 在第一象限. ............(9分) 理由:由图象知双曲线y =8x在第一、三象限内,因此应分情况讨论:①若x 1<x 2<0,点M 、N 在第三象限分支上,则y 1>y 2,不合题意; ②若0<x 1<x 2,点M 、N 在第一象限分支上,则y 1>y 2,不合题意;③若x 1<0<x 2,点M 在第三象限,点N 在第一象限,则y 1<0<y 2,符合题意. .....(11分) ∴点M 在第三象限,点N 在第一象限. ..........(12分) 22. (1)解:设AE =a ,由题意,得AE ·AD =2BE ·BC ,AD =BC , ∴BE =12a ,AB =32a . ..........(3分)由题意,得2x +3a +2·12a =80,∴a =20-12x . ..............(4分)∵BC =x >0,AE =a =20-12x >0,∴0<x <40,∴y =AB ·BC =32a ·x =32(20-12x )x ,即y =-34x 2+30x (0<x <40). ........................(8分)(2)解:∵y =-34x 2+30x =-34(x -20)2+300, ...........(10分)∴当x =20时,y 有最大值,最大值是300平方米. .......(12分)23. (1)证明:∵点E 、F 分别是AB 、CD 的中点,且GE ⊥AB ,GF ⊥CD , .......(2分) ∴GE 、GF 分别是线段AB 、CD 的垂直平分线, ∴GA =GB ,GC =GD ,在△AGD 和△BGC 中,⎩⎪⎨⎪⎧GA =GB ∠AGD =∠BGC GD =GC ,∴△AGD ≌△BGC (SAS),∴AD =BC . ...........(5分)(2)证明:∵∠AGD =∠BGC ,∴∠AGB =∠DGC . 在△AGB 和△DGC 中,GA GD =GBGC ,∠AGB =∠DGC ,∴△ABG ∽△DCG , ........(8分) ∴AG DG =EGFG,∠GAE =∠GDF , 又∵∠GEA =∠GFD =90°,∴∠AGE =∠GEA -∠GAE ,∠DGF =∠GFD -∠GDF , 即∠AGE =∠DGF , ∴∠AGD =∠EGF ,∴△AGD ∽△EGF . .................(10分)(3)解:如解图①,延长AD 交GB 于点M ,交BC 的延长线于点H ,则AH ⊥BH . 由△AGD ≌△BGC ,知∠GAD =∠GBC .在△GAM 和△HBM 中,∠GAD =∠GBC ,∠GMA =∠HMB , ∴△GMA ∽△HMB , ∴∠AGB =∠AHB =90°, ...............(12分) ∴∠AGE =12∠AGB =45°,∴AG EG= 2.又∵△AGD ∽△EGF ,∴AD EF =AGEG= 2. ..............(14分)第23题解图【一题多解】解法一:如解图②,过点F 作FM ∥BC 交BD 于点M ,连接EM . ∵GF 是DC 的垂直平分线, ∴DF =CF ,∵FM ∥BC ,FM =12BC .∴DM =BM .∵GE 是AB 的垂直平分线, ∴AE =BE ,∴EM ∥AD ,EM =12AD .∵AD ⊥BC , ∴EM ⊥FM . ∵AD =BC , ∴EN =FM , ∴EF =2EM , ∴AD EF =2EM EF= 2. 解法二:如解图③,过点D 作DH ⊥AD ,交BF 的延长线于点H . ∵AD ⊥BC ,DH ⊥AD , ∴DH ∥BC ,∴∠DHF =∠CBF ,∠HDF =∠BCF , 又DF =CF ,∴△DHF ≌△CBF ,∴DH =BC ,HF =BF ,∴DH =AD . 在Rt △ADH 中,∠ADH =90°,AD =DH , ∴AH =2AD .∵AE =BE ,HF =BF , ∴EF ∥AH ,EF =12AH ,∴EF =22AD , ∴ADEF= 2.。
2020-2021学年天津市中考数学第一次模拟试题及答案解析

最新天津市中考数学一模试卷一、选择题(共12小题,每小题3分,满分36分)1.计算(﹣3)+(﹣2)的结果等于()A.﹣5 B.5 C.﹣1 D.12.tan30°的值等于()A.B.C.D.3.下列标志中,可以看作是轴对称图形的是()A.B.C.D.4.根据海关统计,2015年1月4日,某市共出口钢铁1488000吨,148000这个数用科学记数法表示为()A.1.488×104B.0.1488×107C.14.88×106D.1.488×1065.如图是由5个相同的正方体组成的一个立体图形,它的左视图是()A.B.C.D.6.方程的解为()A.x=﹣2B.x=2 C.x=﹣1D.x=7.某校260名学生参加植树活动,要求每人值4﹣7棵,活动结束后随机调查了部分学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校植树量达到6棵的学生有()A.26名 B.52名 C.78名 D.104名8.正六边形的边心距是,则它的边长是()A.1 B.2 C.2D.39.反比例函数y=的图象经过点A(﹣2,﹣5),则当1<x<2时,y的取值范围是()A.﹣10<y<﹣5 B.﹣2<y<﹣1 C.5<y<10 D.y>1010.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4B.6C.2D.811.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A.105°B.150°C.75°D.30°12.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是()个.A.4个B.3个C.2个D.1个二、填空题(共6小题,每小题3分,满分18分)13.计算(﹣a2)3的结果等于.14.在一个不透明布袋里面装有11个球,其中有4个红球,7个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是白球的概率是.15.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m= .16.已知抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,那么抛物线的对称轴为直线.17.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为.18.如图,将三角形ABC放在每个小正方形的边长为1的网格中,点A,点B,点C,点P 均落在格点上.(1)计算三角形ABC的周长等于.(2)请在给定的网格内作三角形ABC的内接矩形EFGH,使得点E,H分别在边AB,AC上,点F,G在边BC上,且使矩形EFGH的周长等于线段BP长度的2倍,并简要说明你的作图方法(不要求证明)三、解答题(共7小题,满分66分)19.解不等式请结合题意填空,完全本题的解答(1)解不等式①,得.(2)解不等式②,得.(3)把不等式①和②的解集在数轴上表示出来.(4)原不等式组的解集为.20.某校开展社团活动,准备组件舞蹈、武术、球类(足球、篮球、乒乓球、羽毛球).花样滑冰四类社团,为了解在校学生对这4个社团活动的喜爱情况,学校随机抽取部分学生进行了“你最喜爱的社团”调查,依据相关数据绘制以下的统计图表,请根据图表中的信息解答下列问题:“你最喜爱的社团”调查统计图表社团类别人数占总人数的比例舞蹈60 25%武术m 10%花样滑冰36 n%球类120 50%(1)被调查的学生总人数是;m= ,n= .(2)被调查喜爱球类的学生中有12人最喜爱乒乓球,若该校有2600名学生,试估计全校最喜爱乒乓球的人数.21.已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.22.天津北宁公园内的致远塔,塔高九层,塔内四周墙壁上镶钳着历史题材为内容的瓷板油彩画或青石刻浮雕,叠双向盘旋楼梯或电梯可达九层,津门美景尽收眼底,是我国目前最高的宝塔.某校数学情趣小组实地测量了致远塔的高度AB,如图,在C处测得塔尖A的仰角为45°,再沿CB方向前进31.45m到达D处,测得塔尖A的仰角为60°,求塔高AB(精确到0.1m,≈1.732)23.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).x(亩)20 25 30 35z(元)1700 1600 1500 1400(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.24.在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E 的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.计算(﹣3)+(﹣2)的结果等于()A.﹣5 B.5 C.﹣1 D.1【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(3+2)=﹣5,故选A.【点评】此题考查了有理数的加法,熟练掌握有理数加法法则是解本题的关键.2.tan30°的值等于()A.B.C.D.【分析】根据特殊角的三角函数值解答.【解答】解:tan30°=.故选C.【点评】本题考查特殊角的三角函数值.特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.3.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:C上下折叠能重合,是轴对称图形,故选:C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.根据海关统计,2015年1月4日,某市共出口钢铁1488000吨,148000这个数用科学记数法表示为()A.1.488×104B.0.1488×107C.14.88×106D.1.488×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:148000这个数用科学记数法表示为1.488×105,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图是由5个相同的正方体组成的一个立体图形,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.方程的解为()A.x=﹣2B.x=2 C.x=﹣1D.x=【分析】观察方程可得最简公分母是:x(x﹣1),两边同时乘最简公分母可把分式方程化为整式方程来解答.【解答】解:方程两边同乘以x(x﹣1)得,2x﹣2=3x,解得:x=﹣2.经检验:x=﹣2是原方程的解;故选A.【点评】此题考查了分式方程的解,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.7.某校260名学生参加植树活动,要求每人值4﹣7棵,活动结束后随机调查了部分学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校植树量达到6棵的学生有()A.26名 B.52名 C.78名 D.104名【分析】用学生总人数乘以植树量为6棵的百分比即可求解.【解答】解:观察统计图发现植树量为6棵的占30%,故植树量达6棵的人数有260×30%=78人,故选C.【点评】本题考查了用样本估计总体及扇形统计图的知识,解题的关键是从扇形统计题中整理出植树量达6棵所占的百分比,难度不大.8.正六边形的边心距是,则它的边长是()A.1 B.2 C.2D.3【分析】运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选B.【点评】本题考查了正六边形和圆,掌握外接圆的半径等于正六边形的边长是解此题的关键.9.反比例函数y=的图象经过点A(﹣2,﹣5),则当1<x<2时,y的取值范围是()A.﹣10<y<﹣5 B.﹣2<y<﹣1 C.5<y<10 D.y>10【分析】将点A的坐标代入反比例函数解析式中,求出k值,结合反比例函数的性质可知当x>0时,反比例函数单调递减,分别代入x=1、x=2求出y值,由此即可得出结论.【解答】解:∵反比例函数y=的图象经过点A(﹣2,﹣5),∴﹣5=,解得:k=10,∴反比例函数解析式为y=.当x>0时,反比例函数单调递减,当x=1时,y==10;当x=2时,y==5.∴当1<x<2时,5<y<10.故选C.【点评】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及待定系数法求函数解析式,解题的关键是求出k值.本题属于基础题,难度不大,解决该题型题目时,由给定点的坐标利用待定系数法求出k的值,再根据反比例函数的性质确定其单调性,代入x 的值即可得出结论.10.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4B.6C.2D.8【分析】首先连接OA,OC,过点O作OD⊥AC于点D,由圆周角定理可求得∠AOC的度数,进而可在构造的直角三角形中,根据勾股定理求得弦AC的一半,由此得解.【解答】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故选A.【点评】此题主要考查了三角形的外接圆以及勾股定理的应用,还涉及到圆周角定理、垂径定理以及直角三角形的性质等知识,难度不大.11.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A.105°B.150°C.75°D.30°【分析】根据旋转的性质得出AB=AB′,∠BAB′=30°,进而得出∠B的度数,再利用平行四边形的性质得出∠C的度数.【解答】解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),∴AB=AB′,∠BAB′=30°,∴∠B=∠AB′B=÷2=75°,∴∠C=180°﹣75°=105°.故选A.【点评】此题主要考查了旋转的性质以及平行四边形的性质,根据已知得出∠B=∠AB′B=75°是解题关键.12.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是()个.A.4个B.3个C.2个D.1个【分析】根据已知画出图象,把x=﹣2代入得:4a﹣2b+c=0,2a+c=2b﹣2a;把x=﹣1代入得到a﹣b+c>0;根据﹣<0,推出a<0,b<0,a+c>b,计算2a+c=2b﹣2a>0;代入得到2a﹣b+1=﹣c+1>0,根据结论判断即可.【解答】解:根据二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x=﹣2代入得:4a﹣2b+c=0,∴①正确;把x=﹣1代入得:y=a﹣b+c>0,如图A点,∴②错误;∵(﹣2,0)、(x1,0),且1<x1,∴取符合条件1<x1<2的任何一个x1,﹣2•x1<﹣2,∴由一元二次方程根与系数的关系知x1•x2=<﹣2,∴不等式的两边都乘以a(a<0)得:c>﹣2a,∴2a+c>0,∴③正确;④由4a﹣2b+c=0得2a﹣b=﹣,而0<c<2,∴﹣1<﹣<0∴﹣1<2a﹣b<0∴2a﹣b+1>0,∴④正确.所以①③④三项正确.故选B.【点评】本题主要考查对二次函数图象上点的坐标特征,抛物线与X轴的交点,二次函数与系数的关系等知识点的理解和掌握,能根据图象确定与系数有关的式子得符号是解此题的关键.二、填空题(共6小题,每小题3分,满分18分)13.计算(﹣a2)3的结果等于﹣a6.【分析】直接利用积的乘方运算法则求出答案.【解答】解:(﹣a2)3=﹣a6.故答案为:﹣a6.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.14.在一个不透明布袋里面装有11个球,其中有4个红球,7个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是白球的概率是.【分析】用白球的个数除以球的总个数即可.【解答】解:∵在一个不透明布袋里面装有11个球,其中有4个红球,7个白球,∴从中任意摸出一个球,是白球的概率是:.故答案为.【点评】本题考查了概率公式:概率=所求情况数与总情况数之比.15.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m= 2 .【分析】根据一次函数的增减性列出关于m的不等式组,求出m的值即可.【解答】解:∵一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,∴,解得m=2.故答案为:2.【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系及其增减性是解答此题的关键.16.已知抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,那么抛物线的对称轴为直线x=1 .【分析】根据二次函数的图象具有对称性,由抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,可以得到它的对称轴,本题得以解决.【解答】解:∵抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,∴抛物线的对称轴为直线x=,故答案为:x=1.【点评】本题考查二次函数的性质,解题的关键是明确二次函数的性质,知道二次函数的图象具有对称性.17.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为88°.【分析】由AB=AC=AD,可得B,C,D在以A为圆心,AB为半径的圆上,然后由圆周角定理,证得∠CAD=2∠CBD,∠BAC=2∠BDC,继而可得∠CAD=2∠BAC.【解答】解:∵AB=AC=AD,∴B,C,D在以A为圆心,AB为半径的圆上,∴∠CAD=2∠CBD,∠BAC=2∠BDC,∵∠CBD=2∠BDC,∠BAC=44°,∴∠CAD=2∠BAC=88°.故答案为:88°.【点评】此题考查了圆周角定理.注意得到B,C,D在以A为圆心,AB为半径的圆上是解此题的关键.18.如图,将三角形ABC放在每个小正方形的边长为1的网格中,点A,点B,点C,点P 均落在格点上.(1)计算三角形ABC的周长等于3+5 .(2)请在给定的网格内作三角形ABC的内接矩形EFGH,使得点E,H分别在边AB,AC上,点F,G在边BC上,且使矩形EFGH的周长等于线段BP长度的2倍,并简要说明你的作图方法(不要求证明)【分析】(1)根据勾股定理分别求出AB、AC即可解决问题.(2)在线段AB上截取BE=AB,作EF⊥BC于F,EH∥BC交AC于H,作HG⊥BC于G,矩形EFGH计算所求作的矩形.作AM⊥BC于M,交EH于N,设EF=x,则MN=EF=x,由△AEH∽△ABC,得=,列出方程即可解决.【解答】解:(1)∵AB==,AC==2,BC=5,∴AB+AC+BC=3+5,∴△ABC的周长为3+5.故答案为3+5.(2)在线段AB上截取BE=AB,作EF⊥BC于F,EH∥BC交AC于H,作HG⊥BC于G,矩形EFGH计算所求作的矩形.理由:作AM⊥BC于M,交EH于N,设EF=x,则MN=EF=x,∵矩形EFGH的周长为8,∴EH=4﹣x,∵EH∥BC,∴△AEH∽△ABC,∴=,∴,∴x=,∴EF=,∵EF∥AM,∴===,∴BE=AB,∴当BE=AB时,矩形EFGH的周长等于线段BP长度的2倍.【点评】本题考查矩形性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是先利用相似三角形的性质求出矩形的长、宽,然后确定点E位置,属于中考常考题型.三、解答题(共7小题,满分66分)19.解不等式请结合题意填空,完全本题的解答(1)解不等式①,得x≥﹣1 .(2)解不等式②,得x≤1 .(3)把不等式①和②的解集在数轴上表示出来.(4)原不等式组的解集为﹣1≤x≤1 .【分析】先根据不等式基本性质求出两个不等式的解集,再将不等式解集表示在数轴上,根据解集在数轴上的表示求其公共解.【解答】解:(1)解不等式①,得:x≥﹣1,(2)解不等式②,得:x≤1,(3)把不等式①和②的解集表示在数轴上,如图:(4)∴原不等式组的解集为:﹣1≤x≤1;故答案为:(1)x≥﹣1;(2)x≤1;(4)﹣1≤x≤1.【点评】本题考查的是一元一次不等式组的整数解,会求一元一次不等式组的解集是解决此类问题的关键.求不等式组的解集,借助数轴找公共部分或遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.某校开展社团活动,准备组件舞蹈、武术、球类(足球、篮球、乒乓球、羽毛球).花样滑冰四类社团,为了解在校学生对这4个社团活动的喜爱情况,学校随机抽取部分学生进行了“你最喜爱的社团”调查,依据相关数据绘制以下的统计图表,请根据图表中的信息解答下列问题:“你最喜爱的社团”调查统计图表社团类别人数占总人数的比例舞蹈60 25%武术m 10%花样滑冰36 n%球类120 50%(1)被调查的学生总人数是240 ;m= 24 ,n= 15 .(2)被调查喜爱球类的学生中有12人最喜爱乒乓球,若该校有2600名学生,试估计全校最喜爱乒乓球的人数.【分析】(1)用“舞蹈”类人数除以其占总人数百分比可得总人数,将“武术”类人数占总人数百分比×总人数可得m的值,将“花样滑冰”类人数除以总人数可得其所占百分比;(2)用乒乓球类人数占样本总数的百分比乘以2600可得.【解答】解:(1)被调查的学生总人数是60÷25%=240(人),“武术”类人数m=240×10%=24(人),“花样滑冰”类人数占总人数百分比n=×100=15;(2)×2600=130(人),答:估计全校最喜爱乒乓球的人数约为130人.故答案为:(1)240,24,15.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.【分析】(1)连接OC,则∠OCP=90°,根据∠CPA=30°,求得∠COP,再由OA=OC,得出∠A=∠ACO,由PD平分∠APC,即可得出∠CDP=45°.(2)由PC是⊙O的切线,得∠OCP=90°.再根据PD是∠CPA的平分线,得∠APC=2∠APD.根据OA=OC,可得出∠A=∠ACO,即∠COP=2∠A,在Rt△OCP中,∠OCP=90°,则∠COP+∠OPC=90°,从而得出∠CDP=∠A+∠APD=45°.所以∠CDP的大小不发生变化.【解答】解:(1)连接OC,∵PC是⊙O的切线,∴OC⊥PC∴∠OCP=90°.∵∠CPA=30°,∴∠COP=60°∵OA=OC,∴∠A=∠ACO=30°∵PD平分∠APC,∴∠APD=15°,∴∠CDP=∠A+∠APD=45°.(2)∠CDP的大小不发生变化.∵PC是⊙O的切线,∴∠OCP=90°.∵PD是∠CPA的平分线,∴∠APC=2∠APD.∵OA=OC,∴∠A=∠ACO,∴∠COP=2∠A,在Rt△OCP中,∠OCP=90°,∴∠COP+∠OPC=90°,∴2(∠A+∠APD)=90°,∴∠CDP=∠A+∠APD=45°.即∠CDP的大小不发生变化.【点评】本题考查了切线的性质以及角平分线的性质、等腰三角形的性质,要注意各个知识点的衔接.22.天津北宁公园内的致远塔,塔高九层,塔内四周墙壁上镶钳着历史题材为内容的瓷板油彩画或青石刻浮雕,叠双向盘旋楼梯或电梯可达九层,津门美景尽收眼底,是我国目前最高的宝塔.某校数学情趣小组实地测量了致远塔的高度AB,如图,在C处测得塔尖A的仰角为45°,再沿CB方向前进31.45m到达D处,测得塔尖A的仰角为60°,求塔高AB(精确到0.1m,≈1.732)【分析】先设AB=x米,根据题意分析图形:本题涉及到两个直角三角形Rt△ACB和Rt△ADB,应利用其公共边BA构造等量关系,解三角形可求得CB、DB的数值,再根据CD=BC﹣BD=31.45,进而可求出答案.【解答】解:设AB=x米,在Rt△ACB和Rt△ADB中,∵∠C=45°,∠ADB=60°,CD=31.45m,∴CB=x,BD=x,∵CD=BC﹣BD=x﹣x=31.45,解得:x≈74.4.答:塔高AB约为74.4米.【点评】本题考查了解直角三角形的应用﹣仰角俯角;能借助仰角构造直角三角形并结合图形利用三角函数解直角三角形是解决问题的关键.23.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).x(亩)20 25 30 35z(元)1700 1600 1500 1400(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.【分析】(1)根据图表的性质,可以得出P关于x的函数关系式和出x的取值范围.(2)根据利润=亩数×每亩利润,可得①当0<x≤15时②当15<x<20时,利润的函数式,即可解题;【解答】解:(1)观察图表的数量关系,可以得出P关于x的函数关系式为:P=(2)∵利润=亩数×每亩利润,∴①当0<x≤15时,W=1800x+1380(40﹣x)+2400=420x+57600;当x=15时,W有最大值,W最大=6300+57600=63900;②当15<x<20,W=﹣20x2+2100x+1380(40﹣x)+2400=﹣20(x﹣18)2+64080;∴x=18时有最大值为:64080元.综上x=18时,有最大利润64080.【点评】本题主要考查了一次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是一次函数的性质.24.在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E 的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.【分析】(1)以点O为圆心,以OE为半径画弧,与y轴正半轴相交于点N,以OD为半径画弧,与x轴负半轴相交于点M,连接MN即可;(2)以M为圆心,以AC长为半径画弧与x轴负半轴相交于点A′,B′与N重合,C′与M重合,然后顺次连接即可;(3)设OE=x,则ON=x,作MF⊥A′B′于点F,判断出B′C′平分∠A′B′O,再根据角平分线上的点到角的两边距离相等和角平分线的对称性可得B′F=B′O=OE=x,F C′=O C′=OD=3,利用勾股定理列式求出A′F,然后表示出A′B′、A′O,在Rt△A′B′O中,利用勾股定理列出方程求解即可.【解答】解:(1)△OMN如图所示;(2)△A′B′C′如图所示;(3)设OE=x,则ON=x,作MF⊥A′B′于点F,由作图可知:B′C′平分∠A′B′O,且C′O⊥O B′,所以,B′F=B′O=OE=x,F C′=O C′=OD=3,∵A′C′=AC=5,∴A′F==4,∴A′B′=x+4,A′O=5+3=8,在Rt△A′B′O中,x2+82=(4+x)2,解得x=6,即OE=6.【点评】本题考查了利用旋转变换作图,利用平移变换作图,勾股定理,熟练掌握旋转变化与平移变化的性质是解题的关键.25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)先联立抛物线与直线的解析式得出关于x的方程,再由直线BC和抛物线有两个不同交点可知△>0,求出a的取值范围,令x=0求出y的值即可得出A点坐标,把抛物线的解析式化为顶点式的形式即可得出M点的坐标;(2)利用待定系数法求出直线MA的解析式,联立两直线的解析式可得出N点坐标,进而可得出P点坐标,根据S△PCD=S△PAC﹣S△ADC可得出结论;(3)分点P在y轴左侧与右侧两种情况进行讨论即可.【解答】解:(1)由题意得,,整理得2x2+5x﹣4a=0.∵△=25+32a>0,解得a>﹣.∵a≠0,∴a>﹣且a≠0.令x=0,得y=a,∴A(0,a).由y=﹣(x+1)2+1+a得,M(﹣1,1+a).(2)设直线MA的解析式为y=kx+b(k≠0),∵A(0,a),M(﹣1,1+a),∴,解得,∴直线MA的解析式为y=﹣x+a,联立得,,解得,∴N(,﹣).∵点P是点N关于y轴的对称点,∴P(﹣,﹣).代入y=﹣x2﹣2x+a得,﹣=﹣a2+a+a,解得a=或a=0(舍去).∴A(0,),C(0,﹣),M(﹣1,),|AC|=,∴S△PCD=S△PAC﹣S△ADC=|AC|•|x p|﹣|AC|•|x0|=••(3﹣1)=;(3)①当点P在y轴左侧时,∵四边形APCN是平行四边形,∴AC与PN互相平分,N(,﹣),∴P(﹣,);代入y=﹣x2﹣2x+a得,=﹣a2+a+a,解得a=,∴P1(﹣,).②当点P在y轴右侧时,∵四边形ACPN是平行四边形,∴NP∥AC且NP=AC,∵N(,﹣),A(0,a),C(0,﹣a),∴P(,﹣).代入y=﹣x2﹣2x+a得,﹣=﹣a2﹣a+a,解得a=,∴P2(,﹣).综上所述,当点P1(﹣,)和P2(,﹣)时,A、C、P、N能构成平行四边形.【点评】本题考查的是二次函数综合题,涉及到二次函数与一次函数的交点问题、二次函数图象上点的坐标特点、平行四边形的判定与性质等知识,难度较大.2016年6月17日。
2020年江苏省南京市建邺区中考数学一模试卷含答案解析

2020年江苏省南京市建邺区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列计算结果为负数的是()A.﹣1+2B.|﹣1|C.D.﹣2﹣12.计算a5•(﹣)2的结果是()A.﹣a3B.a3C.a7D.a103.若a<2<b,其中a、b为两个连续的整数,则ab的值为()A.2B.5C.6D.124.如图是一几何体的三视图,这个几何体可能是()A.三棱柱B.三棱锥C.圆柱D.圆锥5.如图,已知a∥b,∠1=115°,则∠2的度数是()A.45°B.55°C.65°D.85°6.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图象的交点坐标与其相应的二元一次方程组的解之间的关系,请通过此经验推断:在同一平面直角坐标系中,函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数有()A.0个B.1个C.2个D.无数个二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.若式子在实数范围内有意义,则x的取值范围是.8.若a﹣b=3,a+b=﹣2,则a2﹣b2=.9.据统计,2020年春节“黄金周”(2月7日至13日)期间,南京共接待游客4 880000人.将4880000用科学记数法表示为.10.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为.11.已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为cm2.12.已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是.13.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差/环2 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是.14.在同一平面直角坐标系中,正比例函数y=k1x的图象与反比例函数y=的图象一个交点的坐标是(﹣2,3),则它们另一个交点的坐标是.15.如图,在正十边形A1A2A3A4A5A6A7A8A9A10中,连接A1A4、A1A7,则∠A4A1A7=°.16.如图①,在等边△ABC中,CD⊥AB,垂足为D,⊙O的圆心与点D重合,⊙O与线段CD交于点E,且CE=4cm.将⊙O沿DC方向向上平移1cm后,如图②,⊙O恰与△ABC 的边AC、BC相切,则等边△ABC的边长为cm.三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.先化简,再求值:(﹣)÷,其中a=+1,b=﹣1.18.解不等式组并写出不等式组的整数解.19.如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,AE=CF.(1)求证:△ABF≌△CDE;(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?20.“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)21.甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看.(1)甲同学观看《最强大脑》的概率是;(2)求甲、乙两名同学观看同一节目的概率.22.“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2020年10月1日加入SDR(特别提款权),以后出国看世界更加方便.为了解某区6000名初中生对“人民币加入SDR”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:某区抽取学生对“人民币加入SDR”知晓情况频数分布表(1)本次问卷调查抽取的学生共有人,其中“不了解”的学生有人;(2)在扇形统计图中,学生对“人民币加入SDR”基本了解的区域的圆心角为°;(3)根据抽样的结果,估计该区6000名初中生对“人民币加入SDR”了解的有多少人(了解是指“非常了解”、“比较了解”和“基本了解”)?23.某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元?24.货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发xh后,货车、轿车分别到达离甲地y1km 和y2km的地方,图中的线段OA、折线BCDE分别表示y1、y2与x之间的函数关系.(1)求点D的坐标,并解释点D的实际意义;(2)求线段DE所在直线的函数表达式;(3)当货车出发h时,两车相距200km.25.数学活动课上,小君在平面直角坐标系中对二次函数图象的平移进行了研究.图①是二次函数y=(x﹣a)2+(a为常数)当a=﹣1、0、1、2时的图象.当a取不同值时,其图象构成一个“抛物线簇”.小君发现这些二次函数图象的顶点竟然在同一条直线上!(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为;(2)如图②,当a=0时,二次函数图象上有一点P(2,4).将此二次函数图象沿着(1)中发现的直线平移,记二次函数图象的顶点O与点P的对应点分别为O1、P1.若点P1到x 轴的距离为5,求平移后二次函数图象所对应的函数表达式.26.如图,直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.27.问题提出平面上,若点P与A、B、C三点中的任意两点均构成等腰三角形,则称点P是A、B、C 三点的巧妙点.若A、B、C三点构成三角形,也称点P是△ABC的巧妙点.初步思考(1)如图①,在等边△ABC的内部和外部各作一个△ABC的巧妙点.(尺规作图,不写作法,保留作图痕迹)(2)如图②,在△ABC中,AB=AC,∠BAC=36°,点D、E是△ABC的两个巧妙点,其中AD=AB,AE=AC,BD=BC=CE,连接DE,分别交AB、AC于点M、N.求证:DA2=DB•DE.深入研究(3)在△ABC中,AB=AC,若存在一点P,使PB=BA,PA=PC.点P可能为△ABC的巧妙点吗?若可能,请画出示意图,并直接写出∠BAC的度数;若不可能,请说明理由.2020年江苏省南京市建邺区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列计算结果为负数的是()A.﹣1+2B.|﹣1|C.D.﹣2﹣1【考点】算术平方根;绝对值;有理数的加法;负整数指数幂.【分析】先化简各项,再根据负数的定义,即可解答.【解答】解:A、﹣1+2=1,故错误;B、|﹣1|=1,故错误;C、=2,故错误;D、﹣2﹣1=﹣,正确;故选:D.2.计算a5•(﹣)2的结果是()A.﹣a3B.a3C.a7D.a10【考点】分式的乘除法.【分析】首先计算分式的乘方,然后再相乘即可.【解答】解:原式=a5•=a3,故选:B.3.若a<2<b,其中a、b为两个连续的整数,则ab的值为()A.2B.5C.6D.12【考点】估算无理数的大小.【分析】依据平方数越大对应的算术平方根越大可求得a、b的值,最后依据有理数的乘法法则求解即可.【解答】解:∵4<8<9,∴2<<3,即2<2<3.∴a=2,b=3.∴ab=6.故选:C.4.如图是一几何体的三视图,这个几何体可能是()A.三棱柱B.三棱锥C.圆柱D.圆锥【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选A.5.如图,已知a∥b,∠1=115°,则∠2的度数是()A.45°B.55°C.65°D.85°【考点】平行线的性质.【分析】根据两直线平行,同旁内角互补求出∠3,再根据对顶角相等解答.【解答】解:如图,∵a∥b,∠1=115°,∴∠3=180°﹣∠1=180°﹣115°=65°,∴∠3=∠2=65°.故选C.6.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图象的交点坐标与其相应的二元一次方程组的解之间的关系,请通过此经验推断:在同一平面直角坐标系中,函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数有()A.0个B.1个C.2个D.无数个【考点】二次函数的性质;一次函数与二元一次方程(组).【分析】由题意知函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数即方程组的解的个数,即可判断.【解答】解:根据题意,函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数即方程组的解的个数,解方程组得:,所以函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点只有一个交点(1,6),故选:B.二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.若式子在实数范围内有意义,则x的取值范围是x≥2.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式进行计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.8.若a﹣b=3,a+b=﹣2,则a2﹣b2=﹣6.【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式,进而将已知代入求出答案.【解答】解:∵a2﹣b2=(a+b)(a﹣b),∴把a﹣b=3,a+b=﹣2代入得:原式=3×(﹣2)=﹣6.故答案为:﹣6.9.据统计,2020年春节“黄金周”(2月7日至13日)期间,南京共接待游客4 880000人.将4880000用科学记数法表示为 4.88×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4880000=4.88×106,故答案为:4.88×10610.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为1:9.【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方解答.【解答】解:∵△ABC∽△A′B′C′,相似比为1:3,∴△ABC与△A′B′C′的面积之比为1:9.故答案为:1:9.11.已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为3πcm2.【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×3×1÷2=3π.故答案为:3π.12.已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是﹣3.【考点】根与系数的关系.【分析】由于该方程的一次项系数是未知数,所以求方程的另一解可以根据根与系数的关系进行计算.【解答】解:设方程的另一根为x1,根据根与系数的关系可得:x1•1=﹣3,解得x1=﹣3.故答案为:﹣3.13.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差/环2 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是丁.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=5.1,S乙2=4.7,S丙2=4.5,S丁2=4.5,∴S甲2>S乙2>S2丁=S2丙,∵丁的平均数大,∴最合适的人选是丁.故答案为:丁14.在同一平面直角坐标系中,正比例函数y=k1x的图象与反比例函数y=的图象一个交点的坐标是(﹣2,3),则它们另一个交点的坐标是(2,﹣3).【考点】反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:根据题意,直线y=k1x经过原点与双曲线y=相交于两点,又由于双曲线y=与直线y=k1x均关于原点对称.则两点关于原点对称,一个交点的坐标为(﹣2,3),则另一个交点的坐标为(2,﹣3).故答案为:(2,﹣3).15.如图,在正十边形A1A2A3A4A5A6A7A8A9A10中,连接A1A4、A1A7,则∠A4A1A7=54°.【考点】正多边形和圆.【分析】找出正十边形的圆心O,连接A7O,A4O,再由圆周角定理即可得出结论.【解答】解:如图,连接A7O,A4O,∵正十边形的各边都相等,∴∠A7OA4=×360°=108°,∴∠A4A1A7=×108°=54°.故答案为:54.16.如图①,在等边△ABC中,CD⊥AB,垂足为D,⊙O的圆心与点D重合,⊙O与线段CD交于点E,且CE=4cm.将⊙O沿DC方向向上平移1cm后,如图②,⊙O恰与△ABC的边AC、BC相切,则等边△ABC的边长为cm.【考点】切线的性质;等边三角形的性质;平移的性质.【分析】如图,设圆O与BC的切点为M,连接OM,根据切线的性质可以得到∠OMC=90°,而根据已知条件可以得到∠DCB=30°,设AB为2xcm,根据等边三角形得到CD=xcm,而CE=2cm,又将量角器沿DC方向平移1cm,由此得到半圆的半径为(x﹣4)cm,OC=(x﹣1)cm,然后在Rt△OCM中利用三角函数可以列出关于x的方程,解方程即可求解.【解答】解:如图,设图②中圆O与BC的切点为M,连接OM,则OM⊥MC,∴∠OMC=90°,依题意知道∠DCB=30°,设AB为2xcm,∵△ABC是等边三角形,∴CD=xcm,而CE=4cm,又将量角器沿DC方向平移1cm,∴半圆的半径为(x﹣4)cm,OC=(x﹣1)cm,∴sin∠DCB==,∴=,∴x=,∴等边△ABC的边长为=2x=2(cm),故答案为:.三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.先化简,再求值:(﹣)÷,其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,分式化为最简后把a、b的值代入进行计算即可.【解答】解:原式=()•=﹣.当a=+1,b=﹣1时,原式=﹣=﹣=﹣.18.解不等式组并写出不等式组的整数解.【考点】一元一次不等式组的整数解;解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式,得x≥﹣1.解不等式2x﹣3<0,得x<.所以不等式组的解集是﹣1≤x<.故不等式组的整数解为﹣1、0、1.19.如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,AE=CF.(1)求证:△ABF≌△CDE;(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?【考点】菱形的判定;全等三角形的判定与性质.(1)由平行线的性质得出∠BAC=∠DCA.证出AF=CE.由AAS证明△ABF≌△CDE 【分析】即可;(2)先证明四边形ABCD是菱形,得出BD⊥AC,再证明四边形BFDE是平行四边形,即可得出结论.【解答】(1)证明:∵AB∥CD,∴∠BAC=∠DCA.∵AE=CF,∴AE+EF=CF+EF,即AF=CE.在△ABF和△CDE中,,又∵∠ABF=∠CDE,∴△ABF≌△CDE(AAS);(2)解:当四边形ABCD满足AB=AD时,四边形BEDF是菱形.理由如下:连接BD交AC于点O,如图所示:由(1)得:△ABF≌△CDE,∴AB=CD,BF=DE,∠AFB=∠CED,∴BF∥DE.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形.又∵AB=AD,∴平行四边形ABCD是菱形.∴BD⊥AC.∵BF=DE,BF∥DE,∴四边形BEDF是平行四边形,∴四边形BEDF是菱形.20.“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【考点】解直角三角形的应用.【分析】(1)根据勾股定理求出AD的长;(2)作EH⊥AB于H,求出AE的长,根据正弦的概念求出点E到车架AB的距离.【解答】解:(1)在Rt△ADF中,由勾股定理得,AD===15(cm;(2)AE=AD+CD+EC=15+30+15=60(cm),如图②,过点E作EH⊥AB于H,在Rt△AEH中,sin∠EAH=,则EH=AE•sin∠EAH=AB•sin75°≈60×0.97=58.2(cm).答:点E到AB的距离为58.2 cm.21.甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看.(1)甲同学观看《最强大脑》的概率是;(2)求甲、乙两名同学观看同一节目的概率.【考点】列表法与树状图法.【分析】(1)由甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格即可求得所有等可能的结果与甲、乙两名同学观看同一节目的情况,再利用概率公式即可求得答案.【解答】解:(1)∵甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看,∴甲同学观看《最强大脑》的概率是:.故答案为:;(2)分别用A,B,C表示《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目,用表格列出所有可能出现的结果:甲乙 A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)∵一共有9种可能的结果,它们是等可能的,其中符合要求的有3种.∴P (甲、乙两名同学观看同一节目)==.答:甲、乙两名同学观看同一节目的概率为:.22.“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2020年10月1日加入SDR(特别提款权),以后出国看世界更加方便.为了解某区6000名初中生对“人民币加入SDR”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:某区抽取学生对“人民币加入SDR”知晓情况频数分布表(1)本次问卷调查抽取的学生共有100人,其中“不了解”的学生有20人;(2)在扇形统计图中,学生对“人民币加入SDR”基本了解的区域的圆心角为72°;(3)根据抽样的结果,估计该区6000名初中生对“人民币加入SDR”了解的有多少人(了解是指“非常了解”、“比较了解”和“基本了解”)?【考点】扇形统计图;用样本估计总体;频数(率)分布表.【分析】(1)根据非常了解的有26人,所占的比例是26%,据此即可求得抽取的总人数,然后利用总人数减去其它组的人数即可求得“不了解”的学生数;(2)利用360°乘以对应的百分比即可求得;(3)利用总人数乘以对应的比例即可求得.【解答】解:(1)调查抽取的总人数是26÷26%=100(人),不了解的人数是100﹣26﹣34﹣20=20(人).故答案是:100,20;(2)基本了解的区域的圆心角是360°×=72°,故答案是:72;(3)该区6000名初中生对“人民币加入SDR”了解的有:6 000×80%=4 800(人).答:估计该校6 000名初中生中对“人民币加入SDR”了解的有4 800人.23.某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元?【考点】一元二次方程的应用.【分析】设这种台灯的售价为x元,根据一台的利润×总的台数=总的利润和这种台灯的售价每上涨1元,其销售量将减少10只,列出方程,再求解即可.【解答】解:设这种台灯的售价为x元,根据题意得:[600﹣10(x﹣40)](x﹣30)=10000,解得x1=50,x2=80,答:当这种台灯的售价定为50或80元时,每个月的利润恰为10000元.24.货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发xh后,货车、轿车分别到达离甲地y1km 和y2km的地方,图中的线段OA、折线BCDE分别表示y1、y2与x之间的函数关系.(1)求点D的坐标,并解释点D的实际意义;(2)求线段DE所在直线的函数表达式;(3)当货车出发2或5h时,两车相距200km.【考点】一次函数的应用.【分析】(1)待定系数求出OA解析式,继而根据点D的纵坐标为300求得其横坐标,即可得答案;(2)根据休息前2.4小时行驶300km可得行驶后行驶300km也需要2.4h,即可得点E坐标,待定系数法即可求得DE所在直线解析式;(3)先求出BC所在直线解析式,再根据①轿车休息前与货车相距200km,②轿车休息后与货车相距200km,分别列出方程求解可得.【解答】解:(1)设OA所在直线解析式为y=mx,将x=8、y=600代入,求得m=75,∴OA所在直线解析式为y=75x,令y=300得:75x=300,解得:x=4,∴点D 坐标为(4,300 ),其实际意义为:点D是指货车出发4h后,与轿车在距离A地300 km处相遇.(2)由图象知,轿车在休息前2.4小时行驶300km,∴根据题意,行驶后300km需2.4h,故点E 坐标(6.4,0 ).设DE所在直线的函数表达式为y=kx+b,将点D (4,300 ),E ( 6.4,0)代入y=kx+b得:,解得,∴DE所在直线的函数表达式为y=﹣125x+800.(3)设BC段函数解析式为:y=px+q,将点B(0,600)、C(2.4,300)代入,得:,解得:y=﹣125x+600,①当轿车休息前与货车相距200km时,有:﹣125x+600﹣75x=200,解得:x=2;②当轿车休息后与货车相距200km时,有:75x﹣(﹣125x+800)=200,解得:x=5;故答案为:2或5.25.数学活动课上,小君在平面直角坐标系中对二次函数图象的平移进行了研究.图①是二次函数y=(x﹣a)2+(a为常数)当a=﹣1、0、1、2时的图象.当a取不同值时,其图象构成一个“抛物线簇”.小君发现这些二次函数图象的顶点竟然在同一条直线上!(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为y=x;(2)如图②,当a=0时,二次函数图象上有一点P(2,4).将此二次函数图象沿着(1)中发现的直线平移,记二次函数图象的顶点O与点P的对应点分别为O1、P1.若点P1到x 轴的距离为5,求平移后二次函数图象所对应的函数表达式.【考点】二次函数图象与几何变换.【分析】(1)根据题意得出抛物线的顶点坐标,根据待定系数法即可求得;(2)根据平移的规律得出点O1的坐标为(3,1)或(﹣27,﹣9),从而求得解析式.【解答】解:(1)∵当a=﹣1时,抛物线的顶点为(﹣1,﹣),当a=0时,抛物线的顶点为(0,0),∴设直线为y=kx,代入(﹣1,﹣)得,﹣=﹣k,解得k=,∴“抛物线簇”的顶点所在直线的函数表达式为y=x,故答案为y=x.(2)由题意得:点P1D的纵坐标为5或﹣5,∴抛物线沿着直线向上平移了1个单位或向下平移了9个单位,∴此时点O1的纵坐标为1或﹣9,代入直线y=x求得横坐标为3或﹣27,∴点O1的坐标为(3,1)或(﹣27,﹣9),∴平移后的二次函数的表达式为y=(x﹣3)2+1或y=(x+27)2﹣9.26.如图,直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.【考点】切线的判定.【分析】(1)利用角平分线的性质以及等腰三角形的性质得出∠OFC=∠FCG,进而得出∠GFC+∠OFC=90°,即可得出答案;(2)首先得出四边形FGDH是矩形,进而利用勾股定理得出HO的长,进而得出答案.【解答】(1)证明:连接FO,∵OF=OC,∴∠OFC=∠OCF.∵CF平分∠ACE,∴∠FCG=∠FCE.∴∠OFC=∠FCG.∵CE是⊙O的直径,∴∠EDG=90°,又∵FG∥ED,∴∠FGC=180°﹣∠EDG=90°,∴∠GFC+∠FCG=90°∴∠GFC+∠OFC=90°,即∠GFO=90°,∴OF⊥GF,又∵OF是⊙O半径,∴FG与⊙O相切.(2)解:延长FO,与ED交于点H,由(1)可知∠HFG=∠FGD=∠GDH=90°,∴四边形FGDH是矩形.∴FH⊥ED,∴HE=HD.又∵四边形FGDH是矩形,FG=HD,∴HE=FG=4.∴ED=8.∵在Rt△OHE中,∠OHE=90°,∴OH==3.∴FH=FO+OH=5+3=8.=(FG+ED)•FH=×(4+8)×8=48.S四边形FGDH27.问题提出平面上,若点P与A、B、C三点中的任意两点均构成等腰三角形,则称点P是A、B、C 三点的巧妙点.若A、B、C三点构成三角形,也称点P是△ABC的巧妙点.初步思考(1)如图①,在等边△ABC的内部和外部各作一个△ABC的巧妙点.(尺规作图,不写作法,保留作图痕迹)(2)如图②,在△ABC中,AB=AC,∠BAC=36°,点D、E是△ABC的两个巧妙点,其中AD=AB,AE=AC,BD=BC=CE,连接DE,分别交AB、AC于点M、N.求证:DA2=DB•DE.深入研究(3)在△ABC中,AB=AC,若存在一点P,使PB=BA,PA=PC.点P可能为△ABC的巧妙点吗?若可能,请画出示意图,并直接写出∠BAC的度数;若不可能,请说明理由.【考点】三角形综合题.【分析】(1)根据“巧妙点”的定义利用:点P在三角形的内部时,点P到△ABC的三个顶点的距离相等,所以点P是三角形的外心;点P在三角形的外部时,每条边的垂直平分线上的点只要能够使顶点这条边的两端点连接而成的三角形是等腰三角形即可;(2)先证明△ADB≌△ABC,△ACE≌△ABC,得到相等的角,再证明∠BMD=∠ABD,得到DB=DM.最后证明△DAM∽△DEA,得到=,即DA2=DM•DE,由DM=DB,所以DA2=DB•DE.(3)在△ABC中,AB=AC,若存在一点P,使PB=BA,PA=PC.点P能为△ABC的巧妙点,分别画出图形即可解答.【解答】解:(1)如图①;(2)∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=72°,在△ADB和△ABC中∴△ADB≌△ABC,同理:△ACE≌△ABC.∴∠BAD=∠BAC=∠CAE=36°,∠ADB=∠ABD=∠ABC=72°,∴∠DAE=∠BAD+∠BAC+∠CAE=108°,∵AD=AB=AC=AE,∴∠ADE=∠AED=36°=∠BAD,∴∠BDM=∠BDA﹣∠MDA=36°,∠BMD=∠ADM+∠DAM=72°=∠ABD,∴DB=DM.∵∠DBM=∠ABD,∠AED=∠BAD,∴△DAM∽△DEA,∴=,∴DA2=DM•DE,∵DM=DB,∴DA2=DB•DE.(3)第一种如图①或图②(只需画一个即可),∠BAC=60°.第二种如图③,∠BAC=36°;第三种如图④,∠BAC=108°;第四种如图⑤,∠BAC=120°.以上共四种:60°、36°、108°、120°.2020年7月21日。
2020年黑龙江省哈尔滨市南岗区中考数学第一次模拟测试试卷 含解析

2020年中考数学第一次模拟试卷一、选择题(共10小题)1.4的算术平方根是()A.2B.﹣2C.±2D.162.2016年元旦期间,地铁1号线日乘人数最高达到140000人次,数字140000用科学记数法可表示为()A.1.4×104B.1.4×10﹣5C.1.4×105D.1.4×1063.下列图案既不是轴对称图形又不是中心对称图形的是()A.B.C.D.4.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0B.﹣1C.﹣3D.35.下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.6.一个不透明的袋子中有3个分别标有3,1,﹣2的球,这些球除了所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是()A.B.C.D.7.如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是()A.40°B.50°C.60°D.70°8.已知方程,且关于x的不等式组只有4个整数解,那么b的取值范围是()A.﹣1<b≤3B.2<b≤3C.8≤b<9D.3≤b<49.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD 于点F,若AF=,则AD的长为()A.3B.4C.5D.610.冰雪大世界是“冰城”哈尔滨的一张名片,某天开始售票时,已有300名游客排队等候购票,同时每分钟又会有固定数量的游客进入售票区排队等候购票,已知每个售票口的售票速度相同开始售票后,新增购票人数m(人)与售票时间x(分)的函数关系如图①所示;每个售票窗口购到票的人数n(人)与售票时间x(分)之间的函数关系如图②所示;在售票区排队等候购票的游客人数y(人)与售票时间x(分)的函数关系如图③所示,已知开始售票时开放了3个售票窗口,售票a分钟后,又增加了b个售票窗口,则b的值为()A.1B.2C.3D.4二、填空题11.计算:()﹣1﹣=.12.在函数y=中,自变量x的取值范围是.13.把9m2﹣36n2分解因式的结果是.14.若代数式和的值相等,则x=.15.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.16.如图,函数y=和y=﹣的图象分别是C1和C2.点P在C1上,PC⊥x轴,垂足为点C,与C2相交于点A,PD⊥y轴,垂足为点D,与C2相交于点B,则△PAB的面积为.17.如图(1),扇形AOB中,OA=10,∠AOB=36°.若固定B点,将此扇形依顺时针方向旋转,得一新扇形A′O′B,其中O′点在直线BA上,如图(2)所示,则O点旋转至O′点所经过的轨迹长度(弧长)为.18.等腰△ABC中,AB=AC=5,△ABC的面积为10,则BC=.19.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AD=18,点E在AC上且CE =AC,连接BE,与AD相交于点F.若BE=15,则△DBF的周长是.20.如图,在△ABC中,AC=AB,∠BAC=90°,D是AC边上一点,连接BD,AF⊥BD 于点F,点E在BF上,连接AE,CE,∠EAF=45°,若tan∠ECD=,BC=6,则BE的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.先化简,再求代数式÷(1+)的值,其中a=tan60°﹣sin45°.22.如图,在方格纸中,每个小正方形的边长均为1个单位长度,有一个△ABC,它的三个顶点均与小正方形的顶点重合.(1)将△ABC向右平移3个单位长度,得到△DEF(A与D、B与E、C与F对应)请在方格纸中画出△DEF;(2)在(1)的条件下,连接AE和CE,请求出△ACE的面积S.23.网络购物发展十分迅速,某企业有4000名职工,从中随机抽取350人,按年龄分布和对网上购物所持态度情况进行了调查,并将调查结果绘成了条形图1和扇形图2.(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是哪一段?(2)如果把对网络购物所持态度中的“经常(购物)”和“偶尔(购物)”统称为“参与购物”,那么这次接受调查的职工中“参与网购”的人数是多少?(3)这次调查中,“25﹣35”岁年龄段的职工“从不(网购)”的有22人,它占“25﹣35”岁年龄段接受调查人数的百分之几?(4)请估计该企业“从不(网购)”的人数是多少?24.在△ABC中,∠ACB=90°,D为AB边的中点,将△ADC沿着AC折叠,得到△AEC.(1)如图1,求证:四边形ADCE是菱形;(2)如图2,若BC=AC,菱形ADCE的面积为24,求AB边的长.25.松雷商厦两次购进一批同种型号的挂式空调和电风扇,第一次购进8台空调和20台电风扇,用去资金17400元;第二次购进10台空调和30台电风扇,用去资金22500元.(1)求挂式空调和电风扇每台的采购价各是多少元?(2)若该商厦计划再购进这两种电器70台,而可用于购买这两种电器的资金不超过30000元,问该商厦最多可再购进空调多少台?26.已知:AB,CF都是⊙O的直径,AH,CD都是⊙O的弦,CD⊥AB于点E,AH=CD.(1)如图1,求证:AH⊥CF;(2)如图2,延长AH,CD交于点P,求证:PH=PD;(3)如图3,在(2)的条件下,延长AC,HE交于点Q,若∠Q=45°,CQ=2,求AP的长.27.已知:抛物线y=x2+x+m交x轴于A,B两点,交y轴于点C,其中点B在点A的右侧,且AB=7.(1)如图1,求抛物线的解析式;(2)如图2,点D在第一象限内抛物线上,连接CD,AD,AD交y轴于点E.设点D 的横坐标为d,△CDE的面积为S,求S与d之间的函数关系式(不要求写出自变量d 的取值范围);(3)如图3,在(2)的条件下,过点D作DH⊥CE于点H,点P在DH上,连接CP,若∠OCP=2∠DAB,且HE:CP=3:5,求点D的坐标及相应S的值.参考答案一、选择题(每小题3分,共计30分)1.4的算术平方根是()A.2B.﹣2C.±2D.16【分析】根据乘方运算,可得一个数的算术平方根.解:∵22=4,∴=2,故选:A.2.2016年元旦期间,地铁1号线日乘人数最高达到140000人次,数字140000用科学记数法可表示为()A.1.4×104B.1.4×10﹣5C.1.4×105D.1.4×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:140000=1.4×105,故选:C.3.下列图案既不是轴对称图形又不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行分析即可.解:A、既不是轴对称图形又不是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.4.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0B.﹣1C.﹣3D.3【分析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.5.下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:从俯视图可以看出直观图的各部分的个数,可得出左视图前面有2个,中间有3个,后面有1个,即可得出左视图的形状.故选:B.6.一个不透明的袋子中有3个分别标有3,1,﹣2的球,这些球除了所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是()A.B.C.D.【分析】列表得出所有等可能的情况数,找出这两个球上的两个数字之和为负数的情况数,即可求出所求的概率.解:列表得:31﹣23﹣﹣﹣(1,3)(﹣2,3)1(3,1)﹣﹣﹣(﹣2,1)﹣2(3,﹣2)(1,﹣2)﹣﹣﹣所有等可能的情况有6种,其中两个数字之和为负数的情况有2种,则P==.故选:B.7.如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是()A.40°B.50°C.60°D.70°【分析】如图,证明OA=OC,∠AOB=∠COD;求出∠OCA=70°;求出∠BOC=10°;运用外角性质求出∠B即可解决问题.解:由题意得:△AOB≌△COD,∴OA=OC,∠AOB=∠COD,∴∠A=∠OCA,∠AOC=∠BOD=40°,∴∠OCA==70°;∵∠AOD=90°,∴∠BOC=10°;∵∠OCA=∠B+∠BOC,∴∠B=70°﹣10°=60°,故选:C.8.已知方程,且关于x的不等式组只有4个整数解,那么b的取值范围是()A.﹣1<b≤3B.2<b≤3C.8≤b<9D.3≤b<4【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a的值,经检验确定出分式方程的解,根据已知不等式组只有4个正整数解,即可确定出b的范围.解:分式方程去分母,得:3﹣a﹣(a﹣4)=9,解得:a=﹣1,经检验:a=﹣1是原分式方程的根,故不等式组的解集为:﹣1<x≤b,∵不等式组只有4个整数解,∴3≤b<4,故选:D.9.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD 于点F,若AF=,则AD的长为()A.3B.4C.5D.6【分析】根据平行线的性质和翻转变换的性质得到FD=FE,FA=FC,根据勾股定理计算即可.解:∵DC∥AB,∴∠FCA=∠CAB,又∠FAC=∠CAB,∴∠FAC=∠FCA,∴FA=FC=,∴FD=FE,∵DC=AB=8,AF=,∴FD=FE=8﹣=,∴AD=BC=EC==6,故选:D.10.冰雪大世界是“冰城”哈尔滨的一张名片,某天开始售票时,已有300名游客排队等候购票,同时每分钟又会有固定数量的游客进入售票区排队等候购票,已知每个售票口的售票速度相同开始售票后,新增购票人数m(人)与售票时间x(分)的函数关系如图①所示;每个售票窗口购到票的人数n(人)与售票时间x(分)之间的函数关系如图②所示;在售票区排队等候购票的游客人数y(人)与售票时间x(分)的函数关系如图③所示,已知开始售票时开放了3个售票窗口,售票a分钟后,又增加了b个售票窗口,则b的值为()A.1B.2C.3D.4【分析】由图①②可得每分钟新增购票人数为5人,每个售票窗口每分钟购票2人,由图③列出方程可求a=30,b=1.解:由图①②可得每分钟新增购票人数为5人,每个售票窗口每分钟购票2人,由题意可得:300+5a﹣3×2×a=270,∴a=30,由题意可得:270+5×(84﹣30)=(84﹣30)×2×(b+3),∴b=2,故选:B.二、填空题(每小题3分,共计30分)11.计算:()﹣1﹣=﹣1.【分析】本题涉及负整数指数幂、二次根式化简两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解:()﹣1﹣=2﹣3=﹣1.故答案为:﹣1.12.在函数y=中,自变量x的取值范围是x≠2.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣2≠0,求解可得自变量x的取值范围.解:根据题意,有x﹣2≠0,解得x≠2;故自变量x的取值范围是x≠2.故答案为x≠2.13.把9m2﹣36n2分解因式的结果是9(m﹣2n)(m+2n).【分析】首先提取公因式9,进而利用平方差公式分解因式得出答案.解:9m2﹣36n2=9(m2﹣4n2)=9(m﹣2n)(m+2n).故答案为:9(m﹣2n)(m+2n).14.若代数式和的值相等,则x=7.【分析】根据题意列出分式方程,求出分式方程的解得到x的值,经检验即可得到分式方程的解.解:根据题意得:=,去分母得:2x+1=3x﹣6,解得:x=7,经检验x=7是分式方程的解.故答案为:x=7.15.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为80°.【分析】由对顶角相等可得∠CGE=∠FGB′,由两角对应相等可得△ADF∽△B′GF,那么所求角等于∠ADF的度数.解:由翻折可得∠B′=∠B=60°,∴∠A=∠B′=60°,∵∠AFD=∠GFB′,∴△ADF∽△B′GF,∴∠ADF=∠B′GF,∵∠EGC=∠FGB′,∴∠EGC=∠ADF=80°.故答案为:80°.16.如图,函数y=和y=﹣的图象分别是C1和C2.点P在C1上,PC⊥x轴,垂足为点C,与C2相交于点A,PD⊥y轴,垂足为点D,与C2相交于点B,则△PAB的面积为8.【分析】设P的坐标是(a,),推出A的坐标和B的坐标,求出∠APB=90°,求出PA、PB的值,根据三角形的面积公式求出即可.解:设P的坐标(a,),则A(a,),B(﹣3a,),∴BP=4a,AP=,△PAB的面积=AP•BP=××4a=8.故答案为8.17.如图(1),扇形AOB中,OA=10,∠AOB=36°.若固定B点,将此扇形依顺时针方向旋转,得一新扇形A′O′B,其中O′点在直线BA上,如图(2)所示,则O点旋转至O′点所经过的轨迹长度(弧长)为4π.【分析】根据弧长公式,此题主要是得到∠OBO′的度数,再根据等腰三角形的性质即可求解.解:根据题意,知OA=OB.又∵∠AOB=36°,∴∠OBA=72°.∴点旋转至O′点所经过的轨迹长度==4π.故答案为4π.18.等腰△ABC中,AB=AC=5,△ABC的面积为10,则BC=2或4.【分析】作CD⊥AB于D,则∠ADC=∠BDC=90°,由三角形的面积求出CD,由勾股定理求出AD;分两种情况:①等腰△ABC为锐角三角形时,求出BD,由勾股定理求出BC即可;②等腰△ABC为钝角三角形时,求出BD,由勾股定理求出BC即可.解:作CD⊥AB于D,则∠ADC=∠BDC=90°,△ABC的面积=AB•CD=×5×CD=10,解得:CD=4,∴AD===3;分两种情况:①等腰△ABC为锐角三角形时,如图1所示:BD=AB﹣AD=2,∴BC===2;②等腰△ABC为钝角三角形时,如图2所示:BD=AB+AD=8,∴BD===4;综上所述:BC的长为2或4;故答案为:2或4.19.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AD=18,点E在AC上且CE =AC,连接BE,与AD相交于点F.若BE=15,则△DBF的周长是24.【分析】根据等腰三角形三线合一的性质得出BD=CD,又由CE=AC,可知F是△ABC的重心,根据重心的性质得出BF=BE=10,DF=AD=6,在Rt△BDF中利用勾股定理求出BD,进而得出△DBF的周长.解:∵在△ABC中,AB=AC,AD⊥BC,∴AD是△ABC的中线,∵CE=AC,即BE是△ABC的中线,∵BE与AD相交于点F,∴F是△ABC的重心,∴BF=BE=10,DF=AD=6.在Rt△BDF中,∵∠BDF=90°,∴BD==8,∴△DBF的周长=BD+DF+BF=8+6+10=24.故答案为24.20.如图,在△ABC中,AC=AB,∠BAC=90°,D是AC边上一点,连接BD,AF⊥BD 于点F,点E在BF上,连接AE,CE,∠EAF=45°,若tan∠ECD=,BC=6,则BE的长为.【分析】作AH⊥EA交BD的延长线于H,连接CH,根据余角的性质得到∠1=∠2,求得△AEH是等腰直角三角形,得到AE=AH,根据全等三角形的性质得到BE=CH,延长CE交AE于T,根据三角函数的定义得到AT=,CT=,tan∠CTA=,作EL⊥AB于L,设EL=4a,TL=3a,ET=5a,根据勾股定理列方程即可得到结论.解:作AH⊥EA交BD的延长线于H,连接CH,∵∠EAH=∠BAC=90°,∴∠1=∠2,∵AF⊥EF,∠EAF=45°,∴∠AEH=45°,∴△AEH是等腰直角三角形,∴AE=AH,∵AB=AC,∠1=∠2,∴△AEB≌△AHC(SAS),∴BE=CH,延长CE交AE于T,∴tan∠ECD=tan∠TCA=,AC=AB=3,∴AT=,CT=,tan∠CTA=,作EL⊥AB于L,设EL=4a,TL=3a,ET=5a,∵BT=AB﹣AT=3﹣=,∴BE2=(+3a)2+(4a)2,∴CH2=BE2=(+3a)2+(4a)2,AE2=(﹣3a)2+(4a)2=AH2,∴EH2=2[(﹣3a)2+(4a)2],∵∠AEB=∠AHC=180°﹣∠AEF=135°,∠EHC=135°﹣45°=90°,∴CE2=CH2+EH2,∴2[(﹣3a)2+(4a)2]+(+3a)2+(4a)2=(﹣5a)2,解得:a=,∴BE=,故答案为:.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.先化简,再求代数式÷(1+)的值,其中a=tan60°﹣sin45°.【分析】根据分式的运算法则即可求出答案.解:由题意可知:a=﹣×=﹣1原式=×==22.如图,在方格纸中,每个小正方形的边长均为1个单位长度,有一个△ABC,它的三个顶点均与小正方形的顶点重合.(1)将△ABC向右平移3个单位长度,得到△DEF(A与D、B与E、C与F对应)请在方格纸中画出△DEF;(2)在(1)的条件下,连接AE和CE,请求出△ACE的面积S.【分析】(1)根据图形平移的性质画出平移后的三角形即可;(2)连接AE和CE,利用矩形的面积减去三个顶点上三角形的面积即可得出S的值.解:(1)如图所示:(2)由图可知,S=5×4﹣×4×1﹣×2×4﹣×2×5=20﹣2﹣4﹣5=9.23.网络购物发展十分迅速,某企业有4000名职工,从中随机抽取350人,按年龄分布和对网上购物所持态度情况进行了调查,并将调查结果绘成了条形图1和扇形图2.(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是哪一段?(2)如果把对网络购物所持态度中的“经常(购物)”和“偶尔(购物)”统称为“参与购物”,那么这次接受调查的职工中“参与网购”的人数是多少?(3)这次调查中,“25﹣35”岁年龄段的职工“从不(网购)”的有22人,它占“25﹣35”岁年龄段接受调查人数的百分之几?(4)请估计该企业“从不(网购)”的人数是多少?【分析】(1)根据样本的容量为350,得到中位数应为第175与第176两个年龄的平均数,根据条形统计图即可得到中位数所在的年龄区间;(2)找出“经常(购物)”和“偶尔(购物)”共占的百分比,乘以350即可得到结果;(3)“25﹣35”岁年龄段的职工“从不(网购)”的人数除以350,即可得到结果;(4)由扇形统计图求出“从不(网购)”所占的百分比,乘以4000即可得到结果.解:(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是25﹣35之间;(2)“经常(购物)”和“偶尔(购物)”共占的百分比为40%+22%=62%,则这次接受调查的职工中“参与网购”的人数是350×62%=217(人);(3)根据题意得:“从不(网购)”的占“25﹣35”岁年龄段接受调查人数的百分比为×100%=20%;(4)根据题意得:4000×(1﹣40%﹣22%)=1520(人),则该企业“从不(网购)”的人数是1520人.24.在△ABC中,∠ACB=90°,D为AB边的中点,将△ADC沿着AC折叠,得到△AEC.(1)如图1,求证:四边形ADCE是菱形;(2)如图2,若BC=AC,菱形ADCE的面积为24,求AB边的长.【分析】(1)由折叠性质可知AD=AE、CD=CE,若证四边形ADCE是菱形,需证AD=CD,在RT△ABC中,由斜边上中线等于斜边的一半即可得证;(2)连接DE,根据BC=AC可设BC=3a、AC=4a,则AB=5a,证四边形BDEC 是平行四边形得DE=BC=3a,由S菱形ADCE=2S△ACD==24求得a的值即可得答案.解:(1)∵∠ACB=90°,D为中点,∴CD=AD,∵△ADC折叠得到△AEC,∴AE=EC=CD=AD,∴四边形ADCE是菱形;(2)连接DE,设BC=3a,AC=4a,则AB=5a,∵四边形ADCE是菱形,∴CE∥BD,∵CE=CD=BD,∴四边形BDEC是平行四边形,∴DE=BC=3a,∵四边形ADCE是菱形,∴AC⊥DE,∴S菱形ADCE=2S△ACD==24,∴a=2,∴AB=5a=10.25.松雷商厦两次购进一批同种型号的挂式空调和电风扇,第一次购进8台空调和20台电风扇,用去资金17400元;第二次购进10台空调和30台电风扇,用去资金22500元.(1)求挂式空调和电风扇每台的采购价各是多少元?(2)若该商厦计划再购进这两种电器70台,而可用于购买这两种电器的资金不超过30000元,问该商厦最多可再购进空调多少台?【分析】(1)设挂式空调每台的采购价是x元,电风扇每台的采购价是y元,根据采购价格=单价×数量,可列出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设再购进空调a台,则购进风扇(70﹣a)台,根据采购价格=单价×数量,可列出关于a的一元一次不等式,解不等式即可得出结论.解:(1)设挂式空调每台的采购价是x元,电风扇每台的采购价是y元,根据题意,得,解得.答:挂式空调每台的采购价是1800元,电风扇每台的采购价是150元.(2)设再购进空调a台,则购进风扇(70﹣a)台,由已知,得1800a+150(70﹣a)≤30000,解得:a≤11,故该经营业主最多可再购进空调11台.26.已知:AB,CF都是⊙O的直径,AH,CD都是⊙O的弦,CD⊥AB于点E,AH=CD.(1)如图1,求证:AH⊥CF;(2)如图2,延长AH,CD交于点P,求证:PH=PD;(3)如图3,在(2)的条件下,延长AC,HE交于点Q,若∠Q=45°,CQ=2,求AP的长.【分析】(1)要证明AH⊥CF,只要证明即可,根据垂径定理和∠AOF=∠BOC,即可证明结论成立;(2)要证明PH=PD,只要证明PA=PC即可,根据AH=CD,即可得到,进而得到,然后即可得到结论成立;(3)要求AP的长,需要作AK⊥QH于点K,再根据∠Q=45°,CQ=2和全等三角形的判定与性质、三角形的相似、勾股定理即可求得AP的长.【解答】(1)证明:∵AH=CD,∴,∵AB是直径,CD⊥AB,∴,∵∠AOF=∠BOC,∴,∴AH⊥CF;(2)证明:连接AC,如图2所示,∵AH=CD,∴,∴,∴,∴∠PCA=∠PAC,∴PC=PA,又∵CD=AH,∴PD=PH,即PH=PD;(3)过点A作AK⊥QH于点K,连接DH,如图3所示,∵四边形ACDH内接于⊙O,∴∠PAC=∠PDH,由(2)知,∠PAC=∠PCA,∴∠PDH=∠PCA,∴DH∥AC,∴∠CQE=∠DHE,∵∠CEQ=∠DHE,CE=DE,∴△CQE≌△DHE(AAS),∴EQ=EH,CQ=DH=2,∵∠Q=45°,AK⊥QH,∴∠Q=∠QAK=45°,∴AK=QK,∵∠CEQ+∠AEK=180°﹣∠AEC=90°,∠AEK+EAK=90°,∴∠EAK=CEQ=∠PCA﹣∠Q=∠PAC﹣∠QAK=∠HAK,∵∠AKE=∠AKH=90°,AK=AK,∠EAK=∠HAK,∴△EAK≌△HAK(ASA),∴EK=HK,AE=AH=CD,设EK=x,则EH=EQ=2x,∴AK=QK=3x,AQ=AK=3x,AE==x=AH=CD,∴CE==,∴AC==,∵AQ﹣AC=CQ,∴3x﹣=2,解得,x=2,∴AC=10,AH=4,∵DH∥AC,∴△PDH∽△PCA,∴,∴,即,解得,PA=5,即AP的长是5.27.已知:抛物线y=x2+x+m交x轴于A,B两点,交y轴于点C,其中点B在点A的右侧,且AB=7.(1)如图1,求抛物线的解析式;(2)如图2,点D在第一象限内抛物线上,连接CD,AD,AD交y轴于点E.设点D 的横坐标为d,△CDE的面积为S,求S与d之间的函数关系式(不要求写出自变量d 的取值范围);(3)如图3,在(2)的条件下,过点D作DH⊥CE于点H,点P在DH上,连接CP,若∠OCP=2∠DAB,且HE:CP=3:5,求点D的坐标及相应S的值.【分析】(1)令y=0,则(x+2)(x﹣m)=0,根据AB=7可求出m的值,则答案可求出;(2)如图1,过点D作DK⊥x轴于点K,设∠DAB=α,则D(d,﹣),求出CE=5﹣(5﹣d)=d,根据三角形面积公式可得解;(3)如图2,过点E作CE的垂线,过C作∠OCP的平分线交DE于点J,交CE的垂线于点F,过点F作ED的平行线交HD于点N.则∠ECF=∠HDE=α,HE=3k,CP =5k,CE=HD=d,证明△CEF≌△DHE,得出EF=HE=DN=3k,CF=DE=FN,可得出d=6k,在Rt△DHE中,tan,由(2)可求出d的值,则D点坐标可求出.则S=8.【解答】(1)由y=x2+x+m,令y=0,则(x+2)(x﹣m)=0,∴AO=2,BO=m,∴A(﹣2,0),B(m,0),∵AB=7,∴m﹣(﹣2)=7,m=5,∴y=;(2)过点D作DK⊥x轴于点K,设∠DAB=α,则D(d,﹣),∴=.∴EO=AO•tanα=5﹣d,CE=5﹣(5﹣d)=d,∴;(3)过点E作CE的垂线,过C作∠OCP的平分线交DE于点J,交CE的垂线于点F,过点F作ED的平行线交HD于点N.∴∠ECF=∠HDE=α,HE=3k,CP=5k,CE=HD=d,∵CE=HD,∠CEF=∠CHD=90°,∴△CEF≌△DHE(ASA),∵EF∥DN,NF∥DE,∴四边形EDNF为平行四边形,∴EF=HE=DN=3k,CF=DE=FN,∴△CFN为等腰直角三角形,∴∠PCN=∠FNC=45°,∴∠PCN=∠PNC=45°﹣α,∴PC=PN=5k,∴PD=2k,∴CH=d﹣3k,PH=d﹣2k,∴(d﹣3k)2+(d﹣2k)2=(5k)2,∴(d﹣6k)(d+k)=0,∴d=6k,∴在Rt△DHE中,tan,由(2)知,∴.∴d=4,∴D(4,3),∴==8.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:连接OA,OB.
∵∠APB=45°,
∴∠AOB=2∠APB=90°.
∵OA=OB=2,
∴AB= =2 .
故选C.
4.C
解析:C
【解析】
【分析】
x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.
【详解】
x=0时,两个函数的函数值y=b,
A.21.7米B.22.4米C.27.4米D.28.8米
6.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()
A.24B.16C. D.
7.估计 +1的值应在( )
A.3和4之间B.4和5之间C.5和6之间D.6和7之间
8.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()
【详解】
∵四边形ABCD是菱形,AC=6,BD=4,
∴AC⊥BD,
OA= AC=3,
OB= BD=2,
AB=BC=CD=AD,
∴在Rt△AOB中,AB= = ,
∴菱形的周长为4 .
故选C.
7.B
解析:B
【解析】
解:∵ ,∴ .故选 .
点睛:此题主要考查了估算无理数的大小,正确得出 的取值范围是解题关键.
C.(2x2)3=8x6,故C错误;
D.x8÷x3=x5,故D正确.
故选D.
点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.
2.D
解析:D
【解析】
【分析】
根据非负数的和为零,可得每个非负数同时为零,根据特殊角三角函数值,可得∠A、∠B的度数,根据直角三角形的判定,可得答案.
【详解】
解:由(2cosA- )2+|1-tanB|=0,得
2cosA= ,1-tanB=0.
解得∠A=45°,∠B=45°,
则△ABC一定是等腰直角三角形,
故选:D.
【点睛】
本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
3.C
解析:C
【解析】
【分析】
由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.
(1)试判断DE与⊙O的位置关系,并说明理由;
(2)过点D作DF⊥AB于点F,若BE=3 ,DF=3,求图中阴影部分的面积.
25.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量 (件)与销售单价 (元)之间存在一次函数关系,如图所示.
(1)求 与 之间的函数关系式;
∴0.45= ,
∴AB=21.7(米),
故选A.
【点睛】
本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
6.C
解析:C
【解析】
【分析】
由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA与OB的长,然后利用勾股定理,求得AB的长,继而求得答案.
C. D.
二、填空题
13.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:
抽取的体检表数n
50
100
200
400
500
800
1000
1200
1500
2000
色盲患者的频数m
3
7
13
29
37
55
69
85
105
138
色盲患者的频率m/n
0.060
0.070
16.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.
17.如图,在Rt△AOB中,OA=OB= ,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为.
18.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.
三、解答题
21.如图,在平面直角坐标系中,直线 经过点 和 ,双曲线 经过点B.
(1)求直线 和双曲线 的函数表达式;
(2)点C从点A出发,沿过点A与y轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0<t<12),连接BC,作BD⊥BC交x轴于点D,连接CD,
①当点C在双曲线上时,求t的值;
【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
12.A
解析:A
【解析】
试题分析:∵今后项目的数量﹣今年的数量=20,∴ .故选A.
考点:由实际问题抽象出分式方程.
二、填空题
19.已知关于x的一元二次方程 有两个相等的实数根,则 的值等于_______.
20.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用 次;甲、丙两车合运相同次数,运完这批货物,甲车共运 吨;乙、丙两车合运相同次数,运完这批货物乙车共运 吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费 元计算)
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
【参考答案】***试卷处理标记,请不要删除
详解:连接OB和AC交于点D,如图所示:
∵圆的半径为2,
∴OB=OA=OC=2,
又四边形OABC是菱形,
∴OB⊥AC,OD= OB=1,
在Rt△COD中利用勾股定理可知:CD= ,AC=2CD=2 ,
∵sin∠COD= ,
∴∠COD=60°,∠AOC=2∠COD=120°,
∴S菱形ABCO= B×AC= ×2×2 =2 ,
13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故
解析:07
【解析】
【分析】
随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.
【详解】
2020年数学中考第一次模拟试卷(及答案)
一、选择题
1.下列计算正确的是( )
A.2a+3b=5abB.(a-b)2=a2-b2C.(2x2)3=6x6D.x8÷x3=x5
2.在△ABC中(2cosA- )2+|1-tanB|=0,则△ABC一定是( )
A.直角三角形B.等腰三角形
C.等边三角形D.等腰直角三角形
8.D
解析:D
【解析】
【分析】
【详解】
根据图中信息可知这些队员年ห้องสมุดไป่ตู้的平均数为:
=15岁,
该足球队共有队员2+6+8+3+2+1=22人,
则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁,
故选D.
9.C
解析:C
【解析】
【分析】
根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案.
A.50°B.20°C.60°D.70°
12.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()
A. B.
解:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,
故男性中,男性患色盲的概率为0.07
故答案为:0.07.
【点睛】
本题考查利用频率估计概率.
14.∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;
【详解】
作BM⊥ED交ED的延长线于M,CN⊥DM于N.
在Rt△CDN中,∵ ,设CN=4k,DN=3k,
∴CD=10,
∴(3k)2+(4k)2=100,
∴k=2,
∴CN=8,DN=6,
∵四边形BMNC是矩形,
∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,
在Rt△AEM中,tan24°= ,
所以,两个函数图象与y轴相交于同一点,故B、D选项错误;
由A、C选项可知,抛物线开口方向向上,
所以,a>0,
所以,一次函数y=ax+b经过第一三象限,
所以,A选项错误,C选项正确.
故选C.
5.A
解析:A
【解析】
【分析】
作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°= ,构建方程即可解决问题.
A.15.5,15.5B.15.5,15C.15,15.5D.15,15
9.下列计算正确的是( )
A. B.