第三章 静电场的边值问题
第3章 边值问题及静电场的求解

r r
Q Q
const.
若镜像位置满足
OQ ~ P OPQ
r r
R0 a
const .
由三角形相似,
b R0 R0 a
2 R0 b a Q R0 Q a
导体球外部空间的电势为
Q R 0Q 4 0 r ar 1 4 0 1 Q R a 2 Ra cos
sin d
(sin
sin
0
该方程的解有两种情况
■
1 d
2
d
2
m
2
的解
0,
当电位与方位角无关时,
2 即: m 0
( ) A
■
1 d R dr
(r
2
2
dR dr
) n ( n 1) 的解
1
(1) n 0 时, R ( r ) A0 B 0 r
n
|S f 2 ( S )
称为第二类边界条件或“诺伊曼”条件。 这类问题称为第 二类边值问题。 (3)已知场域边界面S上各点电位和电位法向导数的线性 组合值, 即给定
( N ) |S f 3 ( S )
称为第三类边界条件或“混合边界条件”。 这类问题称为 第三类边值问题。
P
Q Q 4 0 r r 1
考察空间:导体球外部空间。 镜像电荷:用位于对称轴上的等效代
替导体球面上的感应电荷。
球面上任意点P 的电势
Q Q ( P) 0 4 0 r r 1
r r
Q Q
镜像电荷不应随P 变化,
静电场的边值问题-03-1。

D1n D2n
8. 电容
C
q U
9. 电场能量
1 We i Qi i 1 2
We 1 1 1 (r ) (r ) dV (r ) S (r ) dS (r ) l ( r ) dl V 2 S 2 l 2
n
1 We we dV ( D E ) dV V V 2
Solution:
1. Choose an appropriate coordinate system for the given geometry 2. Governing equation for problems and boundary condition.
2 2 1 V V 2 =0 2 2 z r 轴对称的场,且忽略边缘效应(无限长圆柱体)V r
用电位函数
表示分界面上的衔接条件
设点1与点2分别位于分界面的两侧,其间 距为d,d→0 ,则
1 2 lim E dl lim( E1n
2
电位的衔接条件
1 2
1 2
1
d 0
d d E2 n ) 0 2 2
表明: 在介质分界面上,电位是连续的。 1 2 D1n 1 E1n 1 , D2 n 2 E2 n 2 n n
对于无源区, 0 ,上式变为
2
2 0
拉普拉斯方程
已知分布在V 中的电荷 (r ) 在无限大的自由 空间产生的电位为
1 (r ) 4π
V
dV | r r |
(r )
上式为泊松方程在自由空间的特解。
利用格林函数可以求出泊松方程在有限空间的 通解。
第3章---- 静电场及其边值问题的解法--4

电磁场
第3章 静电场及其边值问题的解法
结论:
由两个半无限大接地导体平面形成角形边界,当其夹角 , n
π n
为整数时,该角域中的点电荷将有(2n-1)个镜像电荷,该角 域中的场可以用镜像法求解;
当n=3时:
/3
q
/3
q
电磁场
第3章 静电场及其边值问题的解法
q
q
当n=3时:
r
2π
r
S
衔接条件
----不同媒质分界面上的边界条件,如
1 2 1 2 , 1 2 n n
1 2
1
2
电磁场
第3章 静电场及其边值问题的解法
例:
b
y
U0
2 2 2 0 2 x y (0, y) 0, (a, y) 0
1
d1
q d2 2 q1 d2
d1 R1
d1 R
q
d2
d2
q3
R3
d1
R2
d1
d2
q2
电位函数 q 1 1 1 1 ( ) 4π R R1 R2 R3
镜像电荷q1=-q,位于(-d1, d2 ) 镜像电荷q3 = q , 位于(-d1, -d2 )
镜像电荷q2=-q,位于( d1, -d2 )
(第三类边值问题)
§3.5 电磁场
静电场边值问题,唯一性定理
第3章 静电场及其边值问题的解法
3. 边值型问题的解法
解析法
镜像法
分离变量法
复变函数法 格林函数法 计算法
…
有限差分法 有限元法 数值法 边界元法 矩量法
第3章---- 静电场及其边值问题的解法 (1)

积分形式:
∫ D ⋅ dS = q ∫ E ⋅ dl = 0
S l
微分形式:
∇⋅D = ρ ∇× E = 0
D = εE
静电场:无旋有散场
本构关系:
线形、各向同性媒质
电磁场
第3章 静电场及其边值问题的解法
二、静电场的无旋性与电位
一 、静电场的无旋性
试验电荷q0位移dl时,电场力作功:
dA= F ⋅ dl = q0E ⋅ dl
从A点移到B点:
A = ∫ q0 E ⋅ dl
A
B
定义: A、B点间电压:
U AB
A = = ∫ E ⋅ dl q A
B
(2 - 19)
电磁场
第3章 静电场及其边值问题的解法
∫ E ⋅ dl = ∫ E ⋅ dl + ∫ E ⋅ dl = ∫ E ⋅ dl − ∫ E ⋅ dl = 0
_____ _____
电磁场
第3章 静电场及其边值问题的解法
均匀电场中带电粒子的 轨迹
阴极射线示波器原理
电磁场
第3章 静电场及其边值问题的解法
磁分离器 回旋加速器
电磁场
第3章 静电场及其边值问题的解法
磁悬浮列车
电磁场
第3章 静电场及其边值问题的解法
磁录音原理:
电磁场
第3章 静电场及其边值问题的解法
§3.1 静电场基本方程与电位方程 一、静电场的麦克斯韦方程组
∞
r
ρ 0a ρ 0a dr = 2 3ε 0 r 3ε 0 r
3
3
当r<a时,
ϕ = ∫ Er dr = ∫ Er dr + ∫
r r
∞
a
第三章 静电场边值关系

电位所满足的拉普拉斯方程在圆柱坐标系
中的展开式只剩下包含变量r 的一项,即电 位微分方程为
2 1 d d r 0 r dr dr
求得
C1 ln r C 2
利用边界条件:
V r a
C1 ln a C 2 V C1 ln b C 2 0
q q 4 π r 4 π r
可见,为了保证球面上任一点电位为零,必须选择镜像电荷为
r q q r
上任一点均具有同一数值。由上图可见,若要求三角形 △OPq
r 为了使镜像电荷具有一个确定的值,必须要求比值 对于球面 r
r a 与 △ OqP 相似,则 常数。由此获知镜像电荷应为 r f
代入上述边界条ห้องสมุดไป่ตู้,求得镜像电荷如下:
q
1 2 q 1 2
q
2 2 q 1 2
例 已知同轴线的内导体半径为a,电位为V,外导体接地,其
内半径为b。试求内外导体之间的电位分布函数以及电场强度。
解
V a b
O
对于这种边值问题,镜像法不适
用,只好求解电位方程。为此,选用圆柱 坐标系。由于场量仅与坐标 r 有关,因此,
以格林函数表示的积分解。
数学物理方程是描述物理量随空间和时间的变化规律。对于某 一特定的区域和时刻,方程的解取决于物理量的初始值与边界值, 这些初始值和边界值分别称为初始条件和边界条件,两者又统称为 该方程的定解条件。静电场的场量与时间无关,因此电位所满足的 泊松方程及拉普拉斯方程的解仅决定于边界条件。根据给定的边界 条件求解空间任一点的电位就是静电场的边值问题。
q q
电场线与等位面的分布特性与第二章所述的电偶极子的上半
第三章作业答案

μ0
μ0
ˆx 10 + e ˆy 20 + e ˆz 20 V / m ,试问该电场能否表示匀强电场?为什么?电场 7、已知电场 A = e ˆx 20 − e ˆy 5 − e ˆz 5 V / m , 大小是多小?方向余弦?如果有另一电场 B = e 试问这两个矢量是否
垂直?为什么?
G
G
ˆx 10 + e ˆy 20 + e ˆz 20 是匀强电场,电场的大小是 答:矢量 A = e G 1 2 2 E = 102 + 202 + 202 = 30 V / m ,方向余弦为 cos α = , cos β = , cos γ = ; 3 3 3 G G 两矢量垂直,因为 A ⋅ B = 0 。
μ0
2
c b
(
I 2 c2 − ρ 2 2 μ I2 ) ( 2 2 ) 2 πρ dρ = 0 2 πρ c − b 4π
单位长度内总的磁场能量为
Wm = Wm1 +Wm2 + Wm3
b μ0 I 2 ln + = + 16 Βιβλιοθήκη 4π a 4πμ0 I 2
μ0 I 2
15、 一个点电荷 q 与无限大接地导体平面距离为 d, 如果把它移至无穷远处, 需要做多少功? 解:由镜像法,感应电荷可以用像电荷-q 替代。当电荷 q 移至 x 时,像电荷 q 应位于-x, 则像电荷产生的电场强度
G ˆx 2 + e ˆz 4 ,求电介质中的电场? E =e
解:由在介质表面处 z = 0 , E1t = E2t 即 E1x = E2x = 2 , z = 0 时, D1n = D2 n 即 D1z = D2 z
第三章静电场边值问题

第三章 静电场边值问题在上一章中,我们已经知道了几种从电荷分布求静电场的问题。
一种是直接积分式(2-2-1)求得已知电荷分布情况下的电场;另一种是利用式(2-2-4)高斯定理求解某些具有对称性电荷分布的静电场问题;再一种就是由式(2-2-10)求出静电势,再利用关系式ϕ=-∇E求出电场,这些问题一般都不存在边界。
然而,对于许多实际静电问题,电荷的分布是复杂的,计算积分很困难,甚至是不能积分,有些静电问题只给出了边界上的面电荷或电势。
在这种情况下,需有其它有效的方法求解静电问题,这种方法就是求解静电势所满足的偏微分方程。
这偏微分方程就是由式(2-2-10)给出的方程:2ρϕε∇=-因此,对于有边界存在的情况下,我们不得不求解给定边界条件下静电势微分方程,然后求出静电场,这一问题称为静电场边值问题错误!未找到引用源。
即求出满足给定边界条件的泊松方程的解。
在这一章中,我们首先介绍静电唯一性定理,它是解决静电场边值问题的基础。
基于静电唯一性定理,我们主要介绍两种求解静电场边值问题的方法:电像法和分离变量法。
当然,求解边值问题还有其它的方法。
值得一提的是,本章所介绍的方法不仅仅适用于静电场,它同样适用于静磁场和时变电磁场。
3-1 静电唯一性定理我们将证明,如果我们得到了满足给定边界条件的泊松方程的解,那么,这个解是唯一的。
这就是静电唯一性定理错误!未找到引用源。
下面我们证明这一定理并初步介绍它的应用。
在由边界面s 包围的求解区域V 内,若: 1) 区域V 内的电荷分布给定;2) 在边界面s 上各点,给定了电势s ϕ,或给定了电势法向偏导数snϕ∂∂,则V 内的电势唯一确定。
以上的表述就是静电唯一性定理。
下面,我们用反证法证明静电唯一性定理。
证: 假定在区域V 内的电荷密度分布为ρ(r ),且有两个不同的解φ1和φ2满足泊松方程及给定边界条件(给定的电势值s ϕ或电势法向偏导数snϕ∂∂)。
即:2212,ρρϕϕεε∇=-∇=-并有12sssϕϕϕ==或12sssnnnϕϕϕ∂∂∂==∂∂∂式中s ϕ和snϕ∂∂为给定的边界条件。
第三章静电场及其边值问题的解

在圆柱面坐标系中,取 E 0与x轴方向一致,即 E 0 e E ,而 x 0
r r r r ( P) E0 gr ex gE0 (e ez z ) E0 cos
电磁场基础
第3章 静电场及其边值问题的解法
由此解得
C1
利用边界条件,有
x 0 处, 1 (0) 0 2 (a) 0 x a处, x b 处,1 (b) 2 (b),
S 0 2 ( x) 1 ( x) x 0 x x b
所以 D 0 1 C2 a D2 0 C1b D1 C2b D2 C2 C1 S 0 0
故单位长度的电容为
l
U
0
ln ( D a)
F/m
电磁场基础
第3章 静电场及其边值问题的解法
19
例3.1.6 同轴线内导体半径为a,外导体半径为为b,内外导体
间填充的介电常数为 的均匀介质,求同轴线单位长度的电容。 解 设同轴线的内、外导体单位长度带电量分别为 ll, ll 和 应用高斯定理可得到内外导体间任一点的电场强度为
2. 导体内部不存在任何净电荷,电荷都以面电荷形式分布于
导体表面 3.导体为一等位体,其表面为等位面 4.导体表面切向电场为0,而只有法向电场分量En
En en E s /
电磁场基础
第3章 静电场及其边值问题的解法
14
任何两个导体都可看作一点容器 电容器广泛应用于电子设备的电路中: • • • 在电子电路中,利用电容器来实现滤波、移相、隔直、旁 路、选频等作用; 通过电容、电感、电阻的排布,可组合成各种功能的复杂 电路; 在电力系统中,可利用电容器来改善系统的功率因数,以
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u (1 2 ) 0
积分后 , 1 - 2 C, 该式既满足场域 , 又满足边界 , 故 C 0,1 2 ,得证
若导体边界为第二类边 界条件 , 即已知电荷面密度
1 2 , n n
即
(1 -2 ) u 0 n n
q
1 2 q 1 2
q
2 2 q 1 2
0
( y 0 ,b x a )
0
例 设有电荷均匀分布在半径为a的介质球型区域中,电荷体密度
为 ,试用解微分方程的方法求球体内、外的电位及电场。
解: 采用球坐标系,分区域建立方程 1 d d 21 2 (r 2 1 ) (0 r a ) r dr dr 0
2u 21 2 2
利用矢量恒等式
0 (uu) u2u (u) 2 ( u )2
对场域求体积分, 并利用高斯散度定理
V
(uu )dV uu dS (u ) 2 dV
s V
S为体积 V的边界面 ,即S S0 S , S S1 S2 Sn , 由于在无穷远 S0处电位为零 ,因此有
静电场的边值问题 数学物理方程定解条件通常分为初始条件和边界条件。 静电场与时间无关,因此电位所满足的泊松方程及拉普拉斯
方程的解仅决定于边界条件。根据给定的边界条件求解泊松方程
或拉普拉斯方程就是静电场的边值问题。
边值问题 微分方程
边界条件
2 2 0
场域 边界条件
分界面 衔接条件
S f1 (s)
已知场域边界 上各点电位 的法向导数
布或边界是电力线的条 件是等价的? 边值问题框图
f 2 (s) n S
(
) f 3 ( s) n S
边值问题研究方法框图
解析法
积分法
分离变量法
镜像法、电轴法 微分方程法 计算法
保角变换法
有限差分法 有限元法 数值法 边界元法 矩量法
证明唯一性定理用图
uu dS uu dS (u ) 2 dV
s S V
uu dS u
s S
u dS (u ) 2 dV V n
(1)
若导体边界为第一类边 界条件 , 即u 1 - 2 0,则式(1)右边也为零 , 即
已知导体圆柱是一个等位体,因此,为了满足这个边界条件, 必须要求比值
r 为常数。与前同理,可令 r
r a ,由此得 d r f a
a2 d f
(4)点电荷与无限大的介质平面。
q
q et en
En
r0
E'
E t Et
q"
1 2
=
1 1
q'
r0
En
+
2 2
r0
第二章
复
习
本章主要内容是,讨论了真空中和介质中的静电场特性。根据 亥姆霍兹定理导出了静电场方程的微分形式,介质在静电场的作 用下发生的极化现象,静电场的边界条件,电容的计算,以及静 电场的能量和力的计算。 主要概念是,静电场,电场线和等位面,静电场的保守性,介 质极化,自由电荷和束缚电荷,介质的均匀与非均匀、线性与非线 性、各向同性与各向异性、以及静止与运动等特性,静电屏蔽,虚 位移法和广义力。
q q 4π a 4π f
(3)线电荷与带电的导体圆柱。
P a O d f -l r
l
在圆柱轴线与线电荷之间,离轴线的距离d 处,平行放置一根
镜像电荷 l 。已知无限长线电荷产生的电场强度为
E
l er 2π r
因此,离线电荷r 处,以 r0为参考点的电位为
E1t E1t E2t
D1n D1n D2n
已知各个点电荷产生的电场强度分别为
q E1 e 2 r 4π1r
E1
q e ) 2 r 4π1 (r
E2
q e ) 2 r 4π 2 (r
代入上述边界条件,求得镜像电荷如下:
1 2 1 1 2 2
n n
自然 边界条件
参考点电位 lim r 有限值
r
第一类 边界条件
第二类 边界条件
第三类 边界条件
一、二类边界 条件的线性组 合,即
为什么说第二类 边界条件 与导体上给定电荷分
n f 2 (s)
S
已知场域边界 上各点电位值
边界上形成的电位为零,因此必须再引入一个镜像电荷q 以产生 一定的电位。 q 的位置和量值应该如何? 心。
q q" q'
为了保证球面边界是一个等 位面,镜像电荷 q 必须位于球
为了满足电荷守恒原理,第 二个镜像电荷q 必须为
q q
以保证导体球表面上总电荷量为零值。 导体球的电位?
2 2 2 0 (阴影区域) 2 2 x y
缆心为正方形的同轴电缆横截面
( x b ,0 y b及y b ,0 x b )
U0
( x 2 y 2 a 2 , x 0 , y 0 )
0
x y
( x 0 , b y a )
2 2
体电荷分布的球形域电场
1 d 2 d 2 (r )0 2 r dr dr
(a r )
积分之,得通解
r 2 1 1( r ) C1 C2 6 0 r
边界条件
2( r )
C3 C4 r
1 r a 2
0
1 r
r a
r a
r r0
Edr
l r0 ln 2π r
若令镜像线电荷 l 产生的电位也取相同的 r0 作为参考点, 则 l 及 l 在圆柱面上 P 点共同产生的电位为
P
l r0 l r0 ln ln 2π r 2π r r l ln 2π r
介质
导体
r
介质 介质
以一个处于镜像位置的点电荷代替边界的影响,使整个空间 变成均匀的介电常数为 的空间,则空间任一点 P 的电位由 q 及 q' 共同产生,即
q q 4 π r 4 π r
考虑到无限大导体平面的电位为零,求得 q q
电场线与等位面的分布特性与第二章所述的电偶极子的上半
为简化。
这些等效电荷通常处于原电荷的镜像位置,因此称为镜像电荷, 而这种方法称为镜像法。 依据:惟一性定理。等效电荷的引入不能改变原来的边界条件。 关键:确定镜像电荷的大小及其位置。 局限性:仅仅对于某些特殊的边界以及特殊的电荷分布才有可 能确定其镜像电荷。
(1)点电荷与无限大的导体平面。
P r q r q h h q P
E
对上式两边取散度,得
E 2
对于线性各向同性的均匀介质,电场强度 E 的散度为
E
那么,线性各向同性的均匀介质中,电位满足的微分方程式为
2
该方程称为泊松方程。
对于无源区,上式变为 2 0,式称为拉普拉斯方程。
——拉普拉斯算子
E t
E"
E
E n
为了求解上半空间的场可用镜像电荷 q' 等效边界上束缚 电荷的作用,将整个空间变为介电常数为1 的均匀空间。
对于下半空间,可用位于原点电荷处的q" 等效原来的点电
荷q 与边界上束缚电荷的共同作用,将整个空间变为介电常数 为2 的均匀空间。
但是,必须迫使所求得的场符合原先的边界条件,即电场切向 分量保持连续,电通密度的法向分量应该相等,即
0ra ar
E1 (r ) 1
1 r er er r 3 0
0ra
对于一维场(场量仅仅是一个坐标变量的函数),只要对二阶常系 数微分方程积分两次,得到通解;然后利用边界条件求得积分常数,得
2 a 2 E2 (r ) 2 er e 2 r r 3 0 r
部分完全相同。
z
电场线
等位线
由此可见,电场线处处垂直于导体平面,而零电位面与导体
表面吻合。
P r q r
P
介质
导体
q h
h q
r
介质 介质
*
根据电荷守恒原理,镜像点电荷的电荷量应该等于导体表
面上感应电荷的总电荷量。
*
上述等效性仅对于导体平面的上半空间成立,因为在上半
空间中,源及边界条件未变。
2
2 2 2 2 2 2 x y z
2
利用格林函数,可以求出泊松方程在自由空间或有限空间
的通解。
泊松方程与拉普拉斯方程只适用于各向同性、线性的均匀介质。 例 列出求解区域的微分方程
2 1 0 2 2 0
2 3
3 3
三个不同媒质区域的静电场
(2)点电荷与导体球。
P a O d r q f r q
若导体球接地,导体球的电 位为零。为了等效导体球边界的 影响,令镜像点电荷q' 位于球心 与点电荷 q 的连线上。那么,球 面上任一点电位为
q q 4 π r 4 π r
可见,为了保证球面上任一点电位为零,必须选择镜像电荷为
r q q r
为了使镜像电荷具有一个确定的值,必须要求比值
球面上任一点均具有同一数值。
r 对于 r
若 △OPq ~ △ OqP ,则
P a O d r q q
r a 常数 r f