耐火材料的热学性质

合集下载

耐火材料介绍

耐火材料介绍
抗热震性的提高。
单位温度梯度下,在单位时间内通过单位面积的热量。
传热 的方 式
声子 热导
热传导 对流
由于声子传导是通过晶格振动来进行的,晶格结构愈 复杂,晶格振动的振动的非谐性愈大,晶格波受到的 散射程度愈大,材料导热系数愈低。晶体中存在任何 形式的缺陷与杂质都会导致声子的散射,减小材料的 导热系数。
耐火材料的物理性质
测量体积密度的方法是阿基米德法,即用排 水法来测定试样的体积。一个是真空法,即 将试样放在密闭容器中抽真空达到一定的真 空度以后再注入水或其他液体,来浸泡试样; 另一种方法是将试样放入沸水中浸泡。
过程:将质量为m1的试样放入液体中浸泡, 完成后,试样在液体中悬浮在液体中的质量 m2。然后将试样从浸液中取出,用饱和了浸 液的毛由水心地擦去多余的液滴。
陶瓷结合:在一定的温度下,由于烧结或液 相形成而产生的结合称陶瓷结合。在陶瓷结 合耐火材料中还就提到所谓直接结合耐火材 料。这一词最早出现在镁铬耐火材料中。认 为一种高纯度的镁铬砖的方镁石或尖晶石之 间是直接连结的,不存在中间相。但随着显 微镜技术及材料科学的发展,发现颗粒之间 并非真正的直接结合,结合部常存在杂质集 中或晶格畸变的区域。但这一名词经常出现 在碱性耐火材料文献中。
耐火材料的力学性质
材料的破坏需要克服原子间的作用力。根据 原子间作用力计算出的强度称为理论结合强 度。但材料的实际强度远小于它的理论强度。
Griffith理论认为:实际材料中总是存在许多 细小裂纹或缺陷。在外力作用下,这些裂纹 或缺陷附近产生应力集中现象。当应力达到 某一临界值时,裂纹开始扩展而导致断裂。 由此可知,断裂并不是两部分晶体被拉成两 半而是裂纹扩展的结果。
带有气孔的干燥材料的质量与其真体积的比值。真体积为不包括气孔的干燥 材料的真实体积。

耐火材料结构与性能基础

耐火材料结构与性能基础

耐火材料结构与性能讲义重点介绍常用耐火材料的结构、基本性能等知识。

耐火材料可用作高温窑炉等热工设备的结构材料以及工业用的高温容器和部件,能承受在其中进行的各种物理化学变化及机械作用。

是冶金、玻璃、水泥、陶瓷、机械热加工、石油化工、动力和国防工业等高温工业所必须的重要基础材料。

需要了解和掌握的一些内容:定义和概念;不同耐火材料制品的组成、性能; 耐火材料力学性能和结构的关系 耐火材料热震稳定性和结构的关系 耐火材料抗侵蚀性能和结构的关系 耐火材料的耐碱性;其它镁砖高铝砖刚玉砖镁铬砖相关基础知识一、耐火材料的定义传统的定义:耐火度不小于1580℃的无机非金属材料;ISO的定义:耐火度不小于1500℃的非金属材料及制品;二、耐火材料的分类主要有使用温度、化学属性、组成、生产工艺、材料形态等多种分类方法。

1、根据耐火度的高低普通耐火材料:1580℃~1770℃高级耐火材料:1770℃~2000℃特级耐火材料:>2000℃2、依据形状及尺寸的不同标普型:230mm×113mm×65mm;不多于4个量尺,(尺寸比)Max:Min<4:1;异 型:不多于2个凹角,(尺寸比)Max:Min<6:1; 或有一个50~70°的锐角;特异型:(尺寸比) Max:Min<8:1;或不多于4个凹角;或有一个30~50°的锐角;3、从外观来分砖制品:烧成砖、不烧砖;散状耐火材料;4. 按化学属性分类大致可分为酸性耐火材料、中性耐火材料、碱性耐火材料。

化学属性对于了解耐火材料的化学性质,判断耐火材料在实际使用过程中与接触物之间的化学作用情况具有重要意义。

耐火材料在使用过程中除承受高温作用外,往往伴随着熔渣(液态)及气体等化学侵蚀。

为了保证耐火材料在使用中有足够的抵抗侵蚀介质侵蚀能力,选用的耐火材料的化学属性应与侵蚀介质的化学属性相同或接近。

(1)酸性耐火材料通常是指其中含有相当数量二氧化硅的耐火材料。

耐火材料各性质

耐火材料各性质

耐⽕材料各性质耐⽕材料的⼒学性质耐⽕材料的⼒学性质是指材料在不同温度下的强度、弹性、和塑性性质。

耐⽕材料在常温或⾼温的使⽤条件下,都要受到各种应⼒的作⽤⽽变形或损坏,各应⼒有压应⼒、拉应⼒、弯曲应⼒、剪应⼒、摩擦⼒、和撞击⼒等。

此外,耐⽕材料的⼒学性质,可间接反映其它的性质情况。

检验耐⽕材料的⼒学性质,研究其损毁机理和提⾼⼒学性能的途径,是耐⽕材料⽣产和使⽤中的⼀项重要⼯作内容。

4.1 常温⼒学性质4.1.1 常温耐压强度σ压定义;是指常温下耐⽕材料在单位⾯积上所能承受的最⼤压⼒,也即材料在压应⼒作⽤下被破坏的压⼒。

常温耐压强度σ压=P/A ,(pa)式中;P—试验受压破坏时的极限压⼒,(N);A—试样的受压⾯积,(m2)。

⼀般情况下,国家标准对耐⽕材料制品性能指标的要求,视品种⽽定。

其中,对常温耐压强度σ压的数值要求为50Mpa左右(相当于500kg/cm2);⽽耐⽕材料的体积密度⼀般为2.5g/cm3左右。

据此计算,因受上⽅砌筑体的重⼒作⽤,导致耐⽕材料砌筑体底部受重压破坏的砌筑⾼度,应⾼达2000m以上。

可见,对耐⽕材料常温耐压强度的要求,并不是针对其使⽤中的受压损坏。

⽽是通过该性质指标的⼤⼩,在⼀定程度上反映材料中的粒度级配、成型致密度、制品烧结程度、矿物组成和显微结构,以及其它性能指标的优劣。

体现材料性能质量优劣的性能指标的⼤⼩,不仅反映出来源于各种⽣产⼯艺因素与过程控制,⽽且反映过程产物⽓、固两相的组成和相结构状态以及相关性质指标间的⼀致性。

⼀般⽽⾔,这是⼀条普遍规律。

4.1.2 抗拉、抗折、和扭转强度与耐压强度类似,抗拉、抗折、和扭转强度是材料在拉应⼒、弯曲应⼒、剪应⼒的作⽤下,材料被破坏时单位⾯积所承受的最⼤外⼒。

与耐压强度不同,抗拉、抗折、和扭转强度,既反映了材料的制备⼯艺情况和相关性质指标间的⼀致性,也体现了材料在使⽤条件下的必须具备的强度性能。

抗折强度σ折按下式计算。

抗折强度σ折=3PL/2bh2,(pa)式中:P—试样断裂时的作⽤⼒,(N);L—试样两⽀点的距离,(m);b、h—分别为试样的宽度、厚度,(m)。

耐火材料基础知识

耐火材料基础知识
实际生产中需根据硅石原料的组成与性质来确定。理想的 矿化剂应具备如下条件: 1)能与SIO2作用,并在不太高的温度下形成液相(一般 在1300~1350 ℃ 以前),而且对系统的耐火度降低不大; 2)能够形成足够数量的液相,液相应具有低的粘度及较 强的润湿石英颗粒表面的能力; 3)矿化作用不过于激烈,烧成制品不产生裂纹; 4)矿化剂不具备水溶性,在坯体中易于分布; 5)价格合理,易于制备。
1.6 硅藻土:海水或淡水中的微生物——硅藻类的遗体骨 骼(硅壳)堆积而成,本质上是含水的非晶质二氧化硅。
第一节 石英原料的主要类型及SiO2变体
2. SiO2变体的种类及性质
α-石英、β-石英
SiO2的种类
α-鳞石英、β-鳞石英、γ-鳞石英 α-方石英、β-方石英 石英玻璃
第一节 石英原料的主要类型及SiO2变体
★ 耐火材料在烧制过程当中的物理化学变化一般都 未达到烧成温度下的平衡状态,当制品在长期使 用中,受高温和时间的作用,会进一步产生物理 化学变化,从而进一步烧结和物相再结晶和玻璃 化,从而初始制品进一步密实,产生重烧收缩。 但是有的如硅质在高温下产生膨胀。
★ 重烧线变化的大小表明制品高温体积稳定性的好 坏,为了降低耐火制品的重烧收缩或膨胀,在工 艺上一般提高砖坯的成型密度,适当提高烧成温 度或延长保温时间,但不宜过高,以免制品变形 或者进一步玻璃化,从而降低了热震稳定性。
热容
★ 热容(又称比热容)是指常压下加热1公 斤样品使之升温一度所需的热量。
★ 影响热容的因素
耐火材料的热容是随它的化学矿物组成和所处的 温度条件而变化的,通常很少测定热容,检验标 准中也没有规定方法。
重烧线变化
★ 重烧线变化是指将耐火材料试样加热到规定温度, 并恒定一定时间,冷却至室温以后,其线性尺寸 的不可逆变化。

耐火

耐火

1、耐火材料的力学性能、热学性能与高温使用性能的基本概念与应用。

力学性质:表征耐火材料抵抗不同温度下外力造成的形变和应力而不破坏的能力。

耐火材料的力学性质通常包括耐压强度、抗折强度、扭转强度、耐磨性、弹性模量及高温蠕变等耐火材料的高温使用性能:其在高温条件下抵抗来自外部的作用而不易损坏的性质。

主要包括:耐火度。

荷重软化温度。

重烧线变化率。

抗热震性。

抗渣性。

抗酸性。

抗氧化性。

抗水化性和一氧化碳侵蚀性。

耐火材料的热学性主要包括比热容、热膨胀性、导热性,是衡量耐火制品能否适应具体热过程和进行工业窑炉设计的重要依据。

2耐火度与熔点的区别:1、熔点指纯物质的结晶相与液湘处于平衡时的温度;2、熔点是一个物理常数;3、耐火材料为多相混合体,其熔融是在一定的温度范围内进行的,是一个工艺指标3)耐火材料的体积密度、热导率、热震稳定性、抗渣蚀性等的定义与物理意义。

1)耐火制品单位表观体积的质量称为体积密度,通常用kg/m3或g/cm3表示。

对于同一种耐火制品而言,其体积密度与显气孔率呈负相关关系,即制品的体积密度大则显气孔率就低。

2)耐火材料的热导率是指单位温度梯度下,单位时间内通过单位垂直面积的热量。

表示材料传递热量的能力。

3)耐火材料抵抗温度急剧变化而不被破坏的性能称为热震稳定性或抗热冲击性能。

高温窑炉等热工设备在运行过程中,其运行温度常常发生变化甚至剧烈的波动。

这种温度的急剧变化常常会导致耐火材料产生裂纹、剥落、崩裂等结构性的破坏,而影响热工设备操作的稳定性、安全性和生产的连续性。

4)耐火材料在高温下抵抗熔渣侵蚀的性能称为抗渣蚀性能,简称抗渣性。

高温环境下,熔渣物质与耐火材料相接触,并与之发生复杂的物理化学反应,导致耐火材料的侵蚀损毁。

占耐火材料被损坏原因的50%以上。

4)耐火材料低温绝缘、高温导电的原因与工业安全防范。

(硅质、镁质耐火材料的导电性)导电性通常用电阻率表示。

电阻率与热力学温度间的关系为TeBA=ρ式中:(ρ—材料的电阻率,T—热力学温度,A,B—与材料性质有关的常数。

耐火原料的热学性质.二

耐火原料的热学性质.二

耐火原料的热学性质.二一.热膨胀耐火原料的热膨胀是指其体积或长度随温度升高而增大的性质,有体膨胀系数与线膨胀之分。

在耐火原料的性能中,通常使用线膨胀率和线膨胀系数。

线膨胀率是指由室温至设定温度间,试样长度的相对变化率;线膨胀系数是指由室温至设定温度间,每升高1℃,式样长度的相对变化率。

以下列公式表示:线膨胀率ρ=[(L1-L0)+A K(t)]/L0×100%线膨胀系数α=ρ/[(t-t0)×100]10-6℃-1式中:L0——试样在温室下的长度,mm;L t——试样在设定温度t时的长度,mm;A K(t)——设定温度t时仪器的校正值,mm;T0——室温,℃;T——设定温度,℃线膨胀的测试方法由顶杆式间接法、望远镜直读法等。

需要指出,热膨胀系数并不是一个恒定值,而是随试验温度而变化,所以它是指定温度范围Δt内的平均值。

因此,在使用这一数据时,必须注明它的温度范围。

耐火原料的热膨胀与其中所含矿物的晶体结构和化学键强度密切相关。

由离子键或共价键形成分矿物,其热膨胀较小;而以分子键结合的矿物,热膨胀则非常大。

化学组成相同的材料,由于结构的差异,热膨胀不同。

通常矿务晶体的结构愈紧密,其热膨胀愈大;而类似于无定形的玻璃,则热膨胀往往较小;如同为SiO2,多晶石英的热膨胀系数为12×10-6℃-1,而石英玻璃则只有0.5×10-6℃-1,而垂至于C轴的膨胀系数仅为1×10-6℃-1,这是因为层内为牢固联系,而层间的分子键联系要弱的多。

在结构上高度各向各异的材料,其综合表现出来的体膨胀系数都很小,比如堇青石作为一种热震稳定性优异的材料而在陶瓷窑具行业广泛应用。

耐火原料的热膨胀取决于其化学矿务组成。

一般碱性耐火原料的热膨胀系数比酸性原料的大,高铝质原料介于两者之间。

当原料的矿物发生晶型转变时,会导致热膨胀系数不均匀变化,在相变点发生突变。

热膨胀是耐火原料重要性能,对所组成的耐火制品的强度、热震稳定性等影响明显,常见耐火原料的热膨胀系数列于表1-16中。

耐火材料的组成和性质

耐火材料的组成和性质

2024/10/13
材料科学与工程学院
6
3、添加成分
在耐火制品生产中,为了促进其高温变化 和降低烧结温度,有时加入少量的添加成分。 添加成分按其目的和作用的不同分为:矿化剂、 稳定剂和烧结助剂。除可烧掉成分外,它们都 包含在制品的化学成分中。
(1) 矿化剂:促进某相转变而加入的成分。
如:在硅砖生产中,加入的铁鳞、石灰乳作 为矿化剂使高温α-方石英转变成α-鳞石英。
如:石墨(单质C,鳞片状结构)、刚玉(简 单化合物Al2O3、三方晶系,呈桶状,短柱状)
目前还存在“人造矿物”如:人造金刚石, 水泥熟料中的A矿(C3S)、B矿(C2S)等。
2024/10/13
材料科学与工程学院
10
2.矿物的同质多象现象
同种化学成分的物质在不同的外界条件下, 可生成结构不同,形态和物理性质方面均有差异 的矿物,这种现象称为同质多象现象(变体)。
2024/10/13
材料科学与工程学院
17
MgO SiO2 CaO (wt%) A 24.83 39.09 36.08
B 11.70 37.00 51.30
C 11.54 36.29 52.17
MgO
A
B
C
耐火材料中陶瓷结合示意图
2024/10/13
材料科学与工程学院
18
b、直接结合:指耐火制品中,高熔点的主晶相之 间或主晶相与次晶相间直接接触产生结晶网络的 一种结合,而不是靠低熔点的硅酸盐相产生结合。
如:镁铬砖中的主晶相是方镁石; 镁铝砖中的主晶相是方镁石等。
2024/10/13
材料科学与工程学院
13
主晶相
次晶相又称第二固相,是在高温下与主晶相共 存的第二晶相。次晶相也是熔点较高的晶体,它 的存在可以提高耐火制品中固相间的直接结合, 同时可以改善制品的某些特定的性能。

第二章 耐火材料的性能

第二章 耐火材料的性能

1-刚玉砖;2-粘土砖; 3-高铝砖;4-镁砖; 5、6-硅砖
3、抗折强度
抗折强度:亦称抗弯强度或断裂模量,是指材料单位面积 所能承受的极限弯曲应力。
耐火材料的抗折强度分为常温抗折强度和高温抗折强度。 在 常 温 下 测 得 的 抗 折 强 度 为 常 温 抗 折 强 度 ; 在 10001200º C的某一特定温度下测得的抗折强度为高温抗折强度。
Db—体积密度,g/cm3; M —试样的质量,g/cm3; Vt—试样中材料的实际体积,cm3; Vo—试样中开口气孔的体积,cm3; Vc—试样中闭口气孔的体积,cm3。
M Dt Vt
气孔率与密度之间的关系
Db Pa (1 ) 100% Da
Db Pt (1 ) 100% Dt
常用耐火材料的常温耐压强度
一般制品:10-15MPa 高级制品:25-30MPa
2、高温耐压强度
高温耐压强度:耐火材料在1000-1200℃的高温热态下单 位面积所能承受的最大压力,以N/mm2表示。
常用耐火材料的高温耐压强度
耐火制品高温耐压强度的这种变化是受材料中 的某些组分、特别是其中的基质或其结合相在 高温下发生的变化所控制。一般而言,完全由 晶体构成的烧结耐火材料,因高温下其中晶粒 及晶界易发生塑性变形,特别是当其加荷速度 较小时更易发生塑性变形,故其强度随温度的 升高而降低。当其中部分晶相间在高温下熔融 或形成熔融体时,随着温度的升高,此种多相 材料的强度也因显微结构随温度变化而降低。 但当温度进一步提高后,由于玻璃相的粘度由 脆性变为强韧性,使材料颗粒间结合更为牢固, 从而使强度明显提高。而后,随着温度升高, 因材料中熔体粘度急剧下降,材料的强度也随 之急剧下降。
§2.2 耐火材料的宏观结构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

耐火材料的热学性质耐火材料的热学性质有热膨胀、热导率、热容、温度传导性,此外还有热辐射性。

3.1 耐火材料的热膨胀耐火材料的热膨胀是其体积或长度随温度升高而增大的物理性质。

原因是材料中的原子受热激发的非谐性振动使原子的间距增大而产生的长度或体积膨胀。

衡量耐火材料的热膨胀性能的技术指标有热膨胀率、热膨胀系数。

3.1.1 热膨胀率热膨胀率也称线膨胀率,物理意义:是试样在一定的温度区间的长度相对变化率。

测定出热膨胀率,才能计算出热膨胀系数。

线膨胀率=[(L T-L0)/L0]×100%式中:L T、L0—分别为试样在温度T、T0时的长度,(mm)。

3.1.2 热膨胀系数热膨胀系数有平均线膨胀系数α、真实线膨胀系数αT,体膨胀系数β。

以后除特别说明外,热膨胀系数一般指的是平均线膨胀系数。

线膨胀系数物理意义:在一定温度区间,温度升高1℃,试样长度的相对变化率。

热膨胀系数α=(L T-L0)/ L0(T-T0)=ΔL/ L0ΔT式中:T、T0—分别为测试终了温度、测试初始温度,(℃)。

体热膨胀系数β=ΔV/V0ΔT式中:V0—为试样在初始温度T0时的体积,(mm3)。

真实热膨胀系数αT=dL/LdT式中;L—为试样在某温度时的长度,(mm)。

如线膨胀系数数值很小,则体膨胀系数约等于线膨胀系数的3倍。

对于各向同性晶体,体膨胀系数β≈3α;对于各向异性晶体,体膨胀系数等于各晶轴方向的线膨胀系数只和,即β≌αa+αb+αc。

影响材料热膨胀系数的因素有:化学矿物组成、晶体结构类型和键强等。

①化学矿物组成的影响:含有多晶转变的制品,热膨胀系数的变化不均匀,在相变点会发生突变,例如硅质制品和氧化锆制品;材料中含有较多低熔液相或挥发性成分时,热膨胀系数α在相应的温度区域也发生较大的变化。

②晶体结构类型的影响:结构紧密的晶体热膨胀系数较大、无定型的玻璃热膨胀系数较小,如多晶石英的热膨胀系数α=12×10-6/℃,而石英玻璃的α=0.5×10-6/℃,前者比后者大的多;氧离子紧密堆积结构的氧化物一般线膨胀系数较大,如MgO、Al2O3等;在非同向性晶体(非等轴晶体)中,各晶轴方向的热膨胀系数不等,如石墨:垂直于C轴的层间热膨胀系数为α=1×10-6/℃,而平行于C轴垂直层间热膨胀系数为α=27×10-6/℃;等轴晶体的热膨胀系数比非等轴晶体大的多,如等轴晶体的MgO方镁石的α=13.8×10-6/℃,而晶体非等轴程度较高的石墨、堇青石、钛酸铝等的α<3×10-6/℃,特别是钛酸铝的α<1×10-6/℃,采用恰当的工艺方法甚至可以使α<0/℃。

③键强的影响:SiC的质点间主要为键力强的原子键,其热膨胀系数就较小,且硬度也很高。

要注意的是:热膨胀系数α在不同温度区间的数值不同,一般材料高温区间比低温区间的α小;材料中含有晶型转变的矿物成分时,热膨胀系数α在相变温度点产生突变,如硅质制品中石英的多晶转变;材料中含有较多低熔液相或挥发性成分时,热膨胀系数α在相应的温度区域也发生较大的变化。

热膨胀系数α对耐火材料的抗热震性影响很大。

耐火材料在经受快速的加热或冷却过程中,材料中因温差产生的热应力σ=EαΔT,(N)。

在温度急变的使用场合,应该首先考虑选用较低热膨胀系数的耐火材料。

常用耐火材料的热膨胀性能见P12的图1-4和表1-4。

3.2 热导率λ3.2.1 热导率的实质热导率是耐火材料导热特性的一个物理指标,其值等于热流密度除以负温度梯度。

物理意义:材料在单位温度梯度下,单位时间内通过单位垂直面积的热量(W/m℃)。

晶体导热的实质是晶格质点的热振动,邻近质点由于热振动的相互作用,发生能量转移而实现热量的传递。

不同的使用条件,需要不同热导率的耐火材料。

如陶瓷隔焰隧道窑及马弗式电炉,要求分隔板的热导率高;而要求具有保温隔热功能的材料则热导率应低。

热导率高的材料往往具有较好的抗热震性。

热导率是热工窑炉设计中选用耐火材料时不可缺少的数据指标。

3.2.2 影响热导率的因素耐火材料的热导率与其化学矿物组成、宏观组织结构、温度、晶体结构的关系密切。

制品中化学组成中组分多、杂质多、形成的固溶体和玻璃液相多、晶体结构复杂程度高、制品中的孔隙微小众多,制品的热导率相对就较小。

例如,镁铝尖晶石MgAl2O4比刚玉Al2O3、方镁石MgO小;莫来石3AlO.2SiO比镁铝尖晶石MgAl2O4的结构复杂程度高,热导率就小。

玻璃相中质点排列的有序程度比晶体的低,热导率就小,如石英玻璃比石英晶体的热导率低的多。

含有较多玻璃相的粘土砖热导率也较小。

(晶体的结构复杂、以及固溶体、玻璃相等,其结构中的质点排列无序程度高,传递热量的声子的平均自由程较小,热导率λ与平均自由程长度成正比,因而相应材料的热导率就较小。

)温度对热导率的影响一般为:晶相物质随温度升高λ减小,玻璃相等物质随温度升高λ增大,各材料的λ与温度的关系见P13的图1-5。

气体的热导率低,耐火材料中的微小气体孔隙阻碍了热量传递,高气孔率的耐火材料的λ一般较小。

但是高温时,大尺寸气孔会导致材料的高温λ加大,因为高温时大气孔处的固相材料间辐射传热程度大于气体的传导传热(辐射传热正比于温度4次方),且大气孔中还存在着气体的对流传热。

所以,轻质隔热耐火材料中的气孔应设置为微细众多的孔隙的结构,可以获得很小的热导率。

含有较高程度晶轴各向异性的晶体的材料、或材料中各成分固相颗粒的热膨胀系数差异较大的复相材料,在温度升降过程中,晶界或细小颗粒的界面会形成众多、取向不同的微裂纹。

这些微裂纹孔隙成为热流传递的热阻,也可以使材料表现出很小的热导率。

3.3 热容c热容定义:常压下加热1kg物质,温度升高1℃所需热量(kJ/kg℃),也称为比热容。

材料的热容取决于其化学矿物组成及所处的温度。

材料的热容影响着其被加热或冷却的速度,对材料的蓄热能力和抗热震性具有重要意义。

是热工窑炉设计中的材料技术指标。

3.4 温度传导性a定义;温度传导性表示材料被加热时,温度在材料中的传递速度。

它体现了材料的均热能力,决定了急冷急热时材料内部温度梯度的大小。

温度传导性与热导率、比热容、体积密度有关。

温度传导性(导温系数)a=λ/cρ,(m2/h)式中:λ—耐火材料的热导率,(W/m℃)或(kJ/mh℃);c—耐火材料的比热容,(kJ/kg℃);ρ—耐火材料的体积密度,(kg/m3)。

3.5 热辐射性任何物质在绝对零度以上都能发出电磁辐射。

热辐射是指物质发射波长为0.1 ~ 100μm 的辐射热射线在空间传递能量的现象。

热辐射性,即为固体材料在高温状态下,受热激发向外辐射出热射线的性能。

热辐射的过程可分为三个阶段:一是热物体的表面或近表面层的热能转变成电磁波状的振动;二是这种电磁波状的振动透过了中间的空气传播;最后,在接受辐射热的物体表面,电磁波又转变成热能,被该物体所吸收。

假定物体受到的辐射总能量为Q c ,其中Q a 部分被物体吸收、Q r 部分被反射而回,Q t 部分辐射热穿透物体,则:Q a + Q r + Q t = Q c ⇒ t r c c Q Q Q a++1Q Q Q c =式中的三项比值分别为吸收率α、反射率ρ和穿透率τ,由此可见:α+ρ+τ=1 对于固体和液体接受热辐射,实际上都可视为不透明体,即τ=0,α+ρ=1。

即,热辐射体(燃烧着的煤和高温物体)所发出的热量,一部分被吸收体吸收,另一部分则被吸收体反射。

已经被吸收体吸收的热能,也将有部分能量以辐射能的形式又重新辐射出去,其数量取决于吸收体本身的温度和辐射性质。

物体在单位面积单位时间内所辐射出的能量,叫做该物体的辐射强度(W 表示)。

任何物体的辐射强度W s 和同一温度下绝对黑体的辐射强度W b 的比值,称为该物体的发射率(ε表示)。

即W s /W b =ε如果物体的发射率或吸收率可认为与波长和温度无关,则该物体称为灰体(一般非金属材料均为灰体)。

任何灰体在同一温度上测得的发射率与吸收率相等,即εα=辐射学研究结果表明,黑体的辐射能量方程为:4E =σT b (σ=5.67×10-5erg )灰体的辐射能量方程为:4E=σT ε热辐射率是选用高热辐射性能材料的重要技术指标。

高辐射炉衬材料对热量的吸收率近似等于辐射率,可以有效地吸收高温焰气辐射出的热量并以宽频连续的热射线辐射出去,对制品实现高效传热。

并且减小了焰气对炉墙反射热的再吸收比例,使废焰气外排时所携带的热量大大降低。

因此,高辐射材料有效地提高了窑炉内制品的受热程度,同时窑炉的能耗也明显降低。

各种耐火材料的辐射率ε见下表。

影响热辐射率的因素主要材料种类(即化学矿物组成)和温度。

将高辐射率材料,制成粉末涂料应用于高温炉衬,近年来在国内外均有较多的应用实例。

如在轧钢加热炉等热工设备上使用,可以节能10~30%;将高辐射材料应用于燃气加热炉炉衬,其节能效果更显著。

表1-2 各种耐火材料的辐射率ε——引自《耐火材料与能源》P2273.6 导电性一般耐火材料在常温下是电的不良导体(碳质材料除外)。

随温度升高导电性增强,在1000℃以上电阻急剧降低,材料至熔融状态时具强导电能力。

耐火材料的导电能力一般用电阻率ρ表示:ρ=A/e B/T式中:A、B—材料特性系数;T—绝对温度。

影响材料的导电性因素主要是化学矿物组成,特别是杂质的种类与数量。

此外,原料的粒度、气孔率、成型压力、烧结的温度及气氛等也影响着材料电阻率的变化。

与材料导电性相关的应用方面有:要求绝缘性良好的高温感应电炉用耐火材料;要求导电性良好的非金属发热体材料,如SiC、ZrO2、MoSi2、以及LaCrO3;以及氧浓差电池ZrO2固体电解质材料等。

相关文档
最新文档