材料的热学性能

合集下载

材料的热学性能

材料的热学性能

材料的热学性能
材料的热学性能是指材料在热学方面的性质和特性,包括热传导、热膨胀、比
热容等。

这些性能对于材料的应用和工程设计具有重要意义。

下面将分别介绍材料的热传导、热膨胀和比热容这三个方面的性能。

首先,热传导是材料的一个重要热学性能。

热传导是指材料内部热量传递的能力。

热传导系数是衡量材料热传导性能的一个重要参数。

通常情况下,金属材料的热传导性能较好,而绝缘材料的热传导性能较差。

在工程设计中,需要根据材料的热传导性能选择合适的材料,以确保热量能够有效传递和分布。

其次,热膨胀是材料的另一个重要热学性能。

热膨胀系数是衡量材料热膨胀性
能的参数。

当材料受热时,由于分子热运动增强,材料会膨胀。

不同材料的热膨胀性能各不相同,这对于工程设计和材料选择都具有重要影响。

例如,在建筑工程中,需要考虑材料的热膨胀性能,以避免因温度变化引起的结构变形和损坏。

最后,比热容是材料的又一个重要热学性能。

比热容是指单位质量材料升高1
摄氏度所需吸收或放出的热量。

不同材料的比热容各不相同,这也会对材料的热学性能产生影响。

在工程设计中,需要考虑材料的比热容,以确保在温度变化时能够有效地储存或释放热量。

综上所述,材料的热学性能对于材料的应用和工程设计具有重要意义。

热传导、热膨胀和比热容是材料的重要热学性能,它们直接影响着材料在温度变化时的性能表现。

因此,在工程设计和材料选择中,需要充分考虑材料的热学性能,以确保材料能够满足实际应用的需求。

材料的热学性能

材料的热学性能
辐射防热:利用材料表面的热辐射性能的特殊防热 方式,要求材料表面热发射率高,关键参数是材料 表面的热发射率。
吸收防热:利用材料本身的具有较大的比热容和导 热系数,以便将热量尽多地吸收或导出。关键性能 参数:材料的比热容和导热系数。
烧蚀防热:则要求协调各方面的性能参数, 如:要求高的热发射率,以便让头部表面散 失更多的热量;尽可能高的热容和尽可低的 导温系数,以便让头部吸收更多的热量而又 不至于升温过快;尽可能小的导热系数,头 部表面的热量就难以传递到内壁;头部材料 与基体材料之间的热应力应尽可能小,要求 两者间的膨胀系数尽可能地匹配。
一维双原子晶格的热振动模型运动方程:
m1x2n1 Ke (x2n2 x2n 2x2n1)
m2x2n Ke (x2n1 x2n1 2x2n )

假设 m2 m1, 则该方程的解为:
x2n1 AeitL(2n1)a
x2n
热力学定律
1 热力学第一定律:
Q E A
微分形式为:
dQ dE dA
局限性:只能说明能 量转化的数量关系, 不能解决过程进行的 限度问题,以及过程 进行的方向问题。
2 热力学第二定律:
(1)可劳修斯说法:不可能把 热从低温物体传到高温物体而 不引起其它的变化。 (2)开尔文的说法:不可能从 单一热源取热使之完全变为有 用的功而不引起其它的变化。 (3)数学表达式
本章就介绍固体材料的热容理论、材料热性能的一般规 律、主要测试方法等及其在材料中的应用,这些内容加以探 讨,以便在选材、用材、探讨新材料和新工艺方面打下物理 理论基础。
第一节 热学性能的物理基础
热运动:物质中的分子和原子均处在不停的 无规则运动状态。

第5章 材料的热学性质

第5章 材料的热学性质
C
p
(Q / T ) p (H / T ) p
C v (Q / T ) v (E / T ) p
f D ( D / T ) 1
5.1.2德拜的比热模型
f 为德拜热容函数,θ =hvmax/k称为德拜温度, C 则德拜热容的表达式 3 Nkf ( / T ) 3 Rf ( / T )
(或点阵波),晶格波是多频率振动的组合波。
2)晶格波的能量是量子化的。对于晶格波中频率 很小的波,其能量称为声子,声子是点阵波能量 的最小单位。晶格波的能量必然是单个声子能量
的整数倍。声子能量与晶格波频率ν有关,
E 声子 h
3)对于晶格波中频率很高的振动,其频率达到红
外光区,称其为光频支振动,光频支振动可以吸
D D
v D D D D
(1)当晶体处于较高温度时, kT远大于 hv ,德拜热容函数 f D ( D / T ) 1
max
C v , m 3 Rf
D
3 R 24 . 9 J /( mol K )
D
(2)当晶体处于低温时,T远小于θ ,取 θ /T→∞,则: 12
D
4
C v ,m
2)热扩散和热阻
热扩散率 α 它的物理意义是与不稳定导热 过程相联系的。
T t

dc
p

T
2
x
2


dc
p
热阻R 其中Ф为热流量。 1/R 为热导。
R
T
5.3.2材料热传导的微观机制
1)晶格振动以弹性波的形式,在固体内部通过晶 格振动的相互影响而传播,我们称之为晶格波
v ,m
3 v ,m

第一章 材料的热学性能

第一章 材料的热学性能

1.2.2 晶态固体热容的量子理论回顾
普朗克提出振子能量的量子化理论。质点的能量 都是以 hv 为最小单位.
式中,
=普朗克常数,
=普朗克常数, = 园频率。
根据麦克斯威—波尔兹曼分配定律可推导出, 在温度为T时,一个振子的平均能量为:
将上式中多项式展开各取前几项,化简得:
在高温时,
所以
即每个振子单向振动的总能量与经典理论一致。 由于1mol固体中有N个原子,每个原子的热振动自 由度是3,所以1mol固体的振动可看做3N个振子的 合成运动,则1mol固体的平均能量为:
1.1 概述
热学性能的主要应用:
(1)微波谐振腔、精密天平、标准尺、标准电容等 使用的材料要求的热膨胀系数低; (2)电真空封装材料要求具有一定的热膨胀系; (3)热敏元件要求尽可能有高的热膨胀系数; (4)工业炉衬、建筑材料、以及航天飞行器重返大 气层的隔热材料要求具有优良的隔热性能; (5)晶体管散热器等要求优良的导热性能„„
微分热分析:测定试样温度随时间的变化率。
1.2.6 热分析应用实例 1、建立合金的相图 2、热弹性马氏体相变 的研究 3、有序-无序转变的 研究 4、钢中临界点分析
本节重点掌握内容:
1、热容的德拜模型及其局限性 2、热容随温度的变化规律 3、热分析方法在相变、有序-无序转变的应用
1.3 材料的热膨胀
4、热分析测定法
热分析法分为普通热分析、示差热分析和微分热分析
普通热分析:利用加热或冷却过程中热效应所产生的 温度变化和时间关系的一种分析技术。
示差热分析:利用示差热电偶(由两对热电偶互相串 联、极性反接而成,取得热电偶两热端的温差电势) 测定待测试样和标准温差而得到的。(示差热分析仪 DTA和示差扫描量热计DSC)

材料的热学性能与测试方法

材料的热学性能与测试方法

材料的热学性能与测试方法热学性能是指材料在热传导、热扩散、热传热等方面的性能表现。

它直接影响着材料的热工性能和工程应用。

为了准确评估材料的热学性能,科学家们开发了多种测试方法。

本文将讨论材料的热学性能概念、热传导性、热容性和热膨胀系数等方面,并介绍与之相关的测试方法。

一、热学性能概念在热学领域中,热学性能是指材料在热传导、储热和热膨胀等方面的特性。

它通常通过测量材料的热传导性、热容性和热膨胀系数等参数来评估。

这些参数的测量对于材料的热工设计和性能优化至关重要。

二、热传导性测试方法热传导性是材料传热的重要性能指标,常用的测试方法有热导率测试和热阻测试。

1. 热导率测试热导率是材料在单位时间内传递热量的能力,可以通过热导率测试仪进行测量。

该方法通过测量材料在稳定温度梯度下的热流量和温度差来计算热导率。

2. 热阻测试热阻反映了材料对热传导的阻碍能力,常用的测试方法是通过红外热成像技术或热阻测试仪来测量材料的热阻。

这些测试方法可以精确测量材料的热阻,并且能给出热阻随温度的变化曲线。

三、热容性测试方法热容性是指材料吸热或放热的能力,常用的测试方法有差示扫描量热法(DSC)和热比色分析法(TGA)。

1. 差示扫描量热法(DSC)DSC是一种通过测量样品与参比物在加热或降温过程中所释放或吸收的热量来确定材料的热容的方法。

该方法可以精确测量材料的热峰、热焓、熔点和玻璃转变温度等参数,从而评估材料的热容性能。

2. 热比色分析法(TGA)TGA是一种通过加热样品并监测其质量变化来测量其热容的方法。

该方法可以测量材料在不同温度下的质量损失或质量增加,从而确定其热容性能和热分解温度。

四、热膨胀系数测试方法热膨胀系数描述了材料随温度变化时的尺寸变化情况,常用的测试方法有热膨胀仪和激光干涉仪。

1. 热膨胀仪热膨胀仪能够通过监测材料在加热或降温过程中的长度变化来测量其热膨胀系数。

该方法可以测量材料在不同温度范围内的线膨胀系数和体膨胀系数。

材料的热学性能

材料的热学性能
目),或3NAkT J/mol,(NA 为每摩尔的原子数目),故摩尔热容为
(根据热容定义):
Cv=3NAk=3R≈25 J.K-1.mol-1
R=8.314J/K.mol, k-玻尔兹曼常数.
此热容不取决于振子的β与m,也与温度无关。这就是杜隆-珀替
定律。
(2)晶态固体热容的量子理论与德拜(Debye)T3回顾
或离子)总是围绕着平衡位置作微小振动,
称之晶体热振动。
温度体现了晶格热振动的剧烈程度,相同条件
下,晶格振动越剧烈,温度越高。
振动在晶体中的传播——波
2、格波
材料中所有质点的晶格振动以弹性波的形式在整
个材料内传播,这种存在于晶格中的波叫做格波。
格波是多频率振动的组合波。
3、声频支振动
如果振动着的质点中包含频率甚低的格波,质点彼
爱因斯坦模型近似
该模型假定:每个振子都是独立的振子,原子之间彼
此无关,每个振子振动的角频率相同
h
Cv3Nkfe

kT
h
fe

kT
爱斯坦比热函数,选取适当的ω,可
使理论上的Cv与实验的吻合。

h
E
k
E
Cv 3Rfe
T
θe称为爱因斯坦温度
德拜理论在低温下也不完全符合事实。主要原因是
德拜模型把晶体看成是连续介质,这对于原子振动
频率较高部分不适用;而对于金属材料,在温度很
低时,自由电子对热容的贡献亦不可忽略。
注:以上有关热容的量子理论适用于原子晶体和一
部分较简单的离子晶体。
热容的本质:
反映晶体受热后激发出的晶格波与温度的关系;

材料的热学性能

材料的热学性能

《材料物理性能》——材料的热性能
材料的热容:杜隆—珀替定律
根据经典理论,每一个自由度的平均能量是 kT
Hale Waihona Puke 其中1 2kT
是平均动能,1 2
kT
是平均势能;
k 是玻耳兹曼常
数。
若固体有N个原子,则总平均能能量, E 3NkT
则摩尔原子比热为:
CV
E T
V
3Nk
24.9J
/ K mol
《材料物理性能》
第三章 材料的热学性能
《材料物理性能》——材料的热性能
4.1 引言
热学性能:包括热容、热膨胀、热传导 等,是材料的重要物理性能之一。它在材料 科学的相变研究中有着重要的理论意义;在 工程技术包括高技术工程中也占有重要位置。
《材料物理性能》——材料的热性能
4.2 材料的热容
固体热容理论与固体的晶格振动有关。现代研究确认, 晶格振动是在弹性范围内原子的不断交替聚拢和分离。这 种运动具有波的形式,称之为晶格波(又称点阵波)。
已证明电子的平均能量为,
EF
EF0
1
2
12
kT EF0
2
则电子摩尔热容为,
,z为金属原子价数
《材料物理性能》——材料的热性能 以铜为例,计算其自由电子热容为,
《材料物理性能》——材料的热性能 温度很低时,则电子热容与原子热容之比为,
金属热容需要同时考虑晶格振动和自由电子二部分 对热容贡献,金属热容可写成,
➢ 差热分析(DTA)
差热分析是在程序控制温度下, 测量处于同一条件下样品与参比物 的温度差和温度关系的一种技术。
参比物:又称为标准试样,往往是 稳定的物质,其导热、比热容等物 理性质与试样相近,但在应用的试 验温度内不发生组织结构变化。 试样和参比物在相同的条件下加热 和冷却。试样和参比物之间的温差 通常用对接的两支热电偶进行测定。 热电偶的两个接点分别与盛装试样 和参比物坩锅底部接触,或者分别 直接插入试样和参比物中。测得的 温差电动势经放大后由x—Y记录仪 直接把试样和参比物之间的温差记录下来。

材料物理性能(第三章-材料的热学性能).答案

材料物理性能(第三章-材料的热学性能).答案

1.温度(temperature)
a. 在温度不太高的范围内,主要是声子传导 。 b. 热容C在低温下与T3成正比,所以λ也近似与T3成正 比。
c. 声子平均自由程 l 随温度升
高而降低。实验表明,低温下l 值
的上限为晶粒的线度,高温下l 值
的下限为晶格间距。
d. 例如Al2O3在低温40k处,λ值
式中第一项为常数,第二项为零,则
式中, 则,

;如果只考虑上式的前两项,
即点阵能曲线是抛物线。原子间的引力为:
式中β是微观弹性系数,为线性简谐振动,平衡位置仍在
r0处,上式只适用于热容CV的分析。
但对于热膨胀问题,如果还只考虑前两项,就会
得出所有固体物质均无热膨胀。因此必须再考虑第三
项。此时点阵能曲线为三次抛物线,即固体的热振动 是非线性振动。用波尔兹曼统计法,可算出平均位移 (average displacement)。
如图3.1,其中声频支最大频率:
第一节 材料的热容
热容是物体温度升高1K所需要增加的能量。
(J/K)
显然,质量不同热容不同,温度不同热容也不同。比
热容单位— 另外,平均热容 , 摩尔热容单位— , 。
范围愈大,精
度愈差。 恒压热容
恒容热容
式中:Q=热量,E=内能,H=热焓。由于恒压加 热物体除温度升高外,还要对外界做功,所以 根据热力学第二定律可以导出:
后晶格振动加剧而引起的容积膨胀,而晶格振动的激化就 是热运动能量的增大。升高单位温度时能量的增量也就是 热容的定义。所以热膨胀系数显然与热容密切相关并有着 相似的规律。见图3.8。
第三节 材料的热传导
一、固体材料热传导的宏观规律
当固体材料一端的温度比另一端高时,热量会从热 端自动地传向冷端,这个现象称为热传导。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
������������ ������������ J mol ������������ ������������ ������������ ������������ 1 ������������ ������������
∙ K)只在高温时对一部分
ii.
金属适用。 热容的量子理论:晶格振动的能量是量子化的,频率为������������ 的谐振子振动能量������������ 为������������ = ������ + 2 ℎ������������ 其中, h 为普朗克常数, n 为声子量子数, ℎ������ 为零点能 (温 2 度为 0K 时谐振子具有的能量) ,因是常数,常将它略去。 1. 爱因斯坦量子热容理论: 将晶体点阵中的原子看作独立振动的谐振子, 以 相同的频率振动。 令������������ =
)
德拜理论: 晶体中各原子间存在着弹性斥力和吸力, 这种力使原子的热振 动相互受牵连而达到相邻原子间协调地振动。 晶体中原子振动看成是各向 同性连续介质中传播的弹性波, 弹性波的振动能量是量子化的, 具有不连 续性。令������������ = ������������ =
12 ������ 4 5 ������ ������������ ℎ������������ ������
������������������ −������0 ������0 ������

d)
≈ 0.06,式中������0 ,������������������ 分别为绝对零度和熔点时的体积。熔点越低的
固体,热膨胀系数越大。 e) 影响热膨胀的材料因素(书 248~251 页,自行归纳 3. 热传导 a) 热传导的表征: 当一块固体材料两端存在温差时, 单位时间内流过的热量正比于温 度梯度, 即
材料的热学性能 1. 热容 a) 热容的定义: 材料在温度上升或下降时要吸收的能量。 在没有向彼岸或化学反应的 条件下,材料温度升高 1K 所吸收的热量 Q,成为该材料的热容。温度 T 时材料的 热容为������������ = ( ������������ )������ 。 b) 比热容:单位质量的热容为比热容。温度 T 时的材料比热容为������������ = ������ (������������ )������ ,1mol 材料的热容为摩尔热容。 c) d) 定压热容与定容热容:������������ = (������������ )������ = ( ������������ )������ ������������ = (������������ )������ = ( ������������ )������ 。 晶体热容理论 i. 经典热容理论: ������������ = ( )������ = 3������������ ������ = 3R = 24.91(
,即德拜特征温度。 T>>������������ 时,������������ ≈ 3������ , T<<������������ 时,
������( )3 。
工程材料的热容 1. 金属材料的热容: 金属的热容可以分为两个部分, 即点阵离子振动的热容 和电子热容。 2. 陶瓷材料的热容: 由于陶瓷材料主要有共价键和离子键组成, 室温下几乎 无自由电子, 因此热容与温度的关系更符合德拜模型。 材料中的气孔率同 样对材料的热容有影响。 3. 聚合物材料的热容: 大多数聚合物的比热容在玻璃化温度之下比较小, 温 度升高至玻璃化转变点时,由于热运动加剧,热容出现台阶式变化。 e) 相变对热容的影响 i. 一级相变:发生一级相变时,除有体积突变外,还伴随有相变潜热的发生。 ii. 二级相变:发生二级相变时,焓也发生变化。 2. 热膨胀 a) 热膨胀的表征及工程意义。 iii.
������ ℎ������ ������ 1 1
, 称为爱因斯坦特征温度。 当 T>>������������ 的时候,
������ ������������ ������
有������������,������ = 3������������������������( ������������ )≈ 3R ; 当 T<<������������ ,有������������,������ = 3������( ������������ )2 exp⁡ (− 2.
������������ ������������
= −������������
������������ ������������
, 式中, 为热量迁移率, 为温度梯度, A 为横截面面积,
������������ ������������
������������
������������
λ 为代表材料导热能力的常数,称为热导率或导热系数,其单位是 W ∙ ������−1 ∙ ������ 或 W ∙ ������������−1 ∙ ������。其中的负号代表热量沿 T 降低的方向流动。 b) 热传导的物理机制: 自由电子传导、 声子传导(点阵波)和光子传导(电磁辐射) 。 c) 魏德曼-弗朗兹定律:在室温下许多金属的热导率和电导率之比几乎相同,不随金 属的不同而改变。 d) 工程材料的热导率及其影响因素 i. 温度对热导率的影响: 在某一临界温度出现极大值, 在低于临界温度的范围内, 热导率随温度的升高而增加, 高于临界温度的范围内, 热导率则随温度的增加 而下降。 ii. 成分对热导率的影响:合金中加入杂质元素将使缺陷热阻增加,导热性下降。 iii. 晶体结构对温度的影响: 1. 结构越复杂,导热率越小 2. 对于非等轴晶系的晶体,热导率也存在各向异性 3. 对于同一种材料,多晶体的热导率总是比单晶的小 4. 对于同一种材料,非晶态的热导率总比静态的小 iv. 复相材料的热导率 v. 气孔对热导率的影响:气孔率越高,热导越小。
物体体积或长度随温度的升高而增大的现象称为热膨胀, 通常用热膨胀系数来 表征材料的热膨胀性能。 ii. 固体的热膨胀系数并不是一个常数, 而是随温度变化而变化的, 通常随温度的 升高而加大。 b) 热膨胀的物理本质:与原子的非简谐振动有关。 i. c) 格留乃森定律:金属体积膨胀系数������������ 与热容������������ 的关系为:������������ = ������������ ������������ ,其中������ 为格 留乃森系数,表示原子非线性振动的物理量,一般物质的������在 1.5~2.5 之间变化,K 为体积弹性模量,单位为 Pa,V 为体积。 固体极限方程:即一般纯金属从 0K 加热到熔点(������������ ) ,相对膨胀量约为 6% 。 ������������������������ =
相关文档
最新文档